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Abstract: Birds help to link various ecosystems. Ecosystems like farmland, woodland, water and wetlands, wildfowl. 
Migration patterns link biodiversity by facilitating gene flow, spreading seeds, transferring nutrients, and 
maintaining ecological balance across different ecosystems. This research analyzed historical data of birds 
from 1960 to 2015, and forecasted the future bird's population. and focused on predicting the bird's 
population in various ecosystems. We employed the Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model is used to achieve accurate forecasting. bird population trends by integrating seasonal 
and temporal patterns, thereby enhancing predictive precision for ecological monitoring and conservation 
planning. 

1 INTRODUCTION 

Birds play a crucial role in maintaining ecological 
balance by helping with pollination, spreading seeds, 
controlling pests, and cycling nutrients through eco 
systems. As ecological indicators, bird populations 
reflect environmental health and alert us to 
challenges such as climate change, habitat 
destruction, and ecosystem disruptions. Accurate 
forecasting of bird populations is critical for 
conservation, as failure to predict declines could 
lead to species extinction and ecological imbalances. 
This research focuses on developing an avian 
species population forecaster using the Seasonal 
Autoregressive Integrated Moving Average 
(SARIMA) model. With its ability to account for 
both seasonality and trends in time-series data, 
SARIMA is employed to predict bird populations 
and provide insights for conservation strategies. This 
approach aims to safeguard both biodiversity and the 
ecosystem services essential to agriculture and 
ecological stability. 

1.1 Contribution 

Development of a Bird Population Forecaster: 
Introduced a SARIMA-based forecasting model 

designed to capture both seasonal and long-term 
trends in bird populations. 

Time-Series Analysis of Bird Data: Applied 
historical data to accurately predict bird population 
dynamics across different habitats.  

Identification of Key Environmental Stressors: 
Provided insights into how climate change and 
habitat loss are influencing bird populations, 
enabling proactive conservation measures.  

Support for Agricultural Practices: Highlighted 
the importance of avian species in agriculture by 
predicting the consequences of population declines 
on pest control and seed dispersal. Conservation 
Policy Implications: Offered actionable insights for 
policymakers and conservationists to maintain 
ecological balance and promote sustainable 
ecosystems. 

1.2 Motivation 

Birds are important to ecological balance through 
pollination, pest control, seed dispersal and nutrient 
cycling. As ecological indicators, changes in bird 
populations serve as warning signals for 
environmental disruptions, including climate 
change, habitat destruction, and pollution. If 
conservationists fail to predict these population 
changes, critical species could face extinction, 
leading to cascading effects across ecosystems. 
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Furthermore, bird population declines could 
negatively affect agriculture by increasing pests and 
reducing crop yields, impacting both biodiversity 
and economic stability. Therefore, timely and 
accurate forecasting of bird populations is essential 
for devising proactive conservation strategies 
and ensuring sustainable ecosystems. 

1.3 Objectives 

• Forecast Bird Populations: Develop a 
model to predict future bird populations 
for effective conservation planning. 

• Incorporate Seasonality and Trends: 
Leverage seasonal and non-seasonal 
patterns in historical data to improve 
prediction accuracy. • Identify 
Environmental Impacts: Use forecasting to 
assess how factors like climate change and 
habitat loss impact different bird species.  

• Support Agricultural Sustainability: 
Highlight the importance of bird species in 
pest control and seed dispersal to inform 
agricultural strategies. 

• Inform Conservation Policy: Provide 
insights to environmentalists and 
policymakers to develop targeted actions 
for preserving bird populations and 
maintaining ecosystem health. 

2 RELATED WORK 

2.1 Review 

Christiaan Both et al. (Both, Bouwhuis, et al. , 2006) 
embedded about |Population trends of Dutch pied 
flycatcher populations. They proposed climate-
change-induced badly timed leads to population 
declines in a migratory songbird, used linear 
regression and correlation tests. In result Spearman 
rank correlation was used to relate the trends in 
population decline with the timing of the caterpillar 
food peak, calculated the annual median laying date 
from 1980–2002.  

Birgit Erni et al. (Erni, Liechti, et al. , 2003) 
embedded about Simulations of individual bird 
migration paths across a grid-based environment, 
considering fuel loads, stopovers, flight costs, and 
directions. Vector Summation. The combination of 
spatial modeling, vector summation (Navigation 
Algorithm) constant endogenous direction, 
evolutionary algorithms, and energy cost functions. 

Spatially Explicit Individual-Based Model, which is 
a simulation algorithm and a Directional Adaptation 
Algorithm.  

