
Cognitive Load Classification Using Feature Masked Autoencoding 
and Electroencephalogram Signals 

D. Eesha1,2, M. Nagaraju1,2 a, D. Divya1,2 and S. Kashyap Reddy1,2 
1Institute of Aeronautical Engineering, Hyderabad, Telangana, India 

2Department of CSE(AI&ML), Institute of Aeronautical Engineering, Hyderabad, Telangana, India 

Keywords: Cognitive Load, Deep Learning, EEG Data, Load Classification, Machine Learning, Masked Autoencoder 

Abstract: Electroencephalogram based Cognitive Load Classification has a wider range of applications that benefit 
different domains such as healthcare and adaptive systems. The paper explores the classification of cognitive 
load levels using EEG data through two different experiments: a standard machine learning model and an 
advanced Transformer-based autoencoding. The first experiment provides a moderate accuracy of 55%, 
indicating major differences in precision and recall, especially regarding positive cases. The second 
experiment uses a Masked Autoencoder pre-trained Transformer model, attaining a remarkable accuracy of 
91% with balanced classification metrics across both classes. The paper showcases the effectiveness of deep 
learning in cognitive load classification, with significant potential for real-time applications across the medical 
field. 

1 INTRODUCTION 

The rise of EEG (Electroencephalography) 
technology has expanded horizons for understanding 
brain activity, enabling researchers to measure and 
analyze cognitive processes with unprecedented 
precision. In particular, the ability to classify 
cognitive load—how much mental effort a person is 
exerting—holds significant promise for various 
applications, from enhancing learning experiences to 
improving user interfaces and monitoring mental 
health. However, accurately classifying cognitive 
load based on EEG signals presents Major obstacles 
posed by the complexity and variability of brain 
activity. In the study, the proposed methodology is an 
EEG-based cognitive load classification method 
using the CL-Drive dataset, focusing on features 
derived through autoencoders and a downstream 
classification model. The two key features extracted 
are Power Spectral Density - PSD and Differential 
Entropy – DE. The EEG dataset is processed by 
normalizing the signals and applying outlier removal 
techniques to enhance data quality. Feature extraction 
is performed using autoencoders. The extracted 
features, PSD and DE, are then used in a downstream 
classification model to categorize different cognitive 
load levels. The classification model, designed to 
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extract features effectively, is trained and evaluated 
on the pre-processed dataset. The proposed 
method Demonstrates high accuracy, emphasizing 
the benefits of combining autoencoders with 
downstream classification for EEG-based cognitive 
load classification. The study plays a role in 
developing EEG analysis by highlighting the 
advantages of deep learning approaches to improve 
cognitive load detection, paving the way for 
innovative applications in various fields such as 
education, healthcare and human-computer 
interaction. 

2 LITERATURE SURVEY 

To classify the level of cognitive load using EEG 
signals, a model was developed based on the analysis 
of temporal patterns in those signals through the 
application of a Long Short-Term Memory (LSTM) 
network that is a type of Recurrent Neural Network 
(RNN). The specific model has been trained upon 
recordings of EEG under varied cognitive loads, 
involved some preprocessing steps, such as noise 
reduction, feature extraction, therefore, improving the 
quality of the data used. RNNs performance is, 
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however usually reflected by the quality and 
variability of the EEG data used and may have 
significant computational demands that require large 
amounts of training time and efforts(Peter Anderson, 
2018). Although CNNs are so efficient in the capture 
of spatial features, they tend to fail in the full 
capturing of temporal dependencies in EEG signals 
and thus limit their performance in relation to 
recurrent models. Additionally, CNNs require 
tremendous computational power for training and 
evaluation(Prithila Angkan, 2023). Transfer learning 
was applied in the work to elevate cognitive load 
classification by using pre-trained models on 
emotion-related datasets of EEGs. The transformer 
structure was leveraged to address the sequence-
based nature of EEG data, while a pre-trained model 
on a dataset of the cognitive load was fine-tuned. 
Transfer learning can have very significant reliance 
on similarity between the source and target domains, 
but careful parameter adjustment is required in fine-
tuning to avoid overfitting or underfitting it(Pavlo 
Antonenko, 2010). A self-supervised masked 
autoencoding model is applied in pretraining the 
transformer model given unlabelled EEG data and 
then fine-tuned for specific classification tasks. In an 
attempt to reduce the dependence on labelled data, the 
method had some promise although quite sensitive to 
the quality and quantity of the unlabelled data sets-
and requires much more computational resources for 
training(Behman Behinaein, 2021). The study 
discussed hybrid deep learning models that use 
combinations of CNN and RNN to classify cognitive 
load from EEG data. The hybrid approach works on 
the principle of spatial feature extraction by using 
CNNs and features obtained using RNN, which helps 
to capture temporal patterns and therefore enhance 
the overall classification accuracy. With the 
combination, complexity, computational 
requirement, and hyperparameters may increase from 
the hybrid architecture(Francesco N Biondi, 2023). 
Deep RCNN introduces a deep RCNN, involving 
cascading CNN layers to capture spatial dynamics 
and RNN layers for temporal dynamics in EEG 
signals for classification of the presented cognitive 
load. All-round approach to analyzing EEG data, the 
layering CNN to extract spatial information and RNN 
to capture dependencies answers the question. 
However, the hybrid model poses the challenge of 
increased computational complexity and resource 
needs and depends on the quality of both spatial and 
temporal feature extraction(Tom Brown, 2020). The 
paper compared the different machine learning 
algorithms that have been used, namely, Support 
Vector Machines (SVM), Random Forests, and 
Gradient Boosting, for the automatic detection of 
cognitive load from EEG signals. The best classifier 
was determined by comparing these algorithms on a 

