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Machine learning, deep learning, and image processing have gained significant traction and are widely utilized
across various fields for many applications, contributing significantly to advancements in medicine, security,
robotics, automation, and beyond. With the expanding range of applications, it is crucial to comprehend
how models perform on unseen data and assess their reliability for deployment in real-time scenarios. In
this context, this study employs CNN models to provide insights on blind validation. Convolutional Neural
Network (CNN) models have emerged as powerful tools for image classification tasks. This study employs a
CNN model for digit classification using the famous MNIST dataset. Subsequently, the model’s performance
is evaluated on two additional datasets: USPS and EMNIST. The evaluation aims to understand how the
model generalizes across different datasets with varying characteristics and to assess its robustness in real-
world applications. Blind validation is conducted by training the model on the MNIST dataset and testing
it on itself and the other datasets to observe potential biases and inconsistencies in the model’s behaviour
across diverse datasets. This analysis provides valuable insights into the model’s adaptability and reliability

for deployment in practical scenarios beyond the training dataset’s domain.

1 INTRODUCTION

In machine learning, deep learning, and predic-
tive modeling, the imperative to evaluate the model
performance extends far beyond theoretical con-
structs. As models transition from development en-
vironments to real-world applications, their effective-
ness in handling unseen data becomes paramount.
This makes blind validation crucial for determining
whether learning models can be deployed in real-
world situations.

Convolutional Neural Networks (CNNs) are
among the most widely used classification techniques
in modern machine learning. Although CNNs often
achieve maximum accuracy when trained and evalu-
ated on the same dataset, they often perform poorly
when evaluated on the other datasets. One of the
significant challenges in deep learning is understand-
ing and identifying potential problems within a pre-
trained CNN model for predicting image features.
Without a clear theoretical explanation, it is challeng-
ing to ascertain why a CNN model performs well
when tested on the same dataset but noticeably per-
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forms worse when tested on unseen data. Typically,
CNN performance is assessed by testing its accuracy
with sample images to evaluate its effectiveness. This
gap in implementing CNN requires robust approaches
to check their reliability in real-world situations.

The primary goal of blind validation is to evaluate
the performance and reliability of a machine-learning
model. This validation method has been meticulously
developed to examine how the model behaves and
performs when subjected to unseen datasets, irrespec-
tive of the specific characteristics of these datasets.
Blind validation thoroughly evaluates the model’s
generalization ability outside of the training dataset
by exposing it to a wide range of novel and varied
data.

The MNIST dataset is the most widely used
dataset in machine learning for tasks concerned with
image classification. It consists of grayscale images
of handwritten digits(0-9) and corresponding labels.
The MNIST dataset serves as a standard dataset for
evaluating the performance of machine learning al-
gorithms, especially for CNN, due to its simplicity
and relevance to real-world applications. MNIST pro-
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vides standard and easily accessible training, testing,
and validation images. This study focuses on training
a CNN model using the MNIST dataset and assess-
ing its performance on two distinct datasets(USPS
and EMNIST), progressively diverging in similarity
from MNIST. These datasets serve as unseen data for
the model, facilitating a comprehensive evaluation of
its ability to generalize beyond the familiar MNIST
dataset.

The fundamental components of the CNN model
consist of convolutional layers, pooling layers, and
dense layers(Dai, 2021). Additionally, the paper ex-
amines how the model’s accuracy fluctuates with al-
terations in CNN design, particularly in modifying the
convolutional layers. Furthermore, the study investi-
gates the impact on accuracy when adjusting various
learning parameters, elucidating how these modifica-
tions influence the overall performance of the CNN
model for an unseen dataset.

This literature follows the introduction in section
1. Section 2 presents comprehensives the related
work on blind validation. Section 3 describes the
methodology and datasets. Results and discussions
are detailed in section 4 and conclude with section 5.

2 LITERATURE SURVEY

A research paper was conducted on the Convo-
lutional Neural Network (CNN) model for recogniz-
ing handwritten numbers. The model was trained us-
ing the well-known MNIST dataset, which consists of
grayscale handwritten digit photographs. The CNN
model achieved an impressive validation accuracy of
98.45% on the MNIST dataset. To test the model’s
ability to handle unknown data, the researchers ran it
through a series of random photos with handwritten
and printed digits. The model achieved a reasonable
accuracy of 68.57% on this new dataset. However,
it showed limitations in recognizing numbers not part
of the training data, particularly those in non-standard
formats.(Garg et al., 2019)

The paper delves deeper into the model’s archi-
tecture, revealing that it includes four convolutional
layers, ReLU activation, and max-pooling layers - a
standard arrangement for picture classification tasks.
This study highlights that CNNs are highly effective
at recognizing handwritten digits and can generalize
to previously unexplored data. However, the model’s
performance deteriorates when it encounters data that
considerably differs from the training set.

