
IDAT: An Interactive Data Exploration Tool

Nir Regev, Asaf Shabtai and Lior Rokach
Dept. of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

Keywords: EDA (Exploratory Data Analysis), Neural Network, SQL, Supervised Learning.

Abstract: In the current landscape of data analytics, data scientists predominantly utilize in-memory processing tools
such as Python’s pandas or big data frameworks like Spark to conduct exploratory data analysis (EDA). These
methods, while powerful, often entail substantial trade-offs, including significant consumption of time,
memory, and storage, alongside elevated data scanning costs. Considering these limitations, we developed
iDAT, a cost-effective interactive data exploration method. Our method uses a deep neural network (NN) to
learn the relationship between queries and their results to provide a rapid inference layer for the prediction of
query results. To validate the method, we let 20 data scientists run EDA (exploratory data analysis) queries
using the system underlying this method. We show that it reduces the need to scan data during inference
(query calculation). We evaluated this method using 12 datasets and compared it to the latest query
approximation engines (VerdictDB, BlinkDB) in terms of query latency, model weight, and accuracy. Our
results indicate that the iDat predicted query results with a WMAPE (weighted mean absolute percentage
error) ranging from approximately 1% to 4%, which, for most of our datasets, was better than the results of
the compared benchmarks.

1 INTRODUCTION

The emergence of big data offers the potential to gain
unprecedented insights, yet this comes with the
challenge of increased processing latency and greater
demand for computational resources when querying
extensive datasets (Chaudhuri et al., 2017).
Frequently, data scientists engaged in exploratory
data analysis must handle large datasets, repeatedly
querying them to statistically describe and extract
insights and relationships.

These tasks require a query engine that is rapid,
efficient, and cost-effective but does not depend on
delivering precise results. For such tasks, providing
approximate estimations of the characteristics and
statistics of the data is often adequate. In these
instances, the use of Approximate Query Processing
(AQP) methods becomes particularly advantageous.

There are other scenarios where a data estimate is
enough, such as reporting, visualization, fast decision
making, and even process simulation. Moreover,
several factors must be considered when evaluating
the applications of query approximation: (1) raw data
may not always be accessible, occasionally due to
privacy restrictions or compliance with GDPR
regulations; (2) maintaining and processing raw data

in a database can be expensive; and (3) raw datasets
may exhibit inconsistencies or have missing data.

Ultimately, when data volumes exceed the
capacity of a single machine, data processing platform
providers such as Hadoop, Spark, and Google Cloud
Dataflow tackle this challenge by scaling out
resources. This strategy, while addressing volume
issues, can become inefficient and cost-prohibitive for
managing large and distributed data sources
(Sivarajah et al., 2017). In addition, this approach
encounters difficulties when there is a need for real-
time data interaction and a high degree of
responsiveness from users or systems. Consequently,
research indicates that data exploration can be
conducted effectively using approximate methods
(Slezak et al., 2018).

That said, the concept of AQP is robust and
possesses disruptive market potential. Thus, the
ability to answer analytic queries "approximately," at
a fraction of the cost required for traditional query
execution, is particularly appealing. Leveraging the
capabilities of AQP could significantly enhance our
ability to quickly and efficiently explore large
volumes of data (Li and Li, 2018).

This forms the basis of our motivation to develop
a swift EDA tool in for data scientist and analysts. To

Regev, N., Shabtai, A., Rokach and L.
IDAT: An Interactive Data Exploration Tool.
DOI: 10.5220/0013597800003967
In Proceedings of the 14th International Conference on Data Science, Technology and Applications (DATA 2025), pages 603-613
ISBN: 978-989-758-758-0; ISSN: 2184-285X
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

603

firmly back up this motivation, let us take a
hypothetical use case where a group of 10 analysts
explore the relationship between life expectancy and
socioeconomic factors (such as income). A cloud
storage with 20 data attributes is available for this task
and populates the related data for every adult in the
world (5.3 billion adults globally) and takes
approximately 5.3 TB (20 fields×50 bytes= 1KB per
adult). To calculate the required number of queries for
such research, we will assume that only three
continuous variables are taken into the analysis: (1)
income, (2) expenditure (spending on goods and
services) and debt (loans and mortgages) where each
factor is binned into 10 levels. The total combinations
of these factors will increase to 1000, which is
approximately the number of queries required for a
single analyst to execute. If every analyst explores
different sets of factors, we can assume that
approximately 10,000 queries will be needed to
calculate the average life expectancy grouped by each
city (10,000 cities worldwide) for this research, with
each scanning 5.3 TB of data. For simplicity, we
assume that there is no storage cost, and only the
compute cost will be considered. This will incur a
compute cost of 83$ for a single query (based on
AWS Lambda: 0.00001667$ per GB processed).
Overall costs for all queries are 830,000$. Scanning
5TB is estimated to take 11.5 hours (based on a high-
speed connection of 1 Gb per second).