dataset with labelled cognitive loads(Ting Chen, 
2020). Deep learning methods and data augmentation 
were incorporated to enhance the EEG-based 
assessment of cognitive loads. A CNN classifier was 
employed to classify levels of cognitive load, as well 
as data augmentation by adding noise and time-
shifting to improve the robustness of the 
model(Xinlei Chen, 2021). The paper has explored 
the application of transfer learning for adapting the 
pre-trained EEG models to the context of cognitive 
load classification in real-world environments, 
ameliorating challenges pertaining to data variability 
and noise. Fine-tuning a pre-trained model over a 
real-world dataset, along with domain adaptation and 
noise filtering, addresses these challenges. However, 
transfer learning is often constrained by similarity in 
source and target domains and variability and noise in 
real-world data(Hsiang-Yun Sherry Chien, 2022). 
Self-attention mechanisms has been used in 
transformer models and help to alleviate cognitive 
load detection with respect to EEG signals were 
explored. The study also focus on how the cognitive 
load detection can pick up long-range dependencies. 
The model proposed is a transformer model trained 
using labelled EEG dataset, where the signal data 
normalization and removal of artifacts was 
conducted(Rajat Das, 2014). A study on cognitive 
load measurement with EEG in a dual-task context 
highlights that this method is particularly effective in 
situations involving multiple tasks. The research 
emphasizes how EEG-based assessment provides 
valuable insights into cognitive load variations, 
demonstrating its applicability in complex task 
environments(R. D. R. Rodríguez, 2018). A 
multimodal approach has been explored for detecting 
cognitive load using wearable EEG, highlighting the 
advantages of integrating multiple physiological 
signals. This investigation emphasizes the potential 
benefits of combining EEG with other modalities, 
although the integration remains in an exploratory 
phase(Y. T. Zhang, 2022). The application of EEG to 
self-powered cognitive load has been investigated 
within learning environments, focusing on its 
relevance for educational applications and adaptive 
learning systems. This approach aims to enhance 
learning experiences by dynamically adjusting to 
cognitive load variations(M. T. Roy, 2017). A 
comparison between EEG and eye tracking has been 
conducted to evaluate cognitive load in interactive 
systems, highlighting the benefits and drawbacks of 
these techniques. This analysis provides insights into 
their effectiveness in assessing cognitive load across 
different interaction scenarios(H. F. Riva, 2018). 
Real-time cognitive load monitoring from EEG 
signals has been demonstrated, showcasing 
promising results through the application of deep 
learning for mental state observation. This approach 
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enhances the potential for real-time cognitive 
assessment in various applications(T. W. O’Hara, 
2019). The use of facial expression analysis in 
conjunction with EEG for cognitive load analysis has 
been illustrated, including insights from the multi-
modal AffectSense approach and preceding studies. 
This integration highlights the potential of combining 
multiple modalities for a comprehensive assessment 
of cognitive load(J. S. Kaski, 2017). The application 
of deep learning for predicting cognitive load based 
on EEG and gaze data has been explored, 
emphasizing the effectiveness of utilizing multiple 
data streams to enhance accuracy. This approach 
demonstrates the potential of multimodal data 
integration for improved cognitive load assessment(J. 
L. Chen, 2020). Real-time cognitive load monitoring 
and its dynamics have been analyzed using EEG 
signals and machine learning, focusing on the 
assessment of dynamically changing mental states. 
This approach enhances the understanding of 
cognitive variations through advanced computational 
techniques(S. Jain, 2021). The identification of 
cognitive load for stress reduction in driving contexts 
has been explored, with a focus on comparing EEG 
with other physiological indices. This analysis 
provides insights into the effectiveness of different 
modalities for assessing cognitive load in driving 
scenarios(M. S. Srinivasan, 2020). A comparison of 
EEG and ECG signals in estimating cognitive load 
has been conducted, demonstrating that the fusion of 
multiple modalities offers advantages in affective 
computing. This approach highlights the potential 
benefits of integrating physiological signals for 
improved cognitive load assessment(L. Wang, 2023). 

