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Denoising plays an essential role in Synthetic Aperture Radar (SAR) and aerial image restoration. These

images are distorted with various noises due to atmospheric changes. Therefore, the images should be analyzed
using proper restoration and enhancement techniques. Many authors proposed traditional and deep learning
models to perform this task. This paper employed the Bayesian Maximum A Posteriori (MAP) approach to
the Higher Order Total Variation (HOTV) deep learning model. We assumed that the Poisson noise distorts
the images. We also used the model to restore the images degraded by noises such as Gamma, Gaussian, and
Rayleigh. Quantitative and qualitative analyses are provided.

1 INTRODUCTION

A wide variety of noise and distortions, including
blur, decreased contrast, intensity, and inhomogene-
ity, frequently deteriorate sensor data Rasti et al.
(2021). One of the primary causes of the deteriora-
tion of satellite, remote-sensed, and aerial images is
the presence of several types of noise. Poisson noise
is one of the most common noises in Synthetic Aper-
ture Radar (SAR) images, and this type of noise ulti-
mately increases the difficulty of interpreting images
Febin et al. (2020).
A noisy satellite or aerial image can be formulated
by
Xo = X*n, (1)

where x represents the original image, while n denotes
the multiplicative noise, which is observed to follow
a Poisson distribution. Mathematically, the denoising
problem of the images is ill-posed.

Many studies have been carried out in denoising
the images. The models employed local filters that
could not retain essential details, such as edges, due to
the assumption that neighboring pixels shared identi-
cal statistical characteristics Rasti et al. (2021). Non-
local models estimate the weighted non-local similar-
ity between small image patches to preserve resolu-
tion while removing the noise. Many other authors
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have used non-local denoising models for SAR im-
ages Deledalle et al. (2014); Parrilli et al. (2011).
Total Variational (TV) Model (Rudin Osher
Fatemi (ROF) model) are well known for image de-
noising Rudin et al. (1992). TV-based models are effi-
cient because of their ability to preserve edges. How-
ever, the staircase effect is the main flaw in the TV-
based method Strong and Chan (2003). The optimiza-
tion function in the TV model is a trade-off between
data fidelity and regularization. It is formulated by:
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where A > 0 and x is the original image or desired
image. Even though the large values of A retain the
features in the images, the small values of A provide
better denoising. Therefore, an optimal choice of A is
mandatory.

Many modified approaches to TV model Li and
Li (2021) have been proposed to rectify the stair-
case effect. By considering the higher-order gradient,
the Higher-Order Total Variation model is introduced
Lysaker et al. (2003). It is formulated by:

A
min v — x|+ | V21 3)

The higher order gradient with the L; norm reduces
the staircase effect of the regular TV model in the im-
age restoration.

Aubert and Aujol introduced a Bayesian Maxi-
mum A Posteriori (MAP) model using MAP estima-
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tor with the total variation regularization in Aubert
and Aujol (2008). The model facilitates handling
multiplicative gamma noise. While effective to some
extent, traditional models may struggle to handle
complex noise patterns and may introduce undesir-
able artifacts in the denoised images.

Deep learning models CNNs to adapt the relation
between clean and noisy images. By leveraging
large datasets and learning complex patterns directly
from data, CNNs have demonstrated remarkable
performance in various image denoising Jebur et al.
(2024). These models are widely studied in SAR
image denoising also. Chierchia et al. proposed a
residual-based learning model in Chierchia et al.
(2017), which has a faster convergence. However,
Training involves using a large multitemporal SAR
image to approximate a clean image. A Bayesian
despeckling method inspired by blind-spot denoising
networks and incorporating a TV regularizer is
employed by Molini et al. in Molini et al. (2021).
We consider a CNN model based on Bayesian MAP
approach.

2 DATA FIDELITY TERMS USING
BAYESIAN MAP

According to Bayesian rule,

P(VIU)P(U)
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where P(U|V) is the conditional probability of the
random variable U given V. Here, we use the above
Bayesian rule and try to restore the image by maxi-
mizing the posterior probability P(x|xp) given by

P P
Plig) = “ER N, ®
That is,
max P(x|xo) = max P(xo|x)P(x), (6)

The term P(xp), the prior probability on x, is a con-
stant w.r.t. x that can be neglected.

Assume that the speckles in SAR images follow
the Poisson noise. Therefore, the posterior probability
function P(xp|x) is given as

exp(—x)1

P(xolx) = (7

xo!

One can consider the image (x and xgp) as a set of
independent pixels of the image, say x;, (The joint

probability equals the product of the marginal prob-
abilities of each random variable x(x;)), therefore, (6)
can be written as

N
ma P(x(x) o)) = max [ ] PCro ) b)),
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where N is the total number of image samples.

