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Abstract: Low visibility, noise, and changing object scales all pose substantial hurdles to underwater object detection,
limiting the performance of typical detection techniques. This paper introduces YOLO11, an enhanced object
detection framework developed to address these issues. The suggested system improves detection accuracy
in challenging underwater environments by combining unique strategies such as lightweight attention mecha-
nisms and multi-scale feature fusion. To address the scarcity of labeled datasets, the method employs transfer
learning and synthetic data augmentation, ensuring robust generalization across a variety of circumstances.
Experimental results show that YOLO11 obtains a precision of 80.4%, recall of 71.1%, and mAP50 of 76.1%,
beating earlier models like YOLOv5, YOLOv8, and YOLOv9. Furthermore, YOLO11 has excellent real-
time processing capabilities, making it ideal for applications such as environmental surveillance, marine life
monitoring, and autonomous underwater vehicles. These developments solidify YOLO11 as a benchmark for
underwater object recognition, providing significant insights into its design, training procedures, and perfor-
mance measures for future study and practical applications.

1 INTRODUCTION

The ocean, covering over 70% of the Earth’s surface,
is a critical component of the planet’s natural bal-
ance and economic structure. Research and moni-
toring of marine ecosystems are essential for appli-
cations such as marine conservation, fishery manage-
ment, underwater robotics, and naval defense. How-
ever, underwater environments present unique chal-
lenges, including light attenuation, scattering, turbid-
ity, and noise, which degrade image quality and hin-
der the effectiveness of traditional object detection al-
gorithms (Wang et al., 2022). These challenges ne-
cessitate the development of robust and efficient de-
tection frameworks tailored specifically to underwater
conditions.

Underwater object detection also plays a vital role
in applications like resource exploitation, environ-
mental monitoring, and infrastructure inspection. The
complexities of dynamic underwater scenes and low-
visibility conditions impede the performance of con-
ventional computer vision algorithms, prompting the
adoption of advanced solutions such as deep learn-
ing. Deep learning, particularly Convolutional Neural
Networks (CNNs), has revolutionized object detec-

tion, with the You Only Look Once (YOLO) frame-
work emerging as a preferred choice for real-time
applications due to its speed and accuracy. Initially
proposed by Redmon et al. (Redmon et al., 2015),
YOLO’s single-stage architecture allows simultane-
ous prediction of bounding boxes and class proba-
bilities, delivering unparalleled speed and precision.
Subsequent versions, including YOLOv3, YOLOv5,
YOLOv7, and YOLOv8, have shown impressive ver-
satility in segmenting and detecting underwater ob-
jects (Athira. et al., 2021; Wang et al., 2023; Liu
et al., 2023). Despite these advancements, underwater
applications remain challenging due to peculiar imag-
ing conditions, such as poor visibility, multi-scale ob-
ject detection, and a scarcity of labeled datasets (Li
and Shi, 2024).

YOLO11, the latest evolution in the YOLO series,
addresses these challenges through several innovative
features. YOLO11 uses preprocessing methods to re-
duce color fading and light distortion in underwater
photos (Zhang et al., 2021). With its lightweight at-
tention mechanisms and multi-scale feature fusion,
YOLO11 provides dependable detection in compli-
cated underwater situations and at different scales (He
et al., 2024). Additionally, lack of labeled underwa-
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ter datasets is lessened by synthetic data augmenta-
tion and domain adaptation techniques, guaranteeing
better generalization and resilience (Reddy Nandyala
and Kumar Sanodiya, 2023). Optimized for com-
putational efficiency, YOLO11 supports deployment
in resource-constrained applications such as au-
tonomous underwater vehicles (AUVs), without sac-
rificing detection accuracy.

The goal of this work is to create an underwater
object identification system that uses the YOLOv11
model to reliably detect and classify marine ani-
mals, detritus, and underwater structures in real time.
This study intends to assess the model’s performance
across a variety of underwater situations, such as
changes in visibility and lighting, in order to ensure
its robustness across a wide range of aquatic habi-
tats. Furthermore, the study aims to enhance marine
research, exploration, and underwater monitoring by
offering a trustworthy detection framework. To eval-
uate the success of YOLOv11, its performance will
be compared to existing YOLO models to see if it im-
proves accuracy, efficiency, and adaptability for un-
derwater object identification.