3 PROPOSED METHODOLOGY 

The method applied in EEG-based cognitive load 
classification goes beyond just focusing on 
preprocessing and model architecture but also 
emphasizes robustness and interpretability. Apart 
from basic preprocessing actions such as 
downsampling and bandpass filtering, detailed 
consideration is given to the segmentation and feature 
extraction phases. The sliding window approach 
ensures that temporal dynamics in EEG signals are 
effectively captured, crucial for understanding 
cognitive load changes over time. Feature extraction 
of PSD and DE features Provides a measurable 
approach for analyzing neural patterns related to 
different cognitive levels. By standardizing features 
and removing outliers, the methodology ensures that 
deep learning models receive high-quality input data, 
enhancing their ability to generalize and make 
accurate predictions. The methodology utilizes the 

CL-Drive dataset, collected from 18 participants 
driving in a high-immersion vehicle simulator across 
multiple scenarios designed to induce varying 
cognitive load levels. Each participant performed 
driving tasks of nine different complexity levels, with 
each 3-minute duration, and also completed 
subjective cognitive load assessments every 10 
seconds that provided the ground-truth labels. To take 
advantage of the advances made in deep learning for 
sequential data, both the autoencoder and the 
classification model were taken to be a transformer-
based architecture. Transformers are very good at 
capturing long-range dependencies in sequences. In 
the case of EEG data, for instance, where temporal 
relationships are pretty crucial, they work well. Pre-
training of the autoencoder enhances feature 
representation learning, facilitating better 
discrimination between cognitive load levels in 
subsequent classification tasks. The downstream 
classification model, with its global average pooling 
and dense layers, is tailored for binary classification, 
ensuring effective discernment between low and high 
cognitive load states. 

 

Figure 1: Proposed Model Structure. 

Figure 1 presents two parallel neural network 
architectures that are oriented at sequence processing. 
The networks, could be applied appropriately to both 
the time series and sequential EEG data. The first 
architecture begins with an input layer accepting a 3D 
tensor with the shape of (batch_size, maxlen, 1). That 
is, batch_size is the number of samples, `maxlen` is a 
sequence length, and 1 points to one feature at each 
time step. The input is fed through a 1D 
Convolutional layer, specifying filters set to the value 
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of embed_dim (embedding dimension) and the kernel 
size set to 1, which captures local patterns from the 
input sequence. The output from that convolutional 
layer is passed through stacked transformer blocks, 
utilizing the self-attention mechanisms in order to 
discover dependencies in that sequence-the number 
of blocks is specified as num_transformer_blocks. 
Following the transformer blocks, it follows a flatten 
layer that changes its shape to a 1-D vector, then fed 
into one or more dense layers that possess ReLU 
activation functions and dropout for regularization 
against overfitting. The final layer in the architecture 
will be an output layer with X_train.shape[1] units 
and a linear (None) activation function, which would 
indicate that the architecture is set up for a regression 
task. The second architecture shares the same input 
configuration, receiving a 3D tensor with a shape of 
batch_size, maxlen, 1. It also begins with a 1D 
Convolutional layer, similar to the first architecture, 
with filters set to embed_dim and a kernel size of 1. 
The is followed by a series of transformer blocks, 
identical in setup to those in the first architecture. 
However, instead of flattening the output, the 
architecture uses a global average pooling layer, 
which averages the features across the time 
dimension, producing a fixed-size vector regardless 
of sequence length. The pooling strategy condenses 
the sequence information and the output is passed 
through the dense layers applying ReLU activation 
function. The last layer is designed using a single unit 
and a Sigmoid activation function likely intended for 
binary classification tasks. 

3.1 Data Preparation  

The data preparation starts with the 
`downsample_eeg` function performs the 
downsampling of EEG data, taking the original 
DataFrame, the initial sampling frequency, and the 
desired frequency as input parameters. It calculates 
the new number of samples required and resamples 
each EEG signal using the `resample` function, 
returning the resampled DataFrame. Following 
downsampling, a bandpass filter is applied to separate 
the theta band (4-8 Hz), which is required to 
understand the methodology's cognitive process. The 
second-order Butterworth filter is used to balance 
frequency selectivity and computational efficiency, 
filtering specific EEG channels (TP9, AF7, AF8, and 
TP10) to eliminate noise. In the proposed 
methodology, only the EEG signals from the CL-
Drive dataset are utilized. These signals are captured 
from four sensors—TP9, AF7, AF8, and 
TP10— Situated on the scalp to gather key neural 
information required for cognitive load classification. 
The CL-Drive dataset is organized into cognitive load 
assessments categorized into 9 distinct levels, where 

participants are exposed to varying driving 
conditions. Each participant's EEG data is recorded 
across these levels, and both the eeg_data (task data) 
and eeg_baseline (pre-task baseline data) for all 9 
levels is combined for feature extraction. 