In summary, the described use case takes
significant resources in terms of costs and time to
perform data exploration tasks for such research.
Naturally, the above pipeline is not feasible for most
companies; this is the reason why analysts will sample
a fraction of the data and risk introducing sampling
biases that can skew research results. The method we
developed for this applied research is based on this
work (Regev et al., 2021) and may serve as a good fit
to the described use case. We significantly improved
the work of (Regev et al., 2021) by enriching the
query structure to support complex SQL logic such as
Join/Outer Join operations, added statistical functions
(i.e. median, 25%, 75%) and most importantly added
support to scenarios where raw dataset changes
quickly. In addition, contrary to (Regev et al., 2021),
we tested iDat in real EDA scenarios letting data
scientists and analysts interact with it. The AQP
approach may introduce slight inaccuracies, and the
trade-off is acceptable for use cases where cost, speed,
and efficiency are prioritized over exact precision. In
this research, we specifically focus on data
exploration which is a common task for data scientist
and analysts. Data exploration in large datasets can be
resource intensive and requires significant

computational power to query, aggregate, and
visualize vast amounts of data. This process may
incur high costs in terms of processing time, cloud
storage, and compute resources, especially when
repeated queries or full dataset scans are involved. In
addition, slow query performance can hinder analyst
productivity, delaying insights and decision making.
These summaries the justification for a light ML
(Machine Learning) based SQL query executor.

Previous methods for query approximation were
predominantly concentrated on constructing
representative data samples. The efficacy of these
approaches depends on the use of statistical methods
to furnish a confidence interval for the approximated
results. However, for complex and dynamic datasets,
innovative sampling methods must be employed and
recalculated frequently to ensure that they remain in
sync with the database (Mozafari and Niu, 2015). In
addition, other techniques have utilized data
summaries, prepared in advance, to represent raw data
in compact and aggregated form (Cormode et al.,
2012). Finally, existing solutions based on this
approach aim to approximate predefined query
configurations (Cuzzocrea and Saccà, 2013), like the
design of online analytical processing (OLAP) cubes.
This raises concerns about the applicability of these
solutions for the exploration of generic data (Nguyen
and Nguyen, 2005). Other proposed methods focus on
facilitating query approximation in streaming and
interactive systems through the use of distributed data
processing engines such as Hive, Spark SQL, Impala,
Amazon Redshift, and Presto (Ramnarayan et al.,
2016), (Agarwal and Mozafari, 2013).Although these
methods can provide accurate and rapid results,
depending on the size and tuning of the Spark
cluster—they can be cost prohibitive and require the
ability to store and access the data.

In this paper, we present an iDat - a method based
on a NN to provide a rapid interactive EDA tool. The
primary motivation behind this research is to reduce
query latency, reduce computational expenses, and
maintain high accuracy in model predictions. We
show that our selected approach significantly reduces
data scans and query latency, particularly for large-
scale datasets. Consequently, it is suitable for use in
exploratory analysis and real-time dashboards at cost-
sensitive environments. Our method consists of these
phases: First, a set of analytical queries is generated
(without prior knowledge required on the raw
dataset). In the second phase, we utilize an embedding
method to represent the queries in numeric format.
Last, we train deep sequential NN (RNN) model is
trained to learn approximations for query results,
based on the training set.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

604

We tested this method in the field by allowing 20
data scientists and analysts to execute data
exploration queries using our method. iDat was
evaluated on 12 datasets from the technology industry
and evaluated the accuracy of the model by
comparing the model predictions for queries (driven
by data scientists and analysts) with the true labels
acquired from the database. We also measured query
latency derived from the model inference time. The
results show that our method predicted the results of
the query with a normalized root mean squared error
(WMAPE) ranging from approximately 1 to 4 %. In
terms of execution latency, the mean query latency
(mean QL) ranges from approximately 2 ms/q
(milliseconds per query) to 32 ms/q. We also
evaluated our method’s performance on large batches
of queries (processed in parallel on a GPU).
In summary, the contributions of this paper are as
follows: • we introduce a novel method for producing a

lightweight sequential NN which provides a
high query throughput. • we propose an effective query processing
method for practical data exploration use-cases,
with extremely fast query response times for big
data platforms. • Finally, we make our code and datasets publicly
available.

@https://anonymous.4open.science/r/aqp_jurassic-
5B0E

2 RELATED WORK

In the following sections, we address 4 current
methods with which interactive data exploration may
be carried out: (1) real-time processing, (2) ML based
method, (3) In-memory processing, and (4)
processing through data summaries.

