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Abstract:  Diabetic retinopathy (DR) is a leading cause of preventable blindness, especially among diabetic patients. 
Early diagnosis is critical to halt its progression and prevent vision loss. This work leverages deep learning, 
specifically the ResNet-18 model, to detect DR from retinal images. Using a Kaggle dataset divided into 
training and validation sets, the model achieved a training accuracy of 98.57% and a validation ac- curacy of 
83.49%. These findings underscore the efficacy of ResNet-18 in automating DR detection. Integrating such 
technology into clinical workflows has the potential to enhance early screening and treatment strategies, 
improving patient outcomes while optimizing healthcare re- sources. 

1 INTRODUCTION 

Diabetic retinopathy is a severe complication of 
diabetes that affects the fragile blood vessels of the 
retina and can cause vision loss or even blindness if 
left untreated. DR progresses through stages: the first 
one being nonproliferative di- abetic retinopathy, the 
earliest stage characterized by leaking and swelling 
blood vessels. The more advanced stage, proliferative 
diabetic retinopathy (PDR), is characterized by the 
abnormal proliferation of blood vessels, leading to 
detach- ment of the retina, bleeding, and irreversible 
vision loss. 

According to the World Health Organization, 
more than 420 million people worldwide suffer from 
diabetes, and this number is expected to surge 
exponen- tially in the near future (Nirgude, Revathi, 
et al. , 2024). Diabetic retinopathy remains one of the 
leading causes of preventable blindness globally. In 
2010 alone, it caused 0.8 million cases of blindness 
and 3.7 million cases of visual impairment worldwide 
(Bourne, Price, et al. , 2012), (Solomon, Chew, et al. 
, 2017). By 2030, the number of DR patients is 
projected to rise to 191 million, with a prevalence rate 
of 27% globally from 2015 to 2019 (Teo, Tham, et al. 
, 2021), (Yau, Rogers, et al. , 2012). These statistics 
underscore the urgent need for effective early 
detection and timely treatment to prevent vision loss. 

Early diagnosis of DR is essential because the 
disease process can be pre- vented in its early stages 
if timely intervention is performed. Early DR can be 
controlled with laser treatment, anti-VEGF 
injections, and vitrectomy that stops the advancement 
of the disease. Traditional screening of DR has 
proven to be a very tedious process, laborious, and 
prone to human errors. The current scenario among 
ophthalmologists is retinal images analysis, and due 
to this, there have been delayed diagnoses, cases left 
behind, and overloads in healthcare resources. With 
an increase in the incidence of diabetes and the 
prevalence of diabetic retinopathy projected to 
increase, there is a dire need for automated systems 
that improve the screening process to give faster and 
more accurate diagnoses in support of early detection 
efforts(Abràmoff, 2020), (Cheung, Ikram, et al. , 
2015). 

Machine learning (ML) and deep learning (DL) 
have emerged as revolution- ary tools in the medical 
field, particularly in the automatic detection of DR. 
Con- volutional Neural Networks (CNNs) are a class 
of deep learning models that have shown impressive 
performance in the analysis of retinal images by 
autonomously learning complex features from large 
datasets. These models can identify even the subtlest 
signs of DR in its early stages, far outperforming 
traditional meth- ods in terms of accuracy and 
efficiency (Gulshan, Peng, et al. , 2016), (Krizhevsky, 
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Sutskever, et al. , 2012). Yet, there are still challenges 
in applying DL in DR detection: a need for large 
annotated datasets to train, over- fitting issues when 
trained on limited data, and a lack of interpretability, 
which limits clinical adoption (Ward, Maselko, et al. 
, 2017). 