The remainder of the paper is organized as fol-
lows: Section II discusses related work on under-
water object detection and YOLO-based algorithms,
highlighting key advancements and limitations. Sec-
tion III describes the proposed methodology, includ-
ing modifications to the YOLO11 architecture and
training strategies. Section IV details the experimen-
tal setup and presents results comparing YOLO11’s
performance with state-of-the-art models across var-
ious underwater datasets. Section V concludes the
study, summarizing findings, implications, and future
research directions.

2 LITERATURE SURVEY

Underwater object detection has made significant
progress with the help of deep learning, especially us-
ing YOLO-based methods (Jain et al., 2024). These
models work exceptionally well in challenging un-
derwater environments, which are often affected by
issues like poor visibility, light fading, and image
distortions. Earlier versions, such as YOLOv3 and
YOLOv4, showed great improvements in speed and
accuracy for real-time tasks. For instance, YOLOv4
performed very well in activities like underwater
pipeline inspection and monitoring marine environ-
ments, achieving an impressive detection accuracy
(mAP) of 94.21% (Rosli et al., 2021; Zhang et al.,
2021). Over time, these models have become more
advanced with the addition of techniques like multi-

scale feature fusion, powerful backbone structures
like ResNet50 and DenseNet201, and data enhance-
ment methods like CutMix. Lightweight versions,
such as YOLOv4 Tiny and YOLO Nano, were de-
veloped to ensure they can run efficiently on devices
with limited resources, maintaining a good balance
between speed and accuracy (Wang et al., 2020). Dy-
namic YOLO models have also addressed challenges
in detecting small and hidden objects in crowded un-
derwater images by using deformable convolutional
networks (DCNs) and dynamic attention methods
(Chen and Er, 2024). These advancements have ex-
panded the use of YOLO-based models in areas such
as identifying marine species and detecting underwa-
ter trash, proving their value in environmental and in-
dustrial applications.

Despite significant progress, there are still some
key challenges in underwater object detection. The
poor quality of underwater images, often due to low
resolution and murky conditions, makes it difficult to
detect small or hidden objects. Current models of-
ten rely on specific datasets, which limits their abil-
ity to work well in different underwater environments,
such as areas with changing light, sediment levels, or
depth. Additionally, many YOLO-based models are
not designed to run on edge devices or embedded sys-
tems, which are essential for real-time operations in
resource-limited settings. Another major challenge is
that these models lack the ability to adapt quickly to
changing underwater conditions, making it hard for
them to maintain consistent performance. These chal-
lenges point to the need for better model designs and
innovative training methods to make underwater ob-
ject detection systems more reliable and versatile.

YOLO11 introduces several advanced features to
address these issues effectively. It uses multi-scale
feature fusion and deformable convolutional networks
to improve the detection of small and hidden ob-
jects in crowded underwater scenes. The model’s dy-
namic attention system helps it adjust in real-time
to changes in underwater conditions, ensuring sta-
ble performance in different environments. YOLO11
is also designed to run efficiently on edge devices,
providing real-time processing while using minimal
computational resources. To improve its ability to
work across different underwater scenarios, YOLO11
uses domain adaptation techniques and diverse train-
ing datasets that cover a wide range of conditions.
These upgrades make YOLO11 a powerful solution
for underwater object detection, with potential appli-
cations in robotics, marine conservation, and under-
water pipeline inspection.

The graph in Figure 1 illustrates the perfor-
mance of various YOLO versions (YOLOv5 through
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Figure 1: Comparison of different YOLO architectures.
(Jocher and Qiu, 2024)

YOLO11) and PP-YOLOE+ on the COCO dataset,
specifically evaluating mAP (mAP50−95val) against
latency on a T4 TensorRT10 FP16 GPU. YOLO11
demonstrates a significant advancement over its pre-
decessors by achieving the highest mAP score, peak-
ing at mAP50−95val 54%, while maintaining com-
petitive latency (Li and Shi, 2024; He et al., 2024;
Redmon et al., 2015). This superior performance
highlights YOLO11’s ability to effectively balance
precision and speed, making it particularly suited for
real-time applications (Zhang et al., 2021; Lei et al.,
2022).

Furthermore, PP-YOLOE+, while competitive in
some aspects, trails YOLO11 in terms of overall accu-
racy, highlighting the superiority of YOLO11 in both
precision and adaptability (Alla et al., 2022; Rosli
et al., 2021). These results underscore the progressive
evolution of YOLO models and their ability to cater
to diverse application needs, particularly in scenar-
ios demanding high accuracy and real-time process-
ing capabilities.