CL-Drive 
    |----EEG  
         |----participant_ID_1 
                      |----eeg_data_level_1 
                      |----eeg_baseline_level_1 
                      . 
                      . 
                      . 
                      |----eeg_data_level_9 
                      |----eeg_baseline_level_9 
         . 

         |----participant_ID_18 
In Figure 2 different quantities of EEG obtained from 
various sensors and the cognitive level of one person 
is shown. Two primary metrics derived from these 
sensors are used for analysis: PSD and Differential 
Entropy. An analytical solution to PSD and 
differential entropy will be presented as Power 
Spectral Density and Differential Entropy. PSD gives 
information on power density of the signal over 
several frequency, while DE provides information on 
the complexity of EEG signals. These features are 
important in understanding neural patterns associated 
with shifted cognitive states and are obtained from the 
four EEG channels for all nine levels for the subject 
under consideration. PSD and DE are calculated over 
five frequency bands: From 1–4 Hz, it is Delta; 4–8 
Hz is Theta; 8–12 Hz is Alpha; 12–31 Hz is Beta; and 
31– 75 Hz is Gamma, thus offering complete analysis 
of the brain’s frequency dependent discriminating 
ability. 

Figure 2: Small Portion of the dataset. 

Through feature extraction, meaningful insights from 
the EEG data is derived, considering a sliding 
window approach for data segmentation into smaller 
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intervals. PSD and DE key features, are computed 
using functions for each segment from the modules 
`scipy.signal` and `scipy.stats`. The features capture 
the EEG signals power distribution and complexity. 
The features are stored and used further in a 
structured DataFrame for analysis. In alignment with 
the cognitive load levels in the CL-Drive dataset, the 
extracted features like PSD and DE are calculated for 
every nine levels for each participant of cognitive 
load.  

EEG 
│ 
├── level_1 
│   ├── participant_1_psd.csv 
│   ├── participant_1_de.csv 
│   . 
│   . 
│   ├── participant_18_psd.csv 
│   └── participant_18_de.csv 
│   . 
└── level_9 
    ├── participant_1_psd.csv 
    ├── participant_1_de.csv 
    ├── participant_2_psd.csv 
    ├── participant_2_de.csv 
    . 
    . 
    ├── participant_18_psd.csv 

    └── participant_18_de.csv 
 

The EEG data is in a hierarchal file structure to enable 
analysis of signals from participants as they 
underwent testing at different cognitive loads. The 
folder EEG is the top-level folder and contains nine 
subfolders namely level1 to level 9 of the cognitive 
load which are experimental conditions from the CL-
Drive data set. An individual folder for each of the 18 
participants contains the features that have been 
extracted at each of the levels in coma delimited 
format. Other files are participant_X_psd.csv for 
Power Spectral Density and participant_X_de.csv for 
Differential Entropy data extracted from the EEG 
data recorded from four critical electrodes. PSD the 
distribution of power in the system over the 
frequencies of the EEG signal, and DE the complexity 
of the signal which is imperative when classifying 
cognitive load. The structure of the system allows the 
organization of signals and subsequent feature 
extraction for the convenience of comparing EEG 
data of different participants as well as to compare the 
data from the participants with different cognitive 
loads. For the initial classification of cognitive load, 
the data is then passed through the `np.where` 
function to split the data between low cognitive load 
and high cognitive load where low tier corresponds to 
high Sas level and vice versa. The detection of outlier 

is then done using IQR method. The outliers are 
utilized further to remove extreme values and analyze 
the data set. The work of the data preparation phase 
ends with splitting the features and the targets, thus 
preparing for the model training. The extracted 
structured data is then available for additional 
processing of the cognitive load classification model. 