This work focuses on using ResNet-18, an 
efficient deep learning architecture based on the 
residual network design, to better identify diabetic 
retinopathy early. The architecture of ResNet-18, 
better suited to the image classification task because 
it prevents the vanishing gradient problem with 
residual connec- tions, results in better training of 
deep networks. The model’s ability to learn complex 
features from medical image datasets makes it a 
powerful tool for iden- tifying subtle patterns 
indicative of DR, even in its early stages (Zhang, Ren, 
et al., 2016). Advanced techniques like image 
preprocessing, data augmentation, and 
hyperparameter optimization are incorporated into 
the proposed system with the aim of enhanc- ing 
model robustness and generalization, thus improving 
its ability to detect DR across diverse populations and 
imaging modalities. It aims at addressing the critical 
problem of model transparency besides the limited 
annotated data to overcome the challenges this 
presents. This means the system develops a model 
that, besides providing the correct predictions, also 
allows interpretability us- ing techniques like Class 
Activation Maps (CAMs), hence gaining trust among 
healthcare professionals. This approach allows 
ophthalmologists to understand how the model comes 
to its conclusion, thereby facilitating better 
integration of AI-based tools into clinical decision-
making processes (Ward, Maselko, et al. , 2017). 

Deep learning models suffer from several major 
challenges. One major issue is their dependence on 
large annotated datasets for training. Annotated data 
are often either unavailable or scarce in many 
healthcare settings, thereby preventing such models 
from generalizing well to different populations and 
imaging modal- ities. This problem leads to 
overfitting, mainly when the models are trained on 
less or biased datasets, resulting in poor accuracy 
when tested with new or varied data. Further, the 
issue of uninterpretability is another huge challenge 
for deep learning models to be used in clinical 
practice at large scales. For medical professionals to 
trust and appropriately use AI-based systems, they 
need to be aware of how the models generate their 
predictions (Ward, Maselko, et al. , 2017). 

Over the years, research studies have been 
conducted that have explored the possibility of deep 
learning in diabetic retinopathy detection and have 

shown promising results. Gulshan et al. (2016) 
developed a deep learning algorithm that gained 
diagnostic accuracy equal to an expert 
ophthalmologist in DR identifica- tion from retinal 
images (Abràmoff, 2020). Leibig et al. demonstrated 
in 2017 the superiority of deep learning models 
compared to traditional methods for screening DR 
(Ward, Maselko, et al. , 2017). The remaining 
challenges include dataset variability, high 
computational require- ments from deep learning 
models, and the lack of model transparency, which 
have significantly prevented the wider clinical 
applicability of these technologies. 

2 LITERATURE WORK: 

Diabetic Retinopathy (DR) has become an 
extremely active area of research due to its severe 
contribution to blindness in diabetic patients. 
Timely detec- tion and treatment play a crucial role 
in the prevention of permanent blindness in many 
patients, which puts emphasis on early diagnosis. 
Traditional methods for DR detection involved the 
visual inspection of retinal fundus images by us- ing 
techniques like thresholding, edge detection, and 
region growing. However, these conventional 
approaches are unable to deal with intrinsic 
variability and complexity in the retinal images. 
Some of this variability includes varying illu- 
mination, noise, and dimensions of lesions that 
become challenging to diagnose accurately (Yau, 
Rogers, et al. , 2012). 

 
Figure 1: Healthy eye and Diabetic Retinopathy 

Fig 1 presents a normal eye alongside a diabetic 
retinopathy-affected eye. The normal eye blood 
vessels look healthy and intact. Consequently, proper 
functioning is provided by these vessels. The DR-
afflicted eye presents damaged vessels leaking fluids 
to the retina, leading to swelling and resulting loss of 
vision. These pathological changes are characteristic 
of DR and underlie the importance of early detection 
and intervention to prevent irreversible damage. This 
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visual representation emphasizes the need for 
advanced diagnostic tools, such as deep learning 
models, in order to identify the condition at its earliest 
stages to provide prompt treatment. 