Real-time processing. Introduced in 2015, the
SnappyData engine (Ramnarayan et al., 2016) was
specifically engineered to facilitate query
approximation within streaming and interactive
systems. This foundational work featured in the initial
SnappyData publication was based on the knowledge
derived from the BlinkDB project (Agarwal and
Mozafari, 2013). Additionally, Spark, an in-memory
data processing engine distributed across systems, is
designed to optimize smart query caching (termed as
delta update queries) and employs confidence
intervals to mitigate data loss. Spark further enhances
performance by managing on-line aggregation, which
entails processing a small segment of the entire
dataset. This approach enables immediate

presentation of the approximated preliminary results
(Zeng et al., 2015).

ML method for data processing. The database
research community has developed innovative ML-
based techniques for Approximate Query Processing
(AQP) that substantially accelerate the provision of
approximate query results, achieving speeds orders of
magnitude faster than traditional DBMS methods
used for calculating exact results. In these papers
(Thirumuruganathan et al., 2013), (Savva et al.,
2020), researchers used deep generative models,
particularly variational autoencoders (VAEs), to
execute aggregate queries in interactive applications
such as data exploration and visualization. This
research (Savva et al., 2020) also incorporated
machine learning models to approximate the
aggregated SQL queries. Models such as gradient
boost machines (GBMs), XGBoost, and LightGBM
were trained to predict the results of aggregated
queries. The efficacy of our method relative to
established methods is summarized in Table 1.

In-memory data processing with sampling. In
contexts where the volume of data is extensive and
memory capacity is constrained; sampling can
facilitate in-memory processing. Various
methodologies have been developed to approximate
database queries, predominantly through the
execution of queries on intelligently selected data
samples (Mozafari and Niu, 2015). These techniques
employ statistical methods to provide an estimated
result within a specified confidence interval.

Although numerous studies have examined the
advantages of data sampling (Bagchi et al., 2007),
(Babcock et al., 2001), (Chuang et al., 2009), their
integration into streaming engines remains limited
(Chandramouli et al., 2014), (Zaharia et al., 2013). An
exception is the SnappyData project (Ramnarayan et
al., 2016), an analytics database optimized for
memory usage that uses the High-Level Accuracy
Contract (HAC), a concept which was implemented
in VerdictDB (Mozafari et al., 2018). VerdictDB
operates at the driver level, intercepting analytical
queries issued to the database and rewriting them into
another query that yields sufficient information to
compute an approximate answer. The predominant
approach in Approximate Query Processing (AQP)
systems involves the use of stratified sampling, which
relies on prior knowledge of data distributions,
although such knowledge is not always available (Li
an Li, 2018), (He et al., 2018), (Savva et al., 2020).
However, such methods that use uniform random
sampling are less effective for "Group By" queries,
which is crucial in conducting exploratory data
analysis. In contrast, stratified sampling has been

IDAT: An Interactive Data Exploration Tool

605

shown to be more efficient for such tasks (Acharya et
al., 1999). However, stratified sampling methods
generally require significant pre-processing time for
data preparation to approximate a known set of
queries. Although this approach may be effective for
certain applications, it can be inefficient for
interactive data exploration, which typically involves
ad hoc and unforeseen queries (Galakatos et al.,
2017), (Acharya et al., 1999).

Processing with data summaries. With this
approach, AQP is applied to data summaries that were
prepared in advance (Cormode et al., 2012). This
approach, along with the sampling methods discussed
above, is considered complementary (Ramnarayan et
al., 2016). Existing mechanisms for constructing data
summaries are tailored to approximate predefined
query configurations (Cuzzocrea and Saccà, 2013),
analogously to the way that OLAP cubes are designed
to compute predetermined data aggregations.

These strategies evoke concerns about their
suitability for generic data exploration, which
requires a broad spectrum of queries to effectively
summarize the data (Nguyen and Nguyen, 2005).
Such queries might not always be available or
predefined. The concept of employing data
summaries to reduce query latency was initially
proposed by (Jagadish et al., 1998), who used
histograms to this end. Furthermore, there exists a
substantial body of research dedicated to the
implementation of data summaries in relational
database management systems (DBMSs) (Gibbons et
al., 1997).

3 PROPOSED METHOD

Our method utilizes a ML supervised learning
pipeline starting by building a training set of SQL
queries, encoding the queries, labelling the queries
and finally fitting a deep sequential NN (Neural
Network in RNN architecture). The final model (NN)
is used to predict new user SQL queries without
scanning the raw data set. First, we define the query
structure and the terminology of the data scheme. As
an example, assume a table ‘life_exp’ that includes
data on health status, as well as many other related
factors for all countries. The table includes the
following columns: ