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Abstract: The rise of Deep Learning (DL) has unlocked a wide range of transformative applications, including the
creation of hyper-realistic synthetic images through Generative Adversarial Networks (GANs). While these
images demonstrate the immense potential of DL, they also pose significant risks, such as misuse in cyberse-
curity breaches, political manipulation, and disinformation campaigns. This paper proposes a robust approach
for deepfake detection using MobileNetV4-Small, a lightweight and efficient DL model. Leveraging advanced
preprocessing techniques, the proposed method enhances the ability to distinguish counterfeit images from au-
thentic ones. The study utilized a dataset containing real and fake images, achieving a notable test accuracy
of 89.78%.The model’s performance was further analyzed through visual evaluation of classification results.
This work underscores the efficacy of lightweight architectures in addressing the challenges posed by deep-
fake media and provides a comparative analysis with existing approaches. Future enhancements could involve
ensemble techniques and expanded datasets to further improve accuracy and generalization. The results affirm
the critical role of DL models in mitigating the risks associated with synthetic media.

1 INTRODUCTION

The advancements in Deep Learning (DL)(Mienye
and Swart, 2024) have unlocked transformative ap-
plications across diverse fields such as education,
entertainment, and healthcare. However, these ad-
vancements have also given rise to deepfake tech-
nology(Croitoru et al., 2024), a highly debated and
morally complex innovation. Deepfakes leverage ad-
vanced machine learning models, particularly Gen-
erative Adversarial Networks (GANs)(Ahmad et al.,
2024), to create hyper-realistic images and videos,
blurring the boundaries between reality and fabrica-
tion. This capability has raised significant concerns
in areas such as politics(Appel and Prietzel, 2022),
journalism, cybersecurity (Broklyn et al., 2024), and
individual privacy.

While deepfakes offer legitimate applica-
tions—such as digital education, lifelike animations,
and historical preservation—they also pose alarm-
ing risks. Malicious actors can exploit them for
disinformation, identity theft, or reputational harm.
For instance, a deepfake video of a political leader
spreading false statements could incite unrest or
destabilize societal systems. Consequently, the

development of effective detection mechanisms is
essential to mitigate these threats and safeguard
against potential misuse.

Despite notable progress in deepfake detection,
existing methods often rely on resource-intensive
models that are unsuitable for deployment on mo-
bile or edge devices. This creates a critical gap, as
lightweight and efficient detection systems are ur-
gently needed to ensure accessibility and scalability
in real-world scenarios.

To address this challenge, the DeepFake Im-
age Classification explores MobileNetV4-Small (Qin
et al., 2025), a lightweight Convolutional Neural Net-
work (CNN) (Patel et al., 2023) designed for ef-
ficiency and portability. MobileNetV4-Small bal-
ances computational simplicity with high perfor-
mance, making it an ideal candidate for real-time de-
ployment on resource-constrained devices. By fine-
tuning the model to detect subtle artifacts unique
to deepfakes and employing optimization techniques,
this work aims to deliver an effective yet scalable de-
tection framework.

Section 2 presents the background study, while
Section 3 describes the proposed deepfake image
detection approach and the MobileNetV4-Small ar-
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chitecture and preprocessing steps. Section 4 pro-
vides details about the dataset and accuracy analy-
sis, demonstrating the effectiveness of MobileNetV4-
Small in detecting deepfake images.

2 BACKGROUND STUDY

Deepfake detection has become an increasingly im-
portant research area, driven by the rapid evolution
of generative technologies such as Variational Au-
toEncoders (VAEs)(Kingma et al., 2019) and GANs
(Goodfellow et al., 2014). These methods allow
for highly realistic manipulations, with applications
in face swapping, reenactment (Nirkin et al., 2019),
and other forms of image tampering (Zheng et al.,
2019). To counter these challenges, researchers have
developed various detection methods (Heidari et al.,
2024), broadly categorized into traditional forensic
techniques, CNN-based methods, and lightweight ar-
chitectures.

Early approaches to detecting manipulated media
relied on forensic techniques that analyzed inconsis-
tencies in lighting, pixel values, and compression arti-
facts. While these methods could identify simple ma-
nipulations, they struggle with highly sophisticated
deepfake techniques enabled by advanced GANs. For
example, techniques like Face2Face (Thies et al.,
2016) and Neural Textures (Thies et al., 2019) lever-
age 3D modeling and photometric reconstruction to
produce highly realistic results, making detection
through traditional methods increasingly difficult.