The paper explores EEG-based emotion recog-
nition, lever- aging Convolutional Neural Network
(CNN) architectures to enhance subject-independent

296

accuracy. Unlike conventional methods relying on
spectral band power features, raw EEG data is utilized
after windowing, pre-adjustments, and normalization,
removing manual feature extraction and harnessing
CNN'’s capacity to uncover hidden features(Cimtay
and Ekmekcioglu, 2020). A median filter further im-
proves classification accuracy. The approach achieves
mean cross-subject accuracies of 86.56 and 78.34 on
the SEED dataset for two and three emotion classes,
re- respectively. Testing the SEED-trained model on
the DEAP dataset yields a mean accuracy of 58.1.

The paper extensively evaluates CNN models
in Al-assisted COVID-19 diagnostics, spotlighting
ResNet-50 as the top performer. Through itera-
tive rounds of training and testing across diverse
datasets, the study underscores the critical impor-
tance of achieving subject-independent accuracy and
the potential of enriching training datasets to bolster
model performance. Leveraging heatmaps and ac-
tivation features provides deeper insights into CNN
model learning dynamics, guiding future advance-
ments in COVID-19 and pneumonia detection diag-
nostic systems. During the initial evaluation round,
CNN models exhibited high accuracy rates of 95.2 to
99.2 for the Level 1 testing dataset, sourced from the
same clinic but designated solely for testing. How-
ever, model performance declined significantly with
the Level 3 dataset, characterized by outlier images,
reducing mean sensitivity from 99 to 36. These find-
ings emphasize the challenges outlier data poses and
the need for strategies to mitigate their impact on di-
agnostic model performance(Talaat et al., 2023).

This research gives a method for detecting biases
in picture attribute estimations learned by convolu-
tional neural networks (CNNs)(Zhang et al., 2018).
Even with great overall accuracy, these biases might
lead to erroneous findings. The method examines
CNN’s internal representation of characteristics to de-
tect probable blind spots (missing associations) and
failure modes (incorrect relationships) induced by bi-
ases in the training data. It does not require ad-
ditional labeled data and provides a more thorough
analysis than standard approaches. Experiments show
that the strategy successfully detects bias and outper-
forms other ways of identifying problems with CNN’s
learned representations.

3 COPYRIGHT FORM

Three datasets are chosen for experimentation,
consisting of grayscale images depicting handwritten
digits and characters, with dimensions of 28x28x1.
Only images containing digits 0-9 have been selected



for experimentation.

* MNIST Dataset: This dataset is a collection of
handwritten digits with numbers 0-9. It contains
60,000 train images and 10,000 test images. The
images are grayscale and have a resolution of
28x28 pixels. MNIST is often used as a bench-
mark to evaluate the performance of different ma-
chine learning models, particularly in deep learn-
ing and neural networks.(LeCun et al., 2010)

Label: 9 Label: 0 Label: 7

Figure 1: Samples from MNIST dataset

» USPS Dataset: The United States Postal Service
dataset is similar to the MNIST dataset but con-
sists of handwritten digits from the United States
Postal Service. The USPS dataset may exhibit
more variability in writing styles and quality com-
pared to the MNIST dataset. This is because the
images are scanned from real-world postal mail,
which can contain a wide range of handwriting
styles, variations in stroke thickness, and other
factors not present in carefully collected datasets
like MNIST(Bagul, ).

Label: 0 Label: 4 Label: 7

L

Figure 2: Samples from USPS dataset

o EMNIST Dataset: The extension of the MNIST
dataset, providing a broader and more varied
collection of handwritten digit samples. The
EMNIST dataset contains handwritten characters
from English alphabets (uppercase and lowercase)
and digits (0-9). It consists of 814,255 characters,
divided into 814,255 training images and 81,406
test images. Each image is grayscale with a reso-
lution of 28x28 pixels.(Cohen et al., 2017)

The naming convention utilized for the datasets in
our study is illustrated in Figure 4. This study em-
ploys Dataset A for training purposes, while all three
datasets validate the trained model. Dataset B exhibits
correlation and resembles Dataset A, whereas Dataset
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Label: [1] Label: [0] Label: [9]

Figure 3: Samples from EMNIST dataset

Label: § Label: 0 Label: 7
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Label: 0 Label: 4 Label: 7

Label: [1] Label: (0] Label: [9]
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Figure 4: Naming convention used for datasets

Dataset A
MNIST
Training dataset
Validation Dataset-1

Dataset B
USPS
Correlated with
training dataset
Validation Dataset-2

Dataset C

EMNIST
Uncorrelated with
training dataset
Validation Datset-3

C is uncorrelated and notably different from Dataset
A.