3.2 Deployment 

The deployment phase begins with the creation of a 
neural network model that includes a customized 
Transformer block which is specifically designed to 
capture the complex dependencies in EEG signals. 
Especially, it includes multi-head attention, 
feedforward neural networks, layer normalization, 
and dropout layers that enhance the learning 
capabilities and robustness of the model. The 
Transformer block is also integrated into a larger 
model architecture that merges masked autoencoder 
and downstream classification components as well. 
The masked autoencoder is pre-trained on input Data 
to learn robust representations of features. Use a 
Conv1D layer, Transformer blocks, and dense layers 
to reconstruct masked segments of data. The 
pretraining basically improves the model's 
understanding of hidden patterns in EEG signals. All 
the datasets used for both pretraining and subsequent 
classification of cognitive load are pre-processed. 
Apply 2nd order Butterworth band pass filter with 
pass-band frequency from 1 to 75 Hz, Hz for 
elimination of unwanted noises and artifacts and there 
is notch filter with quality factor 30 applied at 60 Hz 
for powerline noises elimination. Over the feature 
extraction stage, the two most prominent features that 
come out are Power Spectral Density and Differential 
Entropy. These features would be extracted over 5 
frequency bands namely Delta from 1 to 4 Hz, Theta 
from 4 to 8 Hz, Alpha from 8 to 12 Hz, Beta from 12 
to 31 Hz, and Gamma 31to 75 Hz, which would have 
a sliding window size of 10-second. Power Spectral 
Density determines the power of signal distribution 
across its components over different frequencies. 
Computation of PSD involves Welch's method 
whereby EEG signal is divided into smaller portions 
which are padded using a window function, discrete 
Fourier transformation performed and averages of 
squared magnitudes are obtained. The process 
reduces noise and does a better job in representing the 
power spectrum in the various frequency bands. 
Mathematically, the PSD for each frequency band can 
be calculated as: 
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𝑃𝑆𝐷(𝑓) =  1𝑁 ෍|𝑋(𝑓, 𝑛)|ଶேିଵ
௡ୀ଴  

(1)

 

Where 𝑋(𝑓, 𝑛)  represents the Fourier transform of 
the signal in segment 𝑛 for frequency 𝑓, and 𝑁 is the 
total number of segments. Differential Entropy based 
on principles from information theory, measures the 
complexity or unpredictability of EEG signals. 
Assuming the EEG signal follows a Gaussian 
distribution, DE can be computed as: 

 𝐷𝐸 =  12 ln(2𝜋𝑒𝜎ଶ) (2)

 

Where 𝜎ଶ represents the variance of the signal. DE 
measures the randomness or uncertainty within the 
EEG signal, with higher values indicating more 
complexity. Following feature extraction, both PSD 
and DE values are concatenated and z-score 
normalized. The feature matrix is tokenized into 10-
second non-overlapping segments to form sequences, 
which can be efficiently processed by the 
Transformer architecture. The dataset is split into a 
training set and a test set, 80% for the training and the 
other 20% for testing its performance. That split 
makes sure that the model would be trained upon a 
considerable amount of data while still having 
another set aside for unbiased evaluation.  The 
following is a practical classification model, meant 
specifically for the binary classification tasks, where 
pretrained layers are used including the 
GlobalAveragePooling1D layer in order to reduce 
data dimensionality. The model architecture is 
completed with dense layers and an output layer 
activated by sigmoid in order to make predictions for 
binary levels of cognitive load. The classification 
model uses the Adam optimizer and a cosine decay 
learning rate scheduler. It employs binary cross-
entropy as the loss function and evaluates 
performance using accuracy as the metric. Early 
stopping is applied so that overfitting does not occur, 
and the model remains generalizable for new data 
sets. The final model is tested on the reserved dataset, 
and Accuracy is a measure of success. Operations 
after Deployment Monitoring and Maintenance 
Enabling the model to continue at high performance, 
adapting to changes in input data distributions and 
operational conditions. 

 

4 EXPERIMENT EVALUATION 

In the paper, two distinct experiments are conducted 
to evaluate the efficacy of different approaches in 
classifying cognitive load levels using EEG data. The 
initial experiment establishes a baseline by utilizing a 
standard machine learning model, while the latter 
experiment employs an advanced deep learning 
approach based on a Transformer architecture. Upon 
comparison, the latter experiment demonstrates 
superior performance, with improved accuracy and 
generalization capabilities. Therefore, the results of 
the second experiment are chosen for further analysis 
and discussion, highlighting its effectiveness in 
addressing the research problem. The core concept of 
the experiment is building up it is learned transformer 
model from the EEG data effectively. The is built 
with custom layers that include Positional. Encoding, 
which involves the sequence information of the input 
data and Transformer Block, which applies multi-
head with self-attention and feedforward with 
residual. Connections and layer normalization. The 
Transformer model It comes with several 
hyperparameters: eight attention A feed-forward 
dimension of 64 heads and four stacked. Transformer 
blocks, and all of these allow the network to learn 
complex patterns. To improve training stability and 
reduce overfitting, batch normalization is applied 
before the final layers. After that, a global average 
pooling layer is included, followed by a dense output 
layer with a sigmoid activation function, as the is a 
binary classification problem. The model is optimized 
using the Adam optimizer with a learning rate of 
0.0001, and it evaluates performance with binary 
cross-entropy loss and accuracy as the key metric. 
Training is for a period of 150 epochs. batch size = 
64, train on 10% of the data, use cross-validation 
while training to monitor model over training time. 
Then, after training, you test its generalization 
capability by test on test set. The output gives a test 
loss and accuracy, depicting the quality in which it 
can predict levels of cognitive load. The model 
designed has an increased number of heads, feed 
forward dimension, and transformer blocks. Further, 
extracting the relations from EEG data might also 
enhance the classification accuracy of that. As the 
Transformer-based model is very strong because it 
performs extremely well and robustly outperforms 
traditional approaches, giving correct predictions on 
different levels of cognitive loads learned from EEG 
data. 
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Figure 3: Training and Validation Accuracy. 