3 PROPOSED WORK AND
METHODOLOGY

YOLO is a cutting-edge algorithm for real-time ob-
ject detection. It stands out for its ability to use a sin-
gle convolutional neural network (CNN) to identify
multiple objects and their locations in one go. Unlike
traditional methods, which rely on a two-step process
involving region proposals and classification, YOLO
processes the entire image in a single pass. This ap-
proach makes it incredibly fast and efficient, ideal for
real-time applications. YOLO works by dividing the
image into a grid, where each grid cell predicts ob-
jects and their positions. Its combination of speed and
accuracy has made it a popular choice for applications
like self-driving cars, video surveillance, and robotics
(Zhang et al., 2021; Redmon et al., 2015).

3.1 Model Initialization and
Fine-Tuning

As shown in Figure 2, a pre-trained YOLO11 model
(yolo11n.pt) was employed as a starting point to
leverage existing knowledge. Fine-tuning was per-
formed on the custom dataset by updating model
weights while retaining the learnt features from the
pre-trained model. Training was configured for 50
epochs with a batch size of 32, and learning rate ad-
justments were managed through a cosine annealing
scheduler.

3.2 Training Process

Loss functions for object localization, classification,
and confidence scores were minimized during train-
ing. Early stopping with a patience parameter of 5
epochs was implemented to prevent overfitting. Real-
time monitoring of training metrics, including loss
and accuracy, ensured steady model improvements.

The loss function combines localization, classifi-
cation, and confidence score errors to optimize ob-
ject detection during training. It prioritizes accu-
rate bounding box predictions and penalizes incorrect
confidence estimates for grid cells without objects.
The loss functions for localization, classification, and
confidence were calculated as shown in Equation 1
(Cai et al., 2024):

L = λcoord

S2

∑
i=0

B

∑
j=0

⊮obj
i j

[
(x− x̂)2 +(y− ŷ)2

+(w− ŵ)2 +(h− ĥ)2
]

+λnoobj

S2

∑
i=0

B

∑
j=0

⊮noobj
i j

[
(C−Ĉ)2

] (1)

The components of the equation are as follows:
S2 represents the number of grid cells into which the
image is divided and B denotes the number of bound-
ing boxes predicted per grid cell. The indicator func-
tions ⊮i jobj and ⊮i jnoobj are used to identify whether
an object is present or absent in cell i. The pre-
dicted bounding box is defined by its center coordi-
nates x,y, and dimensions w,h, while C indicates the
confidence score of the predicted bounding box. The
ground truth values for these variables are represented
as x̂, ŷ, ŵ, ĥ,Ĉ, respectively. The weighting factors
λcoord and λnoobj are applied to prioritize the bound-
ing box regression loss and penalize confidence pre-
dictions for cells without objects, respectively (Zhang
et al., 2021).
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Figure 2: Model architecture of underwater object detection using YOLO11.

3.3 Validation and Testing

A validation set, separate from the training data, was
used to evaluate the model’s generalization capabil-
ities during training. Testing involved feeding un-
seen images, including those with diverse lighting
and cluttered backgrounds, to the model for predic-
tions. Predictions were visually verified by overlay-
ing bounding boxes and labels on test images using
Non-Maximum Suppression (NMS).

The confidence score of a bounding box, as shown
in Equation 2, is calculated by multiplying the pre-
diction confidence with the Intersection over Union
(IoU).

Scorei = Confidencei · IoU (2)

To determine the overlap between bounding
boxes, the IoU technique, described in Equation 3,
was used. It measures the ratio of the area of overlap
to the area of union between two boxes (Rosli et al.,
2021; Tarekegn et al., 2023; He et al., ).

IoU =
Area of Overlap
Area of Union

(3)

3.4 Evaluation Metrics

The model’s performance was quantitatively assessed
using precision, recall, and mean average preci-
sion (mAP). The mAP, as shown in Equation 4
(Gašparović et al., 2022), is the average of the average
precision (AP) values for each class, providing a sin-
gle metric that summarizes the overall performance of
the model across different categories.

mAP =
1
N

N

∑
i=1

APi (4)

Confusion matrices provided insights into detec-
tion accuracy and misclassifications (Zhang et al.,
2021; He et al., ; Li and Shi, 2024).