James A. Smith et al. (Smith, Deppe, et al. , 
2007) embedded about individual-based modeling to 
predict how environmental changes might impact 
migratory birds and maximum entropy model. The 
focus is on predicting migration patterns by 
integrating environmental data, bird physiology, and 
energetics and also modeled the spring migration of 
the Pectoral Sandpiper (Calidris melanotos) in North 
America and observed how environmental 
conditions and stopover habitat quality affect the 
success of migration.  

Hiromi Kobori et al. (Kobori, Kamamoto, et al. , 
2012) Using 23 years of citizen-scientist 
observations, they analyzed the first arrival and final 
departure dates of birds at a wintering site in 
Yokohama and correlated these dates with 
temperature changes. In their observations on 
average, birds are arriving 9 days later and departing 
21 days earlier than in the past, shortening their stay 
by about one month. These changes are linked to 
rising temperatures. Their study is limited to one 
location in Japan, making it difficult to generalize 
findings to other regions without additional data. But 
our data covers whole Europe continent. During data 
collection process they have used manual power 
rather than using Weather Radars and Dedicated 
Avian Radars. Speed Conscious Recurrent Neural 
Network (Varma, Anand, et al. , 2022) and federated 
KNN (Varma, Anand, et al. , 2024) also propose 
efficient machine learning algorithms. 

Anders P. Tøttrup1 et al. (Tøttrup, Thorup, et al. 
, 2008) Utilized NDVI as a proxy for ecological 
conditions, such as food availability. NDVI was 
calculated for both African wintering areas and 
European stopover sites to assess how vegetation 
growth impacted the timing of migration. linear 
mixed models to analyze the relationship between 
NDVI, timing of migration, and migration duration 
across different latitudes and migratory phases (first 
5%, 50%, and 95% of the migrating 
population).Their study divides migration into three 
phases based on when portions of the population 
migrate (early, mid, late) and examines the impact of 
environmental conditions on these phases .It also 
asserted the complexity of migration systems and 
the need for further studies to distinguish between 
phenotypic plasticity and evolutionary changes. 
Bidirectional LSTM was proposed in (Sowmya;, 
Pothuri, et al. , 2024). 

Advaith S Pillai et al. (Pillai, Sathvik, et al. , 
2024) demonstrated the potential of integrating IoT 
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and ML techniques in wildlife conservation, helping 
address challenges like habitat loss and urbanization 
that make traditional bird monitoring difficult. 
Researchers mainly considered bird species like 
Eurasian Curlew, Blue-tailed Bee-eater, and others 
found in Kerala, India. Mel-Frequency Cepstral 
Coefficients (MFCCs) for extracting features from 
bird calls. Additional feature extraction techniques 
include Δ and ΔΔ MFCCs, which are derived from 
MFCCs to capture changes in frequency over time. 
ANN architecture consists of 4 dense sequential 
layers and is used for multi-class classification of 
bird sounds. The CNN architecture includes three 
2D convolutional layers with different filter sizes to 
detect bird images for classification. They have 
utilized some IOT devices like Raspberry Pi, to 
collect and process data from sensors (cameras and 
microphones), transmitting it to the cloud for further 
research. Microphones capture bird calls, and 
cameras capture images of birds for classification. 
Standard Scaling to normalize feature data for the 
ML model. Applied Principal Component Analysis 
(PCA) to reduce the dimensionality of the feature 
space before feeding it into the ML model. Aspired 
to involve, integration of Long Short-Term Memory 
(LSTM) with the Recursive Neural Network (RNN) 
to treat bird calls as time-series data, which can 
improve classification accuracy and combining both 
image (CNN) and audio (ANN) classification results 
is suggested to further enhance the performance of 
the system.  

A semi centralized architecture is proposed in 
(Varma, Anand, et al. , 2023) for efficient prediction 
using machine learning. Multivariate regression is 
used in (Varma, Anand, et al. , 2023). Some of the 
interrupting issues are Noise Interference, Multiple 
Bird Calls, Lighting Conditions which affects the 
quality of the images captured. Movement of Birds 
(high frame rates and image resolution are needed, 
which adds complexity to the system design). Power 
consumption of microphones, cameras, and 
processing units can be a challenge, especially for 
long-term deployments.  

Jianxi Zhang et al. (Zhang, Shao, et al. , 2018) in 
their research Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) algorithm, 
focuses on identifying spatial patterns of bird 
habitats and uncovering clusters of bird presence 
from geospatial data, improving the understanding 
of bird distribution. It detects clusters based on 
proximity and density. Parameter Tuning, to 
optimize the DBSCAN algorithm, careful selection 
of parameters like ε (radius) and MinPts (minimum 
points). One of the key strengths of DBSCAN is its 

ability to identify noise or outliers and works well 
with large datasets, which is an advantage when 
dealing with extensive geospatial data. But it may 
not accurate on Handling High-Dimensional Data, 
Parameter Sensitivity, Less Quality Data. 

3 METHODOLOGY 

In this study, we employed the SARIMA (Seasonal 
Auto Regressive Integrated Moving Average) model 
for predicting bird population trends based on 
historical data. The dataset, stored in a CSV file, 
consisted of a Date column representing the timeline 
and a Value column indicating bird population 
counts. During data preprocessing, missing values 
were handled using mean imputation to ensure 
consistency, and the dataset was cleaned to align 
with the model’s requirements. The SARIMA model 
was chosen for its capability to capture both 
seasonal variations and long-term trends, making it 
suitable for time series forecasting. We used the 
Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) to optimize the non-
seasonal (p,d,q) and seasonal parameters (P,D,Q,m) 
with minimal error of the forecast. Model training 
was performed using the statsmodels library in 
Python, leveraging data from 1970 to 2015 to build 
the model. Monthly forecasts were generated for 12 
months of 2016, allowing the model to capture 
short-term seasonal fluctuations.These forecasts 
were aggregated to obtain the annual predicted 
population value by averaging the individual 
monthly forecasts. Visualizations comparing 
forecasted values with actual data were created using 
matplotlib to identify trends, patterns, and 
discrepancies. Additionally, a flowchart depicting 
the entire process from data collection to forecast 
generation was included to enhance clarity. The 
methodology was designed to be replicable, with all 
steps, libraries, and tools—such as Python, pandas, 
statsmodels, and matplotlib—documented. Also, 
evaluation metrics like MAE — Mean Absolute 
Error and RMSE — Root Mean Squared Error were 
regarded to evaluate model effectiveness and verify 
forecasts accurateness. A flowchart illustrating the 
SARIMA model is provided in  Fig 1. 
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Figure.1: Flowchart of SARIMA Algorithm 

3.1 Dataset details 

The dataset used in model for predicting the birds 
population using time series forecasting contains the 
yearly data across various habitats like woodland, 
farmland, water and wetland. The data was taken 
from (European Environment Agency, 2024) 
contains the data from year 1970 to 2015. The 
values in this dataset are normalized such that the 
initial population for each habitat is set to 1, and 
subsequent values are represented as ratios relative 
to this initial population. The dataset contains three 
main variables year, habitat, and population count. 
The dataset contains bird population counts 
expressed as ratios, with the initial value for each 
habitat type set as 1. 

This approach allows for straightforward 
comparative analysis, enabling us to track relative 
changes in population over time across different 
habitats. By using this normalized data, we can more 
effectively assess the impacts of various ecological 
factors on bird populations. 

This study utilizes a comprehensive dataset that 
includes bird population records from 1970 to 2015. 
In total, there are 368 records encompassing various 
categories of birds. These categories include all 
species, woodland birds (which are further divided 
into all, specialist, and generalist), farmland birds 
(comprising all and generalist), wetland birds, and 
wildfowl. It is important to note that the dataset 
contains missing values for water and wetland 
habitats, as well as wildfowl habitats. To address 

this issue, missing values have been replaced with 
mean values, ensuring continuity in the analysis. 
This approach allows for consistent comparison of 
trends across different habitats. 

In this study, we leveraged both the smoothed 
2.5 confidence interval (CI) and the smoothed 97.5 
CI derived from our dataset to enhance the accuracy 
and reliability of our predictions regarding bird 
populations. bound for our predictions, indicating 
the maximum expected population. This information 
is valuable for understanding the best-case scenarios 
and planning for optimal conservation strategies. By 
incorporating both the lower and upper confidence 
intervals, we aimed to capture a comprehensive 
range of uncertainty in our forecasts. To train our 
predictive model, The smoothed 2.5 CI served as a 
critical lower bound, allowing us to identify the 
potential minimum expected population, which is 
essential for assessing risks related to population 
decline. This interval highlights scenarios where 
intervention may be necessary to prevent further 
decreases in species numbers. Conversely, the 
smoothed 97.5 CI provided an upper we included 
both the 2.5 CI and 97.5 CI as features, alongside 
the smoothed population estimates. 

This approach allowed us to account for the 
variability in the data and provided a more nuanced 
understanding of potential outcomes. The model’s 
predictions, enriched by these confidence intervals, 
facilitate informed decision making in conservation 
efforts, enabling us to allocate resources effectively 
and develop strategies that address both risks and 
opportunities in bird population management.  

 
Figure.2:Bird population trends with Confidence Intervals 

4 RESULT ANALYSIS 

We present the findings from our SARIMA model 
analysis, which predicted monthly bird populations 
across different habitats—farmland, woodland, and 
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wetland. The model effectively captured population 
dynamics, as illustrated in Figures 3-8, where we 
observe notable trends and fluctuations supported by 
confidence interval. 

 
Figure 3: Forecasted Values and Confidence Intervals for 
All Birds: 2.5% range  

 
Figure 4: Forecasted Values and Confidence Intervals for 
All Birds: 97.5% range 

The forecasting results from the SARIMA model 
for the "all birds" column in the dataset indicate a 
range of values defined by the 2.5% and 97.5% 
confidence intervals (CIs). The lower bound (2.5% 
CI) shows a stable trend, with values ranging from 
0.9135 in the first month to 0.9198 by the twelfth 
month, resulting in an average of approximately 
0.9195. In contrast, the upper bound (97.5% CI) 
exhibits a slight decline, starting at 1.0406 and 
decreasing to 1.0451, yielding an average of about 
1.0475. This analysis underscores the relative 
stability in the "all birds" data, with the upper and 
lower bounds illustrating the inherent uncertainty in 
forecasting process. 

 
Figure 5: Forecasted Values and Confidence Intervals for 
Woodland Column: 2.5% range 

 
Figure 6: Forecasted Values and Confidence Intervals for 
Woodland Column: 97.5% range 

The forecasting results from the SARIMA model 
for the woodland column in the dataset indicate a 
range of values represented by the 2.5% and 97.5% 
confidence intervals (CIs). The lower bound (2.5% 
CI) shows a declining trend, with values decreasing 
from 0.7017 in the first month to 0.6528 by the 
twelfth month, averaging approximately 0.6784. In 
contrast, the upper bound (97.5% CI) exhibits a 
slight increase, ranging from 0.8603 to 0.8646, with 
an average of about 0.8621. This analysis highlights 
the notable variation in the woodland data, with the 
confidence intervals reflecting the inherent 
uncertainty in the forecasting process. 
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Figure 7: Forecasted Values and Confidence Intervals for 
Water and Wetland Column: 2.5% 

 
Figure 8: Forecasted Values and Confidence Intervals for 
Water and Wetland Column: 97.5% 

The forecasting results from the SARIMA model 
for the woodland column in the dataset indicate a 
range of values represented by the 2.5% and 97.5% 
confidence intervals (CIs). The lower bound (2.5% 
CI) shows a declining trend, with values decreasing 
from 0.7017 in the first month to 0.6528 by the 
twelfth month, averaging approximately 0.6784. In 
contrast, the upper bound (97.5% CI) exhibits a 
slight increase, ranging from 0.8603 to 0.8646, with 
an average of about 0.8621. This analysis highlights 
the notable variation in the woodland data, with the 
confidence intervals reflecting the inherent 
uncertainty in the forecasting process. 

5 CONCLUSIONS 

This study successfully utilized the SARIMA model 
to forecast bird population trends across diverse 
ecosystems, analyzing historical data from 1960 to 
2015. The results, supported by various validation 

metrics, underscore the model's effectiveness in 
capturing seasonal and temporal patterns, thereby 
enhancing predictive accuracy for avian populations. 
Despite the insights gained, challenges remain, 
including the need for more comprehensive datasets 
and the integration of real-time environmental 
factors. Future research should address these gaps to 
further refine forecasting methods and improve 
conservation strategies. The inclusion of a metrics 
table in this study highlights the model's 
performance and provides a foundation for 
comparing future methodologies in bird population 
forecasting.   

Table 1 

HABITA
T 

CONFIDENC
E 

INTERVAL
MAE RS

ME MAPE 

All 
Species 2.5 CI 0.029

7 
0.03
46 3.3112 

All 
Species 97.5 CI  0.041 0.04

78 4.0423 

Wood 
Land

2.5 CI 0.008 0.00
89 1.0994 

Wood 
Land

97.5 CI 0.004
7 

0.00
59 0.5509 

Water 
Wetland

2.5 CI 0.011
4 

0.01
41 1.2662 

Water 
Wetland

97.5 CI 0.019
7 

0.02
21 1.6577 
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