The introduction of CNNs revolutionized deep-
fake detection by automating feature extraction and
analysis. Models like ResNet (Targ et al., 2016) and
VGG (Tammina, 2019) demonstrated high accuracy
in detecting artifacts in manipulated media. ResNet-
50 achieved up to 95% accuracy on datasets like
Celeb-DF (Li et al., 2020), while EfficientNet (Tan
and Le, 2019), with its balance of computational ef-
ficiency and accuracy, has been a preferred choice
for many applications. Transformers, such as Vision
Transformers (Khan et al., 2022), have also emerged
as a promising alternative, providing strong general-
ization across datasets, though at a higher computa-
tional cost.

Given the need for real-time and resource-
efficient solutions, lightweight models such as Mo-
bileNet, ShuffleNet (Zhang et al., 2018), and
SqueezeNet (Bhuvaneswari and Enaganti, 2023) have
gained popularity. These architectures balance accu-
racy and computational requirements, making them
suitable for deployment on devices with limited re-
sources, such as mobile phones. MobileNetV2

achieved 89% accuracy on datasets like FaceForen-
sics++(Rossler et al., 2019), but its limitations in
capturing subtle manipulation details restrict its use
in more challenging scenarios. ShuffleNet and
SqueezeNet also show promising results, with Shuf-
fleNetV2 achieving 88.7% accuracy and SqueezeNet
achieving 87.5% accuracy on similar datasets. How-
ever, these models tend to compromise on the ability
to detect subtle manipulation artifacts and are limited
by the lack of advanced modules for feature extrac-
tion.

MobileNetV4 and its compact variant,
MobileNetV4-Small, further enhance computa-
tional efficiency while maintaining high detection
accuracy. MobileNetV4-Small leverages advanced
techniques such as depthwise separable convolutions
and squeeze-and-excitation modules, optimizing fea-
ture extraction and ensuring the model can efficiently
process complex data while using fewer resources.
In comparison to MobileNetV2, which achieves
89% accuracy, MobileNetV4-Small surpasses this
by achieving 89.78% accuracy with a lower test loss
of 0.2648. This makes MobileNetV4-Small more
efficient and capable of detecting subtle manipula-
tions as well as deployment on resource-constrained
devices , a crucial aspect for deepfake detection in
real-world applications.

Despite the progress made by lightweight archi-
tectures, several challenges remain unresolved. One
major issue is the generalization of detection mod-
els across different types of manipulations. Many
models tend to overfit specific datasets, limiting their
ability to detect unseen manipulations. Addition-
ally, resource-intensive models like ResNet and Vi-
sion Transformers are impractical for deployment
on devices with constrained computational resources.
These limitations highlight the need for more effi-
cient, generalizable, and lightweight models that can
perform well across diverse manipulation techniques
and be deployed on resource-constrained devices.

The proposed preprocessing pipeline improves
generalization by applying augmentations like ran-
dom rotation and color jittering, enhancing the
model’s robustness to real-world variations. Com-
bined with the compact MobileNetV4-Small archi-
tecture, which ensures computational efficiency, this
approach makes real-time deepfake detection feasible
on lightweight devices. By addressing the limitations
of existing methods, our solution offers an efficient
and accurate deepfake detection model, optimized for
resource-constrained environments, with the next sec-
tion elaborating on the methodology and key innova-
tions.
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3 PROPOSED WORK

The MobileNetV4-Small model is a lightweight ar-
chitecture optimized for resource-constrained envi-
ronments like mobile and edge devices. It balances
computational efficiency, feature extraction, and clas-
sification accuracy, making it ideal for real-time ap-
plications such as deepfake image classification. The
following subsections highlight the key components
and their specific role in detecting deepfake images.

3.1 Model Architecture

The Figure.1 describes the backbone model,
MobileNetV4-Small, used for feature extraction,
leveraging its specialized convolutional layers for
efficient processing. The extracted features are re-
fined through dimensionality reduction before being
passed to a dense layer. To enhance generalization
and minimize overfitting, techniques like dropout
or normalization are applied before the dense layer.
Finally, a binary classifier with a sigmoid activation
function ensures accurate classification of the input.

Figure 1: Proposed Work.

3.2 Proposed Architecture Components

Depthwise Separable Convolutions (Kaiser et al.,
2017) reduce computational complexity by splitting
a standard convolution into two steps: depthwise con-
volution (spatial filtering) and pointwise convolution
(channel-wise interaction). This reduces the compu-
tational cost from Equation (1) to Equation (2):

O(M ·N ·K2) (1)

O(M ·K2 +M ·N) (2)
where M is the output channels, N is the spatial

dimensions, and K is the kernel size. This optimiza-
tion allows lightweight architectures to process spatial
features more efficiently, making them well-suited for
large-scale datasets in deepfake classification.