With the advent of ML and DL technologies, 
much progress has been made in automating the 
detection of DR. CNNs are currently identified as the 
best tech- niques to automatically identify DR 
because it can learn hierarchies of features from raw 
pixel data (Gulshan, Peng, et al. , 2016). Models like 
ResNet, Inception, and VGG, which are CNN-based, 
have achieved outstanding accuracy in the 
classification of fundus images into the different DR 
stages (Zhang, Ren, et al. , 2016). These models were 
trained and vali- dated on public datasets, including 
the Kaggle diabetic retinopathy competition dataset, 
thus making them more generalized and reproduce in 
real-world settings (Lu, Liu, et al. , 2018). 

Among the new developments in the field, there 
is also the application of ResNet-18. It is a deep 
learning architecture, presented by He et al. (2016) 
for residual learning. The success of ResNet-18 has 
been achieved in different ap- plications, including 
diabetic retinopathy detection from images of the 
retina. By applying residual connections, the 
architecture is able to avoid the vanishing gradient 
problem, and hence train very deep networks. This 
innovative archi- tecture has been applied 
successfully to the analysis of medical images, and it 
is therefore a very powerful tool in the detection of 
subtle patterns that can indicate DR at its earliest 
stages (Zhang, Ren, et al. , 2016). Success of ResNet-
18 in DR detection and a relatively lightweight 
structure of the model make it a good candidate for 
healthcare applications where accuracy and 
efficiency are equally critical. 

Recent advances in transfer learning and attention 
mechanisms have further improved the performance 
of DR detection systems. Transfer learning, which 
fine-tunes pre-trained models on DR datasets, has 
been shown to achieve high accuracy even with 
limited labeled data (Lu, Liu, et al. , 2018). In 
addition, attention mecha- nisms such as self-
attention and saliency maps allow models to focus on 
clinically relevant regions of retinal images, thus 
improving both interpretability and diag- nostic 
accuracy (Jia, Li, et al. , 2019). These advancements 
ensure that deep learning models are more capable of 
distinguishing between subtle features in retinal 
images, making them more suitable for early 
detection of DR. Data augmentation and multi-task 
learning techniques have also been used to handle 
imbalanced datasets and im- prove model robustness. 
However, several challenges remain. One major issue 

is the generalizability of DR detection models across 
different imaging de- vices, populations, and datasets. 
Models trained on single-source datasets tend to 
overfit and thus perform poorly if exposed to new or 
diverse data (Nirgude, Revathi, et al. , 2024). A sec- 
ond major problem is that deep learning models lack 
interpretability. Healthcare practitioners often do not 
embrace AI-driven tools because of opaque decision- 
making processes. Efforts have been made to explain 
these models better with XAI techniques, like Grad-
CAM and saliency maps, for the sake of increased 
transparency of the models in this concept (Ward, 
Maselko, et al. , 2017)]. Another issue that still exists 
in this field is data imbalance, especially for 
underrepresented stages of diabetic retinopathy. 
Many datasets lack good representations of samples 
from early or severe stages of the disease, which 
makes training and evaluation difficult. Advanced 
preprocessing and augmentation strategies are being 
used to address these issues to improve model 
performance across different datasets(Bourne, Price, 
et al. , 2012). 

These gaps can be filled by focusing on model 
generalization using robust training strategies, 
including advanced preprocessing, data 
augmentation, and hyperparameter optimization 
techniques in the proposed methodology. 

Using ResNet-18 and transferring its ability into 
DR detection with high ac- curacy, it will attempt to 
diagnose the disease at its earliest stage. Furthermore, 
the incorporation of attention mechanisms is explored 
to improve both diagnos- tic accuracy and 
interpretability. This work thus contributes to a global 
effort aimed at reducing loss of vision due to DR by 
proposing an automated solution for efficient and 
scalable DR detection at an early stage. In summary, 
although deep learning has really revolutionized the 
detection of diabetic retinopathy, challenges like 
generalizability, interpretability, and data imbalance 
still pose se- rious issues. The gaps in these areas are 
likely to be bridged in the near future through 
improved model generalization using architectures 
such as ResNet-18, using explainability techniques, 
and enhancing the data strategies so that such models 
can be made clinically viable and reliable for large-
scale use in healthcare systems. 