Figure 3 shows the training and validation accuracy 
curves for a binary classification model across 150 
epochs. The blue line represents the training 
accuracy, while the orange line shows the validation 
accuracy. Both accuracies improve quickly at first, 
but after about 20 epochs, the training accuracy levels 
of around 0.56, while the validation accuracy 
fluctuates near 0.54. The gap between the two curves 
suggests the model is performing better on the 
training data than on the validation set, indicating 
potential overfitting. The variability in the validation 
accuracy highlights that the model may struggle to 
generalize to unseen data. As follows Figure 4, a line 
graph of the plot for the training and validation loss 
over more than 150 epochs. The x-axis is the number 
of epochs, while the y-axis is the loss values. The blue 
line represents training loss, which seems to decrease 
gradually with progression in epochs. The is an 
illustration of how the model learns. Orange curve is 
validation loss. Validation loss can be seen to vibrate 
but stabilize at a higher value compared to training 
loss, so there's really an overfitting. 

 
Figure 4: Graphs of Training and Testing loss. 

 

 

Figure 5: Confusion Matrix. 

Figure 5 displays a confusion matrix that provides a 
visual representation of the model's performance in 
binary classification. The matrix shows the actual 
versus predicted labels for the testing data. The 
entries of the matrix indicate that  it has identified a 
large number of negative instances samples (6324 
true negatives) but does include a large number of 
false negatives (4937), which means that it failed to 
accurately predict the positive samples. The 
imbalance indicates that the model needs further 
tuning or balancing techniques. 

Table 1: Classification Report. 

 Precision Recall F1 
Score 

Support 

Class 0 56% 89% 69% 7098
Class 1 50% 13% 21% 5703

Accuracy 55% 12801
Macro 
Avg

53% 51% 45% 12801 

Weighted 
Avg

53% 55% 48% 12801 

 
Table 1 shows the classification report for a binary 
model. For Class 0, the model achieved a 0.56 
precision, a 0.89 recall, and an a 0.69 F1-score, based 
on 7,098 samples. In comparison, Class 1 had a 0.50 
precision, a 0.13 recall, and a 0.21 F1-score, with 
5,703 samples. The model's overall accuracy was 
55% across a total of 12,801 samples. The macro-
averaged precision, recall, and F1-score were 0.53, 
0.51, and 0.45, respectively, while the weighted 
averages for these metrics were 0.53, 0.55, and 0.48. 
Comparing the results of two experiments, for the 
classification of cognitive load levels based on EEG 
data, the classification accuracy is higher for the 
proposed Transformer-based approach. In the first 
experiment where the ML model was a simple model, 
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the achieved test accuracy was 55% with large 
differences between P and R for both Class 1 and 
Class 2, and TPR and FPR indicating that it failed to 
generalize and was imbalanced for the two classes. 
On the other hand, the second experiment applying a 
deep learning approach based on the Transformer 
architecture produced much better results—91 
percent accuracy and a reasonably equal ratio of 
precision to recall of both classes. The developed 
Transformer model proves useful in revealing 
temporal features of EEG signal through its multi-
head self-attention mechanism, positional encoding 
and a deeper architecture of the network in contrast to 
the conventional model, to achieve improved feature 
extraction and representation learning. As evidenced 
by the higher F1 score, and significantly lower 
misclassification rate, the Transformer model is most 
effective for the task of managing the challenges 
presented by the EEG data. Therefore, in the second 
experiment, there is a significant increase in the 
convergence accuracy of the result, and it confirms 
the productivity and capability of the model for 
practical use and its recommended in light of the 
machine learning baseline approach. Among the 
machine learning models that classify cognitive load 
from EEG signals, the experiment was selected as 
basic because it is simple and easy to explain. But the 
performance was not satisfactory, the accuracy was 
moderate, and it was overfitting by seeing the gap 
between training and validation set values and 
confusion matrix values also. Such omissions showed 
that there was a need to enhance the solidity of the 
method. Due to these suboptimal results, an attempt 
was made to obtain higher performance using a more 
complex experiment described below that employs a 
Transformer-based deep learning model. This greatly 
enhanced the model’s versatility and ability to 
perform good estimations regarding levels of 
cognitive load. The technique for cognitive load 
classification from the EEG signals applied in the 
implemented methodology has demonstrated high 
performance and effectiveness of the proposed 
approach. The dataset from CL-Drive study was 
preprocessed to extract features after undergoing 
downsampling to 100 Hz and applying bandpass filter 
to select the theta band frequency of 4-8 Hz. Division 
into equal 0.1-second overlapping segments meant 
that temporal factors were fully recorded, which is 
important when analyzing changes in cognitive load 
over time. Feature extraction addressed Power 
Spectral Density and Differential Entropy that 
grounded the analysis of neural oscillations and signal 
complexity linked to cognition. The density plot 
provided by PSD analysis showed different 