4 RESULT AND ANALYSIS

This section assesses the proposed model, which
combines YOLO11 with fine-tuning algorithms for
object recognition on underwater images. The find-
ings are presented using quantitative indicators, visual
comparisons, and an in-depth analysis of the model’s
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Figure 3: Sample from the Aquarium dataset on Roboflow,
featuring annotated underwater images for object detection.

performance, emphasizing its strengths and limita-
tions.

4.1 Dataset Description

We used the Aquarium Dataset, which is available
from Roboflow’s public repository. This dataset con-
tains 638 annotated underwater images collected from
two of the largest aquariums in the United States:
The Henry Doorly Zoo in Omaha on October 16,
2020, and the National Aquarium in Baltimore on
November 14, 2020. The dataset includes a wide
range of aquatic animals as shown in Figure 3 and
objects, such as fish, jellyfish, starfish, sharks, and
other features related to the marine and aquarium en-
vironments. It is meant to create object identifica-
tion models of aquatic environments, where a team
of Roboflow labels photos and SageMaker Ground
Truth provides some sort of support. The dataset is
given under a Creative Commons By-Attribution li-
cense and therefore can be used for personal, com-
mercial, or academic purposes with proper attribu-
tion. This image dataset is very well suited to solv-
ing real-world challenges in underwater object detec-
tion as well as training models to perform well in dy-
namic and complex environments since it varies in
lighting, background, and object poses. Being com-
posed of a large variety of conditions, the dataset very
well caters to real-world challenges varying in light-
ing, background, and object poses.

4.2 Quantitative Analysis

The YOLO11 model demonstrated significant ad-
vancements in terms of quantitative performance met-
rics when applied to underwater object detection. Key
metrics, including accuracy, precision, recall, and

the mean Average Precision (mAP), were computed
over the course of the testing phase to evaluate the
model’s robustness. The precision metric indicated
the model’s ability to avoid false positives, while re-
call provided insight into its effectiveness at detecting
true positives. Both these metrics, alongside a high
mAP score, signified that YOLO11 was adept at iden-
tifying underwater objects with a remarkable level of
accuracy (Lei et al., 2022; Li and Shi, 2024; He et al.,
2024).

Over multiple training epochs, the loss consis-
tently decreased, as evidenced by the loss-versus-
epoch curves shown in Figure 4, demonstrating effi-
cient learning and convergence of the model. Com-
pared to baseline approaches such as YOLOv5,
YOLOv8, and YOLOv9, the YOLO11 model exhib-
ited superior detection rates and faster inference times
as shown in Table 1, even when processing large-
scale underwater datasets. The comparative evalua-
tion, tabulated in Table 1, revealed that YOLO11 sur-
passed these earlier models (Zhang et al., 2021; Chen
and Er, 2024).

Table 1: Comparison of different models on dataset

Model Precision Recall mAP50 mAP50-95

YOLOv5 0.746 0.637 0.709 0.366

YOLOv8 0.807 0.657 0.732 0.436

YOLOv9 0.805 0.662 0.737 0.475

YOLO11 0.804 0.711 0.761 0.458

Figure 4: Training and Validation Loss Curves for YOLO11

In comparison, earlier versions like YOLOv5 and
YOLOv8 exhibit lower mAP scores and higher la-
tency, emphasizing YOLO11’s leap in optimization
and efficiency. Notably, YOLOv10 and YOLOv9
come close in performance but fail to match
YOLO11’s precision, which underscores the contin-
uous enhancements in the model’s architecture and
training methodology (Jain et al., 2024; Sun and Lv,
2022). The clear upward trend from YOLOv5 to
YOLO11 signifies the consistent strides in object de-
tection accuracy while preserving computational effi-
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Table 2: Object Detection Performance Metrics

Class Images Instances Precision Recall mAP50 mAP50-95
all 127 909 0.804 0.711 0.761 0.458
fish 63 459 0.831 0.754 0.814 0.466
jellyfish 9 155 0.841 0.871 0.903 0.490
penguin 17 104 0.693 0.740 0.739 0.331
puffin 15 74 0.698 0.432 0.518 0.249
shark 28 57 0.824 0.667 0.739 0.527
starfish 17 27 0.952 0.727 0.774 0.536
sting ray 23 33 0.787 0.782 0.841 0.605

ciency, establishing YOLO11 as the benchmark in the
domain (Wang et al., 2020; Parikh and Mehendale,
2023). Furthermore, YOLO11 achieved these results
without sacrificing inference speed, making it par-
ticularly suited for real-time underwater applications.
These metrics highlight the algorithm’s advanced ca-
pabilities in handling the complexities of underwater
environments, including distortions caused by turbid-
ity, poor lighting, and occlusions (Liu et al., 2023).

The object detection performance metrics for
YOLO11, as shown in Table 2, demonstrate strong
accuracy across various marine species. The model
achieves an overall precision of 0.804 and a recall
of 0.711, with a mean Average Precision (mAP) of
0.761 at IoU 50 and 0.458 at IoU 50-95. Among
the detected classes, jellyfish exhibit the highest de-
tection accuracy with an mAP50 of 0.903, followed
by stingrays and fish at 0.841 and 0.814, respectively.
However, certain categories such as puffins and pen-
guins show lower performance, particularly in recall
and mAP50-95, indicating challenges in detecting
smaller or less distinct objects. The results highlight
the effectiveness of YOLO11 in underwater environ-
ments while also suggesting the need for further en-
hancements, particularly for challenging classes with
lower recall and mAP scores.

4.3 Qualitative Analysis

In addition to the quantitative metrics, qualitative re-
sults as shown in Figure 5 offered a deeper under-
standing of the model’s effectiveness in real-world
underwater conditions. Sample outputs, illustrated
through visualizations with bounding boxes, revealed
the model’s ability to accurately detect and classify
objects even in challenging scenarios such as murky
water and variable lighting. Visual examples included
detection of coral reefs, marine life, and underwater
debris, with bounding boxes precisely encapsulating
the objects of interest. The model demonstrated re-
markable consistency in identifying objects of vary-
ing sizes, from large underwater structures to smaller
fish or debris. To evaluate robustness further, outputs
under diverse underwater conditions, including high

Figure 5: Results Obtained on the dataset

turbidity, low visibility, and partial occlusions, were
examined. The bounding boxes remained accurate in
most cases, proving that YOLO11 could effectively
adapt to varying scenarios. Comparisons with outputs
generated by baseline models further validated these
findings; while older models like YOLOv5 strug-
gled with detecting small or partially obscured ob-
jects, YOLO11 maintained clarity and precision. The
qualitative results not only confirmed the quantitative
metrics but also showcased the practical viability of
YOLO11 in real-world underwater environments (Liu
et al., 2023; Chen and Er, 2024; Zhang et al., 2021;
Li and Shi, 2024).

5 CONCLUSIONS

The underwater object detection project using
YOLO11 demonstrates exceptional advancements in
identifying and classifying various marine objects
with precision and efficiency. The model, trained
over multiple epochs with the implementation of early
stopping, reflects its ability to optimize performance
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by halting once no further improvements are ob-
served. The YOLO11 architecture, with its 283 layers
and millions of parameters, showcases its robustness
and computational efficiency, achieving high mean
Average Precision (mAP) scores across diverse ob-
ject categories. Notably, classes like jellyfish, pen-
guins, and sharks displayed impressive detection ac-
curacies, highlighting the model’s capacity to handle
objects with distinct features. However, certain cat-
egories, such as stingray and puffin, exhibited rel-
atively lower detection accuracies, suggesting areas
for enhancement, possibly through data augmentation
or improved labeling techniques. The inference pro-
cess was notably fast, making the model highly suit-
able for real-time applications in underwater explo-
ration and marine conservation efforts. The saved
model serves as a powerful tool for further testing,
deployment, or integration into broader systems. This
project not only underscores the potential of advanced
deep learning models in addressing real-world chal-
lenges but also opens avenues for refining detection
pipelines to improve performance across all object
classes, ultimately contributing to the growing field
of underwater technology and environmental moni-
toring.

6 FUTURE WORK

The future of underwater object detection using
YOLO11 involves several promising enhancements.
First, further optimization of the model for real-time
embedded systems and autonomous underwater ve-
hicles (AUVs) will improve deployment efficiency.
Second, incorporating more robust domain adapta-
tion techniques can enhance generalization across
varied underwater conditions. Third, leveraging self-
supervised learning and unsupervised domain adapta-
tion could mitigate the scarcity of labeled underwater
datasets. Additionally, integrating multi-modal data
sources, such as sonar and LiDAR, can complement
visual detection, making the system more reliable. Fi-
nally, extending the application scope to marine con-
servation, search and rescue operations, and under-
water archaeology will further establish the impact of
YOLO11 in real-world scenarios.
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