Convolutional Neural Networks (CNNs) are
highly effective for multi-class classification tasks,
particularly on image datasets like MNIST. CNNs
have many adjustable parameters that can influence
the model’s performance, like the number of layers,
filter counts, dimensions and types, and learning rate.

CNN models are crafted by adjusting various pa-
rameters, then trained on Dataset A and validated on
all three datasets. This methodology seeks to un-
derstand how these models perform when confronted
with different combinations of datasets for the same
task. This aids in gaining insight into the model’s be-
haviour when encountering datasets with varying de-
grees of similarity.

The initial model designed for observation con-
sists of two convolutional layers, a max-pooling layer,
two additional convolutional layers, and another max-
pooling layer, concluding with a fully connected
layer, as depicted in Figure 2. Additionally, the model
includes the following parameters:

* Learning rate set to 0.001

e Two dense layers with 64 units followed by 10
units.

* 32 filters in each convolution layer with a dimen-
sion of 3x3.
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¢ ReLu activation function.

* Training spanned across 10 epochs.
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Figure 5: Model designed for experimentation

A range of CNN models were developed and ex-
amined by modifying their parameters to ascertain
their impact on enhancing the models’ performance.

3.0.1 Number of dense layers and convolution
layers

The dense layers are incremented in multiples of 32,
specifically 32, 64, 128, and 256, with each dense
layer corresponding to either one or two convolution
layers at a fixed learning rate of 0.001. Each convolu-
tion layer comprises 32 filters with dimensions of 3x3
each. This results in the formation of various combi-
nations of dense and convolution layers.

3.0.2 Number of Convolution Layers

The experimentation involves varying only the con-
volution layers from 1 to 10 while keeping the dense
layers constant at 64. Each convolution layer com-
prises 32 filters with dimensions of 3x3 each. This
aims to observe how the model’s behaviour evolves
with increasing convolution layers.

3.0.3 Learning Rate

The learning rate is a critical factor in model training.
The learning rate ranges from 0.05 to 0.001 to deter-
mine its impact on improving blind validation accu-
racy. The ideal learning rate is selected based on the
results obtained.

3.0.4 Number of Filters and their Dimension

The filter dimensions are varied across 3x3, 5x5, and
7x7, each utilizing 16, 32, and 64 filters, respectively.
It is carried out at a constant learning rate and fixed
dense layers.
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With these variations, it was evident that the
model performance tended to deteriorate with unseen
datasets; the same is described in the results section.

4 RESULTS AND DISCUSSIONS

The outcomes obtained from the initial model
design indicate that the accuracy was significantly
higher when Dataset A was trained and tested on itself
compared to when tested on Dataset B and Dataset C,
as depicted in Table 1.

Table 1: Cross-Dataset Performance of Model Trained on
Dataset A

Train Test Validation Accuracy(%)
Dataset A | Dataset A 98.43
Dataset A | Dataset B 60.38
Dataset A | Dataset C 14.29

The following illustrates the outcomes of the dif-
ferent CNN models designed.

4.1 Varying Number of Dense Layers

Increasing the number of dense layers by multiples of
32, specifically 32, 64, 128, and 256, did not signifi-
cantly enhance validation accuracy.

Nevertheless, as the number of convolution layers
increased from 1 to 2, there was a corresponding en-
hancement in accuracy. Figure 6 illustrates that aug-
menting the number of dense layers has minimal im-
pact on accuracy. Conversely, it is apparent that aug-
menting the number of convolution layers positively
correlates with heightened accuracy.