Universal Inverted Bottleneck (UIB) blocks (Qin
et al., 2025), as depicted in Figure 2, expand the in-
put feature dimension Fin by a factor t, as shown in
Equation (3):

Fexp = t ·Fin (3)

Figure 2: UIB Blocks (Qin et al., 2025).

followed by depthwise convolutions and projec-
tion back to Fout. These blocks efficiently capture hi-
erarchical structures, including subtle distortions in-
troduced by manipulations, while maintaining com-
putational efficiency.

Fused Inverted Bottleneck Blocks (Tan and Le,
2021), shown in Figure 3, integrate activation and
batch normalization directly within the block. These
blocks transition between narrow and wide layers, op-
timizing both computational cost and feature extrac-
tion. They effectively identify deepfake artifacts, such
as texture irregularities and lighting inconsistencies.

Figure 3: Fused Inverted Bottleneck Blocks architec-
ture (Sandler et al., 2018).

Squeeze-and-Excitation (SE) blocks (Hu et al.,
2018) use attention mechanisms to recalibrate
channel-wise feature responses. For an input tensor
X with dimensions (C,H,W ), the global context vec-
tor sc is calculated as shown in Equation (4):

sc =
1

H ·W

H

∑
h=1

W

∑
w=1

Xc,h,w (4)

This vector is used to scale X with learned
weights, emphasizing features indicative of manipula-
tions, such as unnatural patterns in facial expressions
or mismatched shadows.

The ReLU6 (Howard, 2017) activation function,
defined as shown in Equation (5), is employed:

f (x) = min(max(0,x),6) (5)
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where x is the input. ReLU6 prevents overflow
and ensures stability during low-precision computa-
tions, which is crucial for distinguishing subtle differ-
ences between real and fake images.

Finally, the head and tail layers (Howard et al.,
2019) efficiently manage feature extraction and clas-
sification. The head extracts low-level features
through convolution, batch normalization, and acti-
vation, while the tail reduces spatial dimensions via
adaptive average pooling, producing a feature vector
Ftail. The final predictions are computed using the
softmax function, as shown in Equation (6):

P(yi) =
exp(Wi ·Ftail)

∑ j exp(Wj ·Ftail)
(6)

This combination ensures robust feature extrac-
tion and accurate classification of deepfake artifacts.

3.3 Preprocessing

The dataset preprocessing pipeline was specifi-
cally designed to ensure compatibility with the
MobileNetV4-Small architecture and improve the
model’s robustness. The dataset was organized into
Train, Test, and Validation directories, each contain-
ing subdirectories for real (genuine) and fake (manip-
ulated) images.

For training, the images were resized to 224×224
pixels, which aligns with the input dimensions re-
quired by the MobileNetV4-Small architecture. To
further improve model generalization, a series of aug-
mentation techniques were applied. These included
horizontal flipping with a probability of 0.5, rotation
within a range of ±10◦, and color jittering, which ad-
justed the brightness, contrast, saturation, and hue of
the images. These transformations helped the model
learn a wider range of features and better handle vari-
ations in the data.

Normalization was performed using the ImageNet
statistics, specifically the mean [0.485,0.456,0.406]
and standard deviation [0.229,0.224,0.225]. This
step, represented by the Equation (7) , ensured that
the pixel values were standardized to the same scale as
the pre-trained weights used by MobileNetV4-Small.

x′i =
xi −µ

σ
(7)

where xi is the pixel value, µ is the mean, and σ is the
standard deviation.

For the test and validation sets, only resizing and
normalization were applied, without any augmenta-
tion. This approach was intended to evaluate the
model’s performance on unaltered images. To stream-
line the loading and processing of the dataset, Py-
Torch’s ImageFolder class was used to organize the

data, and data loaders were configured with a batch
size of 32 for efficient training and evaluation.

3.4 Training and Evaluation

The MobileNetV4-Small model was trained over 11
epochs using a deep learning framework, with the
training process incorporating the model, training
data, loss function, optimizer, and epochs. The model
was trained using a cross-entropy loss function as
demonstrated in Equation (8).

L(θ) =− 1
N

N

∑
i=1

C

∑
c=1

yi,c log(pi,c) (8)

where N is the batch size, C is the number of
classes, yi,c is the true label, and pi,c is the predicted
probability for class c. The optimizer employed back-
propagation and the Adam algorithm to iteratively up-
date model parameters, minimizing the loss as out-
lined in Equation (9).

θt+1 = θt −η∇θL(θ) (9)

where η is the learning rate and ∇θL(θ) is the gra-
dient. After each epoch, the model’s accuracy was
calculated using Equation (10).

A =
1
N

N

∑
i=1

1(yi = ŷi)×100 (10)

where 1 is an indicator function. Validation was
performed at the end of each epoch to assess gen-
eralization, and the model was saved after training
for testing on a separate test set. During testing, the
model’s accuracy on the test data was calculated sim-
ilarly to the training phase. The final test accuracy of
89.78% and loss evaluated the model’s effectiveness
in deepfake detection, demonstrating its ability to dis-
tinguish between real and manipulated images.