distribution of power across the frequencies, with an 
increase in the brain activity at time points with 
increased cognitive load. At the same time, DE 
metrics characterized disruptions of recorded EEG, 
which in a manner of speaking allowed distinguishing 
between different degrees of cognitive load. 
Cognitive load classification is used in a two-stage 
deep learning process. The first stage included a 
Transformer-based autoencoder that is trained to 
encode the EEG segments to obtain latent 
representations that contain informative features of 
the signals and restore the segments as input. The 
unsupervised pre-training stage facilitate feature 
learning. The process enhances the classification 
ability while detecting cognitive load variations. The 
downstream classification model, built using a 
modified Transformer architecture with global 
average pooling and dense layers, achieved 
outstanding performance in binary classification 
tasks. Trained on the pre-processed and encoded EEG 
data, the model achieved a notable test accuracy of 
91% after 30 epochs, underscoring the approach's 
robustness and discriminative power in predicting 
cognitive load levels from EEG signals.  Figure 6 
display the loss curves for the pre-training and 
downstream training phases of a model. On the left, 
the pre-training loss plot shows the model’s loss over 
30 epochs. The loss begins around 0.3475, dips 
slightly, and then rises to stabilize around 0.3675, 
indicating that the model’s pre-training loss increases 
slightly after an initial improvement, suggesting 
potential overfitting or learning stagnation. On the 
right, the downstream training and validation loss plot 
shows the loss over 20 epochs. The training and 
validation losses start high, with the validation loss 
peaking early, but both losses decrease sharply within 
the first few epochs. As training progresses, the losses 
converge and stabilize at lower values, indicating 
effective learning and good generalization to the 
validation set. Overall, the downstream training 
appears more successful, with clear improvements in 
loss reduction compared to the pre-training phase. 

 
Figure 6: Pre-training and downstream loss graphs. 

Cognitive Load Classification Using Feature Masked Autoencoding and Electroencephalogram Signals

631



Figure 7: Downstream accuracy. 

Figure 7 illustrates the progression of the model's 
accuracy over 20 epochs while the downstream model 
training phase. The training accuracy, indicated by 
the blue line, starts at around 68% and gradually 
improves as the model learns, stabilizing near 91% 
towards the later epochs. The validation accuracy, 
shown by the orange line, begins higher at 76% but 
shows some initial fluctuations, with a noticeable dip 
around epoch 4. After the point, both training and 
validation accuracies steadily improve, with the 
validation accuracy eventually stabilizing at around 
92% by epoch 10. The indicates that the model is 
maintaining consistent performance across both the 
training and validation sets. As the training ends, the 
close alignment of the two lines indicates that the 
model is well-optimized and not overfitting, as it 
generalizes effectively to unseen data, demonstrated 
by the validation accuracy being slightly higher than 
the training accuracy. The model’s performance 
evaluation is further supported by detailed analyses of 
training and validation metrics. The loss curves for 
pre-training and downstream training show distinct 
learning behaviors. Pre-training underfitting Mashup 
exemplified by a drop in loss from 0.3475 to 0.3474 
before rising to 0.3675 denote a case of overfitting or 
stagnation learning. However, in the second phase 
known as the downstream training phase there was a 
significant improvement; both the training and 
validation losses dropped abruptly in the first epochs 
and then plateaued at lower values than in the case of 
the first phase. The proximity of the training and 
validation losses gives evidence of accurate learning 
coupled with minimal overfitting during the last 
downstream training phase. The pattern shows that 
the model is able and willing to learn and apply 
meaningful representations in the output during 
classification. To support the evaluation of the model 
and presented evaluation metrics, such as the 
confusion matrix and accuracy metrics, provide 
critical classification insights into the model. From 

the downstream training phase, the loss was further 
minimized, and the accuracy was quite high that also 
supported the functionality for differentiating 
cognitive load levels. The confusion matrix bears 
testimony that the model has been accurately 
ascertaining low and high cognitive load states and 
has high true positive and true negatives ratio. The 
small gap between the training and validation loss is 
visible which proves the model’s ability to make 
unnoticed predictions beyond the training set. This 
suggests that the learned representations throughout 
pre-training and fine-tuning have been shifted well 
into the classification task and therefore enhances the 
model ability to classify correct and consistent 
cognitive load in EEG data. 