Since the function log is a monotone function,
maximizing P(x|xo) is equivalent to minimizing the
negative log-likelihood, and hence from (7) and (8),
we can obtain the following;

N N
min { ;)C(xi) —xo(xi)log (x(xi)) — ; log(P(x(x:))) }
®)

where the prior of x, say P(x), follows a regularization
prior. For the sake of simplicity, we eliminate x;, thus
we get,

rrkin{—logP(x\xo)} = n}cin {x —xplogx + Ad(x) },

(10)
where ¢(x) be the prior probability function. Many
authors considered ¢(x) is the the total variation of x.

3 MAP MODEL WITH HOTV
REGULARIZATION

We implemented a deep learning model using a Con-
volutional Neural Network (CNN) architecture de-
signed for Higher Order Total Variation (HOTV).
Generally, we use the loss function of the HOTV
model as in (3). In this paper, we designed the model
for the loss function Poisson + HOTV which works
well to restore the SAR/Ariel images distorted with
the poisson noise. We consider the objective function
as in (10) with the assumption that the prior prob-
ability ¢(x) follows HOTV, provided the noise fol-
lows the Poisson distribution. That is, the fidelity
term is x — xplogx and the prior regularization of x is
0(x) = [V 1.

Also, we consider the model feature a custom loss
function that integrates the HOTV loss function with
other loss functions’ Bayesian approach to address
different noise types. So the model can be easily
adapted to handle other noise distributions, such as
Gamma, Gaussian, and Rayleigh, by modifying the
data fidelity term. We experimented with the model
with three variations of loss functions: Gamma +
HOTYV, Gaussian + HOTYV, and Rayleigh + HOTV. By
employing the same architecture and dataset of orig-
inal images, we evaluated the performance of these
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combined loss function models to determine their ef-
fectiveness in denoising. Note that, we used the spe-
cific loss function to reconstruct the image distorted
by the corresponding noise.

We consider the data fidelity terms according to
the nature of noise (see Table I) along with the fixed
prior regularization term. Note that the Gaussian
noise is additive.

Table 1: Data Fidelity Term for Various Noises.

Noise Distribution Data Fidelity Term
Gamma logx+2
Gaussian (x—x0)?
2
. X,
Rayleigh 2log(x) + 5%

3.1 Model Architecture

The deep learning model employed for HOTV uti-
lized a CNN architecture. The details of the model
layers, output shapes, and parameters are given in Ta-
ble II. We use a total of 121,355 parameters such that
40,451 trainable parameters and 80,904 Optimizer pa-
rameters.

Table 2: Model architecture with layer details, output
shapes, and parameter counts.

Layer (type) | Output Param #
Shape

conv2d (None, 256, | 1,792

(Conv2D) 256, 64)

conv2d_1 (None, 256, | 36,928

(Conv2D) 256, 64)

conv2d_2 (None, 256, | 1,731

(Conv2D) 256, 3)

3.2 Hyperparameters and Training
Configuration

We consider the Adam optimizer with a learning rate
of 0.001 for all the models except the Rayleigh +
HOTYV model. For the Rayleigh model, the learning
rate considered 0.0001 for better performance and im-
proved quality metrics. We use the ReLU activation
function for the first two convolutional layers and Sig-
moid for the final convolutional layer. The A value
for balancing the regularization term with the data fi-
delity term in the HOTV loss function is set to 0.0001.
The models were trained using a dataset consisting of
2000 aerial images.

664

Algorithm 1 Training and Evaluation of Image De-
noising Models

1: Input: Noisy images X, Clean images Y, Num-
ber of epochs E, Batch size. B
Output: Trained model, Evaluation metrics.
Initialize model parameters.
Define the combined loss function as in (10).
for each model type do

Compile the model with Adam optimizer and
loss function.

AN AN R

7: for epoch =1to E do
8: Shuffle the training data.
9: for batch =1 to N/B do
10: Select a batch of noisy images Xpucn
and clean images Yparch-
11: Perform forward pass to compute pre-
dictions ¥, batch-
12: Compute loss using the combined loss
function.
13: Perform backward pass to update
model parameters.
14: end for
15: end for
16: Save the trained model.
17: Evaluation:
18: for each test image do
19: Load noisy image X;.s; and corresponding
clean image Y.
20: Denoise the image using the trained
model to get Viost-
21: Compute evaluation metrics (MSE,
PSNR, SSIM).
22: Store the computed metrics.
23: end for
24: Save evaluation metrics to an Excel file.
25: end for

4 QUANTITATIVE AND VISUAL
ANALYSIS

To evaluate the performance of our deep learning-
based image denoising models, we assessed them us-
ing three standard quality metrics: Mean Squared Er-
ror (MSE), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index (SSIM). These metrics
provide a comprehensive evaluation of image quality
and denoising effectiveness.