The effectiveness of these innovations is evident
in the results of the model’s evaluation on the test
dataset. The following section presents the perfor-
mance metrics and detailed analysis of the model’s
ability to detect deepfake images, showcasing its ro-
bust capabilities in both qualitative and quantitative
assessments.

4 RESULTS

This section presents the experimental results, includ-
ing both qualitative and quantitative analysis, and pro-
vides an overview of the dataset.

INCOFT 2025 - International Conference on Futuristic Technology

250



Figure 4: Sample images from the OpenForensics dataset.
The figure illustrates examples of genuine (real) images and
manipulated (fake) images, highlighting the focus on facial
regions where deepfake techniques have been applied.

4.1 Dataset Description

The OpenForensics Dataset (Karki, 2024) for Deep-
fake Detection is designed for benchmarking deep-
fake detection methods, organized into Train, Test,
and Validation directories with subdirectories for gen-
uine (real) and manipulated (fake) images. Manip-
ulated images focus on facial regions with applied
deepfake techniques, while backgrounds remain un-
changed, ensuring models focus on facial anomalies.
Images in standard formats (JPEG, PNG) ensure com-
patibility with deep learning frameworks. The dataset
includes 140,002 training images (70,001 real, 70,001
fake), 10,905 test images (5,413 real, 5,492 fake), and
39,428 validation images (19,787 real, 19,641 fake),
enabling robust model evaluation.The sample images
from the dataset,illustrating both real and fake im-
ages, are shown in Figure. 4

4.2 Qualitative Analysis

The MobileNetV4-Small model was trained on the
training dataset and evaluated on the test dataset to
detect real and fake images effectively. The model
achieved a test loss of 0.2648 and a test accuracy of
89.78%, indicating its robust performance in distin-
guishing between real and fake images.

The Figure 5 illustrates the MobileNetV4-Small
model’s ability to distinguish ”Fake” images with fa-
cial manipulations from ”Real” images, even when
backgrounds are altered. The model accurately clas-
sifies images as ”Fake” when facial features, expres-
sions, or visual artifacts are modified, demonstrating
its robustness in detecting manipulations

To further evaluate the model’s classification per-
formance, a confusion matrix is presented in Figure 6,
which provides insights into the true positive, true
negative, false positive, and false negative predictions
made by the model.

Figure 5: Top: Real with altered backgrounds. Bottom:
Fake (left) vs. Real (right) based on facial edits

Figure 6: Confusion Matrix for MobileNetV4-Small on the
Test Dataset

4.3 Quantitative Analysis

The Table 1 showcases the performance of var-
ious models for deepfake image classification,
with MobileNetV4-Small achieving an accuracy of
89.78% on the OpenForensics dataset, which em-
phasizes facial manipulation detection. In addition
to its accuracy, the model exhibits strong quantita-
tive metrics, including a precision of 91.52%, recall
of 87.53%, F1-score of 89.48%, and a high ROC-
AUC of 96.81%. These metrics underscore its abil-
ity to effectively detect subtle manipulations, such as
blending inconsistencies and unnatural textures, even
in challenging scenarios.

MobileNetV4-Small’s lightweight and efficient
architecture makes it ideal for resource-constrained
environments, balancing performance and scalability
effectively. Its robust design ensures generalization
across diverse manipulations, including variations in
lighting, facial expressions, and angles. Data aug-
mentation during training further enhances its abil-
ity to detect deepfake artifacts. With its compact size
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and real-time processing capabilities, MobileNetV4-
Small is well-suited for practical deepfake detec-
tion applications, addressing both computational ef-
ficiency and detection challenges.

Table 1: Comparative Analysis of Lightweight Models for
Deepfake Image Classification

Model Dataset Used Accuracy (%)
ShuffleNetV2
(Zhang et al.,
2018)

DFDC 88.7

SqueezeNet
(Bhuvaneswari
and Enaganti,
2023)

Celeb-DF 87.5

MobileNetV4-
Small

OpenForensics 89.78

5 CONCLUSION

The MobileNetV4-Small model proves to be a
lightweight and efficient solution for deepfake detec-
tion, making it suitable for deployment on resource-
constrained devices. Its architecture effectively cap-
tures subtle image artifacts, addressing the grow-
ing need for real-time detection systems in practi-
cal scenarios. Future work could focus on extend-
ing this framework to classify specific manipulation
techniques, enhancing its robustness across diverse
datasets and unseen deepfake types, and exploring in-
tegration into real-world applications. Additionally,
considerations for dataset biases and challenges with
generalization across diverse fake media should be
addressed to ensure broader applicability and fairness
in detection results.
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