3 PROPOSED WORK: 

3.1 Data Collection 

In the first important milestone of the project, there 
is the provision of data input with the sourcing of 
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retinal fundus images ahead of processing by further 
stages. For this work, the Aptos 2019 Blindness 
Detection dataset(Aptos, 2019) is used. This dataset 
includes a collection of high-resolution images of the 
retina with labels categorized as five types of diabetic 
retinopathy on a spectrum of severity: No DR, Mild 
DR, Moderate DR, Severe DR, and Proliferative 
DR.in Fig 2. 
 

 
Fig. 2. Stages of Diabetic Retinopathy 

All images are in PNG, ensuring high fidelity and 
resolution—the require- ments for a deep learning 
model, like ResNet-18, to correctly identify the pat- 
terns with the subtle and complex information 
indicative of diabetic retinopathy. Once in the system, 
the image passes through a series of pre-processing 
oper- ations that have improved consistency and 
quality in various operations such as standardization, 
cleaning of the images, normalization, and 
augmentation. 

Presenting high-quality and standardized images, 
the model can obtain robust learning and generate 
accurate predictions for early detection and 
classification of diabetic retinopathy. 

3.2 Data Preprocessing 

Among all these steps toward preparation of retinal 
images for training, it is undeniable that 
preprocessing is one of the most important ones, 
especially when detecting diabetic retinopathy (DR). 
It actually depends on the quality of input images - 
hence, performance of the model. In order to 
optimize the dataset and to ensure that the data 
will be very much consistent with high quality 
while training, there are several preprocessing 
techniques, such as image cleaning, resizing, 
normalization, and data augmentation. 

Image Cleaning: The pre-processing stage in this 
regard is image cleaning. This step cleans the retinal 
images of noise, artifacts, and distortions. Because 
the raw retinal images can be captured under varying 
conditions and on different devices, pixelation, 
irrelevant background noises, etc. may confuse the 
model. This stage enhances important features like 
blood vessels, hemorrhages, and microaneurysms 
that are important in DR, but suppresses irrelevant 

patterns. This is because the improvement in the 
signal-to-noise ratio allows the model to capture the 
weak changes in the retina efficiently, which may not 
be easy to decide and diagnose cases of early DR. 

All the images are resized to the same dimension 
of 256x256 pixels. For a deep learning model like 
ResNet-18, this fixed input dimension is vital. The 
resolution chosen has been a balance between 
computational efficiency and preserving de- tails. It is 
large enough to preserve important retinal features so 
that the model could correctly identify and classify the 
stages of DR but not large enough to be 
computationally manageable. 

Normalization: This step rescales pixel values of 
images to be within the range of 0 and 1. That way, 
the input to the neural network will become 
standardized. Without normalization, big variations 
in pixel values would cause instability in the training 
process, leading the model to converge at a slow 
speed. Normalizing the pixel value means that the 
model becomes effective at processing data with 
quicker convergence and better overall performance. 

Data Augmentation : Techniques of data 
augmentation are used to make the model more robust 
and avoid overfitting. Techniques of data 
augmentation artificially increase the size of a dataset 
by applying transformations such as random flipping, 
rotation, brightness adjustment, and color jittering. 
Augmen- tation introduces variations in the 
orientation, lighting, and color of the images in a 
manner that it mimics real-world conditions. It helps 
diversify the training data but also enhances the 
model’s ability to generalize to unseen data, which 
will improve the reliability of the model in clinical 
settings. 

3.3 Data Labeling 

Once all the images are pre-processed, it is the 
labelling procedure of data, which actually guides the 
model training for diabetic retinopathy (DR). 
Labelling in- volves associating the severity of 
damage caused due to this disease with the re- 
spective image of the retina. Our project uses a pre-
labelled image dataset in the aptos 2019 version. 
These pre-labeled images would be important for 
supervised learning: they help the model connect 
input images with their classifications of severity. 

Each image in the dataset is classified into one of 
the following severity levels: No DR, Mild DR, 
Moderate DR, Severe DR, or Proliferative DR. No 
DR is a healthy retina with no signs of diabetic 
retinopathy, whereas Proliferative DR is the most 
severe stage of the disease, which involves abnormal 
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blood vessel growth and significant retinal damage. 
These severity levels are used as ground truth for 
training. It can compare its prediction against the 
actual labels and iteratively minimize errors. 

The learning process of a model heavily relies on 
the correctness of labeling. For supervised machine 
learning, a good basis is labeled data where the model 
learns mapping input data, such as retinal images, into 
output labels, which can be considered as severity 
levels. Quality labeling ensures the well-definition 
and reliability in severity for every image, enabling 
effective learning by the model. Poor labeling can 
result in lower performance and less accurate detec- 
tion and classification of diabetic retinopathy. 
Accurate labels are therefore vital in enhancing the 
model’s ability to predict, with good performance in 
clinical applications. 

3.4 Model Architecture 

It discusses and presents a deep learning-based 
architecture of ResNet-18 for the detection and 
classification of diabetic retinopathy from retinal 
fundus images. Fig 3 is a representation of such 
architecture. 

 
Figure 3: ResNet-18 architecture 

As depicted in Fig 3, the model first accepts a 
224×224×3 retinal fundus image as input. It goes 
through several stages: 

Convolutional Layers: The initial convolutional 
layers (Conv1 to Conv5) ex- tract hierarchical 
features. Low-level features such as edges and 
textures are captured in the earlier layers, while 
deeper layers extract complex patterns, such as blood 
vessels, hemorrhages, and microaneurysms. The 
convolution operation is mathematically defined as: 

 𝑂𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) =  ∑ ∑ 1(𝑥 + 𝑚, 𝑦 +ே௡ୀଵெ௠ୀଵ𝑛)𝑘(𝑚, 𝑛)                                                  (1) 
 
where I(x + m, y + n) is the input pixel value, and 

K(m, n) is the convolutional kernel. Residual Blocks: 
To better learn residual connections bypass some 
layers such that the model is directed to learn the 
residual features. 

 

𝑦 = 𝐹(𝑥, 𝑊𝑖) + 𝑥                   (2) 
 
This framework ensures efficient training by 

mitigating the vanishing gradient problem. Pooling 
and Feature Reduction: Pooling layers reduce the 
spatial di- mensions, emphasizing important features. 
Max-pooling is computed as 

 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔 = max௜,௝ (𝑙(𝑥 + 𝑖, 𝑦 + 𝑗))    (3) 
 
The Final Layers: Fully Connected Layers 

aggregate the features that were extracted. Softmax 
Classification with activation for the prediction of 
diabetic retinopathy levels: No DR, Mild DR, 
Moderate DR, Severe DR and Proliferative DR. 

Important parts of architecture like ReLU 
activation, batch normalization ensure efficient 
learning by introducing non-linearity to the ReLU 
function : 

 𝑓 (𝑥) =  max(0, 𝑥)                           (4) 
 
Batch Normalization normalizes activations to 

accelerate training: 
 

  x i = ஢ଶା஫୶୧ିஜ                             (5) 
 
The model is optimized using the Adam optimizer 

with categorical cross- entropy loss. Its equations 
ensure adaptive learning rates for each parameter 

 η௧ = ஗ඥ௩೟ା஫                              (6) 
 
This architecture efficiently extracts features at 

multiple levels of abstraction which allows for robust 
classification of diabetic retinopathy severity. 

3.5 Training the Model 

The training phase of the ResNet-18 model initiates 
after preprocessing and la- belling the retinal images. 
These images are feed into the deep convolutional 
net- work, and ResNet-18 automatically extracts 
hierarchical features such as blood vessels, 
hemorrhages, and microaneurysms that are pertinent 
for the detection of DR. The model utilizes the 
backpropagation algorithm, which updates its 
weights based on the gradients calculated from the 
loss function with the aim of minimizing prediction 
errors. It uses the Adam optimizer for weight updates, 
dynamically adjusting the learning rate during 
training, which leads to faster convergence and stable 
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optimization. The initial learning rate is set at 0.001 
and dynamically adjusted as the training progresses. 

The model uses categorical cross-entropy loss, 
which is the difference between the actual labels and 
the predicted probabilities for each class. Thus, the 
loss function can be defined as 

 
Cross Entropy Loss = − ∑ 𝑦௜஼௜ୀଵ log(𝑦పෝ)   (7) 
 
where C is the total number of classes, and yi is 

the true label, and yˆi is the predicted probability for 
every class. 

Hyperparameter tuning is crucial for optimizing 
the model’s performance. The three main parameters 
include the learning rate, dropout rate, and the 
number of epochs to be used. All of these are adjusted 
accordingly to get the best possible output. A learning 
rate scheduler is used to speed up convergence in the 
early epochs and to gradually refine the model as it 
approaches opti- mum performance. The dropout 
rate, set between 0.2 and 0.5, is used to avoid 
overfitting and generalization. 

The ResNet-18 model was trained for 50 epochs. 
In this period, training and validation performance is 
monitored at regular time steps. After training the 
model obtained a training accuracy of 98.57% with 
the corresponding loss for training as 0.0322. Still, 
the validation accuracy stood at 83.49%. This implies 
that though the model has picked the features of 
interest from the training data, it underperforms a 
little bit on the unseen data and hence calls for further 
improvements in generalization. These can be 
achieved through methods like data augmentation, 
regularization, and fine-tuning. 

Early stopping was applied in order to avoid 
overfitting and maximize the efficiency of 
computation. Training stopped once validation 
performance did not improve further, saving some 
computation resources and ensuring that it would not 
overfit on the training data. 

3.6 Evaluation 

The performance of the ResNet-18 model in detecting 
diabetic retinopathy is evaluated by considering the 
validation set. In the evaluation, metrics like ac- 
curacy, precision, recall, and F1 score are used to 
judge the performance of the model. These metrics 
provide an overview of the model’s performance in 
detect- ing diabetic retinopathy at different stages. 

Accuracy is among the evaluation measures, a 
ratio of correctly predicted hits to total predictions. 
As such, this is essentially an overall performance 
measure from the model: 

 
Accuracy = ஼௢௥௥௘௖௧ ௉௥௘ௗ௜௖௧௜௢௡்௢௧௔௟ ௉௥௘ௗ௜௖௧௜௢௡                  (8) 

 
Precision refers to accuracy about the positive 

cases, i.e., true classification of images from the 
retinal images which is diabetic retinopathy in reality 
belongs to class DR. Precision is the calculation of: 

 
      Precision = ்௉்௉ାி௉                      (9) 

 
where TP denotes true positives (correctly 

classified DR images), and FP denotes false positives 
(non-DR images misclassified as DR). 

Recall, in contrast, measures how well the model 
detects all true diabetic retinopathy cases, even those 
that are more challenging to detect. It is defined as 

 𝑅𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே                       (10) 
 

where FN stands for false negatives, i.e., DR 
images mistakenly classified as non-DR. 

The F1 score is the harmonic mean of precision 
and recall, hence a single number that reflects both. It 
is also useful in case of datasets with class imbal- 
ance since it takes into account both the false 
positives and false negatives. The formula for 
calculating the F1 score is: 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2. ௉௥௘௖௜௦௜௢௡.ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟       (11) 
During the evaluation, it passes unseen data to 

evaluate real-time perfor- mance. Here also, 
validation accuracy turned out to be 83.49%whereas 
training accuracy was at a whopping 98.57% which 
shows very effective model perfor- mance on the train 
set though results from the validation part depict 
overfitting. Precision, recall, and F1 score are 
calculated as well to test this model in diag- nosing 
diabetic retinopathy stages completely. 

Hyperparameter tuning: Assuming that 
performance isn’t as it should, the learning rate, 
possibly the batch size, number of epochs is to be 
adjusted. Yet another necessary architectural 
adjustment would be putting more layers in or some 
other activation function that enhances the generality 
of your model. Meth- ods like cross-validation, 
increased diversity of the data maybe achieved using 
augmentation of training data to work on to improve 
on the validation. 

By making use of these metrics, it ensures that the 
developed model is ac- curate and strong, thereby 
being capable to detect diabetic retinopathy in real- 
world applications precisely. 
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3.7 Deployment 

Following satisfactory performance in training and 
evaluation, the ResNet-18 model is adopted into a 
clinical decision support system to detect DR through 
the automatic analysis of images of retinas, further 
classifying them on levels of DR severity and guiding 
healthcare providers with quicker and more accurate 
diagnoses. Reduction in manual assessment of 
images aids fast detection of DR, which further leads 
to better patient care through early intervention. 

This is made accessible through cloud platforms 
or even a hospital’s local network, meaning new 
retinal images will be processed in real-time. The 
model will, therefore, be retrained periodically on 
updated data in order to adapt to changes in imaging 
techniques and patterns of DR. The model is 
monitored in terms of its effectiveness within clinical 
settings to ensure continued reliability in DR 
diagnosis in the long term. 

 
Figure 4: Flowchart illustrating machine learning workflow 
for Early Detection of Dia- betic Retinopathy 

The critical challenges of the model are it’s unable 
to generalize very well on unseen data; proof for this 
can be demonstrated with the difference in terms of 
training and validation accuracy. To combat the side 
effects, methods involving data augmentation have 
been adopted as ways to enhance diversity over the 
training set and added further dropout regularization 
for cutting the possibil- ity of overfitting. The 
learning rate scheduler has also been applied aiming 
to improve convergence and the generalization on 
both the training and validation sets. 

4 RESULTS AND ANALYSIS 

This study has applied a dataset labeled with a 
train.csv file and created to pre- dict the level of 
diabetic retinopathy, which had 3,662 records. Its two 
principal attributes include Id_Code and diagnosis. 
This is for the sake of Id_Code, an identifying 
variable in any given instance for traceability 
purposes. The target variable would be the diagnosis 
column with five levels of the severity of diabetic 
retinopathy: 0 is no DR, 1 is mild, 2 is moderate, 3 is 
severe, and 4 is prolifera- tive DR. This dataset serves 
as a base for training machine learning models to 
classify and predict the severity of diabetic 
retinopathy. 

Table 1. Initial Records of the Dataset 

                 Id_Code           Diagnosis 
000c1434d8d7  2 
001639a390f0  4 
0024cdab0c1e 1 
002c21358ce6  0 
005b95c28852  0 

 
Displays some sample images from the training 

dataset along with their re- spective labels in Fig 5. 

 
Figure 5: Sample images 

The diabetic retinopathy dataset is labeled images 
extracted from a CSV file that removes irrelevant 
columns. The images are preprocessed into grayscale, 
resized to 256×256 pixels uniformly, and normalized 
pixel values into the range [0, 1]. Some representative 
examples are Image 90, 128, and 264, showing in the 
Fig 6 and content of the dataset, so one is clear about 
what they’re looking at when it comes to analysis. 
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Figure 6: labeled images 

As evidenced by the training results, this model’s 
performance improves no- tably over 50 epochs. The 
training loss begins higher and decreases to 0.0322 by 
the last epoch, which means that this model is 
effectively minimizing errors in predictions and 
learning about patterns in the data set. Similarly, the 
accu- racy of training reaches an excellent 98.57%. 
The validation accuracy stands at 83.49% and shows 
the ability of the model to generalize for unseen data. 
Eval- uation metrics provide a precision of 0.70, 
recall of 0.52, and an F1 score of 0.58 to understand 
the model’s efficiency in balancing false positives 
with false negatives. 