MSE measures the average squared difference be-
tween the noisy and denoised images, with lower val-
ues indicating better performance. The PSNR quanti-
fies the ratio of the maximum possible signal power to
the noise power, with higher values signifying better
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quality. It is formulated as

x2
PSNR = 10.1og  ~mex
o8 (MSE) ’

where x,,,, denotes the maximum pixel intensity. A
higher PSNR value (in dB) indicates better image
quality. SSIM is defined as

(2:Ux‘uxO +c1) (26160 +c2)

SSIM (x,x9) = ,
(530) = 022 4 en)(@ + o2 ¥ c)

where iy, 1y, are the means and o,,0,, are the vari-
ances of x,xp, respectively. The variables ¢; and
¢, stabilize the division with a weak denominator.
SSIM assesses the similarity between the original and
denoised images, with values closer to 1 indicating
higher similarity. The following tables present the de-
tailed quality metrics for various noise models applied
in our study.

Table 3: Quality Metrics for Poisson + HOTV Model

Image | MSE PSNR SSIM
(dB)

imgl 8.2905 38.846 0.9932
img2 10.4559 36.068 0.9828
img3 3.6985 42.432 0.9933
img4 | 4.8233 41.280 0.9921
img5 5.5569 40.646 0.9830
img6 3.6464 42.494 0.9939
img7 4.9850 41.147 0.9933
img8 13.4772 35.860 0.9883
img9 3.2891 42.945 0.9916
imgl0 | 4.7166 41.313 0.9939
Average | 6.0652 40.469 0.9890

Table 4: Quality Metrics for Standard HOTV Model

Image | MSE PSNR SSIM
(dB)
imgl 33.93 32.40 0.847
img2 39.90 31.20 0.972
img3 24.11 33.87 0.865
img4 50.55 29.60 0.963
img5 18.27 35.42 0.968
imgo6 22.56 34.01 0.933
img7 26.78 33.12 0.912
img8 20.34 34.58 0.941
img9 29.45 32.78 0.918
imgl0 | 31.56 32.54 0.906
Average | 29.50 32.74 0.927

Table 5: Quality Metrics for Gamma + HOTV Model

Image | MSE PSNR SSIM
(dB)
imgl 11.45 37.50 0.958
img2 24.00 33.77 0.916
img3 23.89 33.86 0.910
img4 34.17 32.30 0.912
img5 22.97 33.93 0.925
img6 12.34 36.92 0.946
img7 28.56 32.98 0.904
img8 19.43 34.71 0.929
img9 15.67 35.83 0.939
imgl0 | 21.12 34.24 0.921
Average | 22.23 34.29 0.922

Table 6: Quality Metrics for Gaussian + HOTV Model

Image | MSE PSNR SSIM
(dB)
imgl 52.12 29.05 0.891
img2 32.24 31.71 0.801
img3 54.43 29.13 0.795
img4 34.56 32.32 0.823
img5 39.51 31.48 0.835
imgo6 45.67 30.28 0.812
img7 38.29 31.52 0.804
img8 47.12 30.17 0.829
img9 43.67 30.76 0.845
imgl0 | 51.34 29.29 0.820
Average | 43.39 30.70 0.818

Table 7: Quality Metrics for Rayleigh + HOTV Model

Image | MSE PSNR SSIM
(dB)
imgl 47.6392 30.178 0.8298
img2 68.1799 28.234 0.8519
img3 117.3053 17.346 0.8055
img4 31.1744 31.814 0.8541
img5 61.6765 28.565 0.9192
imgo6 57.8432 29.310 0.8999
img7 80.7006 26.937 0.8610
img8 66.2137 27.874 0.9063
img9 41.7139 31.200 0.8537
imgl0 | 71.9193 28.108 0.8612
Average | 65.5326 27.786 0.8740

S CONCLUSION

In conclusion, the HOTV + Poisson model is the most
effective in preserving image quality and reducing
noise, while the other models, demonstrate varying
degrees of effectiveness and quality trade-offs. Pois-
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son + HOTV Model exhibits the highest overall per-
formance with an average MSE of 6.0652, indicat-
ing superior noise reduction. It achieves the high-
est average PSNR of 40.469 and SSIM of 0.9890,
demonstrating excellent preservation of image qual-
ity and structural similarity. These results highlight
its effectiveness in producing high-fidelity denoised
images. Also, Gamma + HOTV model demonstrates
moderate performance when the images are distorted
with Gamma noise. It provides a balanced approach
to noise reduction and image fidelity but does not
achieve the superior quality seen with the Poisson
model. The standard HOTV model, also strikes a bal-
ance between effective noise reduction and maintain-
ing image quality, though it does not reach the level
of performance achieved by the Poisson model. The
other two models indicate a loss in image quality and
noticeable distortions.

N S
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5

Figure 2: Denoising results for Standard HOTV Model with
Speckle Noise. In each figure, the first image is clean, the
second is noisy, and the third is restored.

Figure 1: Denoising results for Poisson + HOTV Model
with Poisson Noise. In each figure, the first image is clean,
the second is noisy and the third is restored.
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Figure 3: Denoising results for Gamma + HOTV Model

with Gamma Noise. In each figure, the first image is clean,
the second is noisy, and the third is restored.

Figure 4: Denoising results for Gaussian + HOTV Model
with Gaussian Noise. In each figure, the first image is clean,
the second is noisy, and the third is restored.
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