Accuracy vs. Number of Neurons in Dense Layer

—e— 1 Convolutional Layer
2 Convolutional Layers

50 100 150 200 250
Number of Neurons in Dense Layer

Figure 6: Performance with change in number of Dense
Layers



4.2 Varying number of Convolution
layers

The validation accuracy shows a noticeable rise with
an increase in convolution layers, as illustrated in Fig-
ure 7. The mean accuracy shifts from 60 to 70%.
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Figure 7: Performance with change in number of Convolu-
tion Layers

4.3 Varying Learning Rate

Figure 8 demonstrates that lower learning rates, like
0.001, consistently yield superior accuracy compared
to higher and excessively lower rates. This observa-
tion underscores the critical significance of meticu-
lously selecting an appropriate learning rate to en-
hance model performance effectively. However, de-
spite varying learning rate, the maximum blind vali-
dation accuracy obtained is below 75%.

Test Accuracy for Different Learning Rates

o
(0.0005, 0.7183

0.7
(0.0001, 0.

0.6

o
o

Test Accuracy
°
S

104 1073 1072
Leaming Rate

Figure 8: Performance with change in Learning rate
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4.4 Varying Number of Filters and
Dimension of Filters

Figure 9 indicates that despite experimenting with
various filter combinations, there was no improve-
ment in blind validation accuracy. Furthermore, the
validation accuracy achieved by training and testing
on Dataset A was notably higher than that achieved
by training on Dataset A and testing on Dataset B.

Test Accuracies for Different C

085 —e— MNIST
UsPs

Configuration

Figure 9: Performance with variation with different combi-
nations of Filters

Based on the observed trends in validation accu-
racy improvement, the convolution layers were sys-
tematically increased with a consistent learning rate
of 0.001 while maintaining 64 dense layers. This was
in response to the observed trend of higher blind val-
idation accuracy associated with an augmented num-
ber of convolution layers, as depicted in Figure 3 and
Table 3.

Table 2 provides insights into the validation ac-
curacy as convolution layers increase. The “Lay-
ers” column indicates the number of convolution lay-
ers, "MNIST” represents the validation accuracy on
Dataset A, "USPS” indicates the validation accuracy
on Dataset B, "EMNIST” signifies the validation ac-
curacy on Dataset C, and “Training parameters” de-
notes the total trainable parameters for each respec-
tive number of convolution layers.

Figure 10 represents the convolution layers’ cor-
responding validation accuracy. The blue line shows
the training and testing done on Dataset A, while the
orange line shows the training done on Dataset A and
testing done on Dataset B. Similarly, the green line
represents the training done on Dataset A and testing
done on Dataset C.

The blind validation accuracy did not increase be-
yond 75%(approx.) when tested on Dataset B and
not beyond 15% (approx.) on Dataset C. Conversely,
the model achieved an accuracy of over 95% when
trained and tested on Dataset A, indicating a de-
cline in performance when exposed to different un-
seen datasets, despite adjustments parameters.
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Table 2: Summary of experiment results

Layers | MNIST | USPS | EMNIST | Train Params
1 98.86% | 56.73% | 18.78% 1.61M
2 98.75% | 62.03% 17.13% 1.64M
3 99.01% | 67.51% | 17.33% 1.68M
4 99.21% | 68.46% 16.73% 1.72M
5 99.16% | 66.73% | 14.71% 1.76M
6 99.10% | 65.63% | 17.52% 1.79M
7 98.90% | 67.66% | 16.70% 1.83M
8 99.14% | 68.92% | 18.98% 1.83M
9 99.07% | 69.07% | 17.23% 1.90M
10 98.79% | 67.89% | 16.73% 1.94M
Accuracy vs. Number of Layers
2 0 —— MNSIT
£ USPS
< —e— EMNIST

1 2 3 4 5 6 7 8 9 10
Number of Layers

Figure 10: Performance with change in number of Convo-
lution Layers for validating across the Datasets

S CONCLUSIONS

The research addresses the crucial challenge of gen-
eralization in CNN models, revealing that although
they achieve high accuracy on their training dataset
(98.43% on MNIST), their performance significantly
drops on unseen datasets (60.38% on USPS and
14.29% on EMNIST). This finding highlights the vi-
tal role of blind validation in evaluating how well ma-
chine learning models can adapt to new data, which
is essential for their deployment in real-world sce-
narios. The study exposes the limitations of CNNs
when faced with diverse datasets, stressing the ne-
cessity for robust validation techniques to ensure the
models are reliable and effective outside of controlled
training settings. The significance of this study lies in
illustrating the importance of thoroughly evaluating
any pre-trained model before it is deployed in real-
world applications, where adaptability and robustness
are crucial for maintaining consistent and reliable per-
formance.
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