However, the gap between training and validation 
accuracy still leaves room for improvement in 
generalization. Techniques such as further 
hyperparameter tuning, advanced data augmentation, 
or the integration of more complex archi- tectures like 
ResNet could be used to enhance performance. 
Overall, the training process highlights the model’s 
potential but also shows areas for optimization to 
achieve even better results. 

The confusion matrix evaluates the performance 
of the model on five diabetic retinopathy classes, 
ranging from Class 0 to Class 4. Class 0 performs well 
with high accuracy, correctly identifying 450 out of 
540 samples as normal, effectively classifying 
healthy retinal images. However, it frequently 
confuses Class 1 and Class 2 with Class 0, 
highlighting challenges with class balance and 
overlapping features. For Class 3 and Class 4, correct 
predictions are sparse, suggesting the model struggles 
to differentiate higher severity levels due to 
insufficient data or distinctive features. This 
emphasizes the need for further model refinement. 
shown in Fig 7. 

 
Figure 7: Normalized Confusion Matrix 

The "Accuracy vs Epoch" plot shows that the 
model is training to a huge accuracy, well over 95%, 
meaning that the model is learning the patterns in the 
data very effectively. The steady rise in validation 
accuracy in the initial epochs also shows that the 
model is not overfitting but is rather generalizing very 
well for unseen data. These trends show that the 
model is capable of learning the data patterns 
successfully and has a good generalization ability, 
hence showing it to be able to give very good 
predictions on both training and validation datasets. 
This makes it a robust and potentially excellent 
model. 

 
Figure 8: Accuracy vs Epoch 

The "Loss vs Epoch" plot suggests that the 
training loss stays relatively flat, indicating proper 
learning and optimization of the model. Validation 
loss goes along a straight trend up to the first few 
epochs (about three to five), which again is very good 
generalization and stability. This pattern suggests that 
the model successfully captures the patterns in the 
training set and validation sets, as it generalizes well 
and maintains consistent performance. 
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Figure 9: Loss vs Epoch 

5 CONCULSION AND FEATURES 

This project successfully applies deep learning in the 
detection of diabetic retinopa- thy using the Aptos 
2019 dataset by focusing on the class-based 
classification of DR from the severity level in the 
images of the retina. All preprocessing tech- niques 
applied—namely, image cleaning, resizing, 
normalization, and augmen- tation—proved useful 
for improving the quality and consistency of the 
dataset for enhanced model performance. The 
ResNet-18-based model achieved a very high training 
accuracy of 98.57% and a validation accuracy of 
83.49% after 50 epochs, demonstrating strong 
performance but also some room for improvement in 
terms of generalization. 

The model employed the Adam optimizer that led 
to efficient training and convergence. Dropout 
regularization was applied, which helped prevent 
overfit- ting. Cross-entropy loss was used in order to 
optimize the model on classification tasks, therefore 
leading to effective learning of intricate patterns 
within retinal images. 

Future work in improving the feature extraction 
ability of the model and the overall performance can 
be furthered by using more complex architectures 
such as ResNet-18. Leveraging pretrained models 
through transfer learning, along with hyperparameter 
tuning, can improve accuracy and robustness. Also, 
multi- modal data integration and explainable AI 
techniques will be critical to enhance transparency, 
which is paramount in clinical settings where the trust 
in model predictions is essential. In addition, 
increasing the size of the dataset to reflect different 
demographics and using cross-validation methods 
will help the model to generalize better with higher 
reliability and accuracy over the population of 
patients with diverse backgrounds. 
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