 
Figure 8: Confusion Matrix 

The confusion matrix of Fig. 8 provided 
additional understanding into the model's 
performance among different classes. For Class 0, the 
model accurately classified 6,213 instances but 
misclassified 885 as Class 1, while for Class 1, it 
accurately identified 5,482 instances but 
misclassified 221 as Class 0. The analysis reveals that 
while the model performs well overall, there is a 
slightly higher tendency to misclassify instances of 
Class 0 as Class 1. Nevertheless, the high number of 
correct predictions aligns with the observed strong 
precision and recall values, indicating a well-
balanced performance across both classes. 

Table 2: Classification Report. 

 Precision Recall F1 
Score 

Support 

Class 0 97% 88% 92% 7098
Class 1 86% 96% 91% 5703

Accuracy 91% 12801
Macro 
Avg

91% 92% 91% 12801 

Weighted 
Avg

92% 91% 91% 12801 
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The classification report represented in Table 2 
further highlights the model’s effectiveness, with 
strong precision, recall, and F1-scores across both 
classes. For Class 0, the model attained a 0.97 
precision, a 0.88 recall, and a 0.92 F1-score. For Class 
1, it achieved a 0.86 precision, a 0.96 recall, and a 
0.91 F1-score. The 91% overall accuracy across 
12,801 instances confirms that the model’s 
performance and robustness. The 91% macro average 
with precision, recall, and f1-score, treating all class 
categories equally, reflecting balanced and consistent 
performance. The results validate that the proposed 
approach exhibits potential applicability in real-time 
cognitive load assessment. 

Table 3: Comparison of the models. 

Exp. 
No. 

Model Name Avg 
Accuracy 

Avg 
F1 

Score 

Avg 
Recall 

1 Transformer 
Model 

55% 45% 51% 

2 Masked Auto 
Encoders 

pre-trained 
transformer 

model 

91% 91.5% 92% 

 
Table 3 summarizes the findings and offers a side-

by-side comparison of two experiment setups for 
EEG based cognitive load classification. As part of 
the experiments, experiment 1 used a basic machine 
learning model and recorded a reasonable accuracy of 
55%. It demonstrated skewed classification, 
especially poor precision and high recall for Class 1 
meaning that it has poor capability of classifying data 
that have not been trained and the propensity to over-
fit. On the other hand, experiment 2 used a deep 
learning based on Transformer architecture and 
increased the recognition accuracy up to 91 %. The 
model gave high precision, recall, and F1-scores in 
both classes, which prove that it did not overfit but 
rather correctly identified a range of patterns in the 
EEG data. Generalization of problem and multiple 
layers together with the application of positional 
encoding and self-attention, put the Transformer-
based model into a position of better performance 
indicators. The first choice is Experiment 2 since the 
method uses the Masked Autoencoder pre-trained 
transformer model. The value of the experiment 
exceeded the scenario of using the traditional 
transformer model as it had higher accuracy and 
balanced classification as well as pre-eminence of 
generalization. Because the design of Experiment 2 
was more complicated, the new techniques used in 
this experiment were more appropriate and valuable 
to classify the cognitive load by applying EEG data. 

5 CONCLUSION AND FUTURE 
SCOPE 

The methodologies presented for EEG-based 
cognitive load classification are a rich set of 
paradigms designed to analyze and interpret the 
cognitive states using the brain activity data. First, 
basic conventional machine learning techniques like 
the SVMs and k-NNs offer strong classification 
paradigms through effectively extracted features such 
as PSD and DE. These methods are particularly 
effective for detecting patterns that signal differences 
in cognitive loads whereas their performance in 
capturing temporal dependencies and relations 
inherent in EEG can be problematic. CNN and RNN 
differing from LSTM networks along with DL 
models bring considerable improvement by capturing 
spatial as well as temporal characteristics of EEG. 
However, the models require large data for training, 
which is computationally expensive, and is a 
constraint in real-world application with high 
throughput. It can be concluded that the advances in 
EEG based cognitive load classification are in a 
future direction and it is the question of whether these 
approaches need to be fine-tuned or whether new 
frontiers are waiting to be explored. Improving the 
current model architecture, integrating new types of 
physiological or behavioral data sources as inputs, 
and concentrating on real-time performance are 
possible approaches. The goal of future contributions 
is to extend the application's reach and improve its 
capabilities in various fields such as education, 
healthcare, virtual reality, and automotive. The 
algorithm can be utilized in various fields, such as 
education, healthcare, virtual reality, and automotive. 
It can help improve the content of a learner's 
educational experience by adapting it based on the 
user's cognitive load. In addition, it can analyze the 
cognitive states of patients with cognitive disorders, 
determine the driver fatigue, and assess the user 
experience in such environments. Future work will 
focus on optimizing the model so that it can enhance 
the experience of users in virtual environments. These 
efforts will make the algorithm more user-friendly 
and expand its capabilities. 
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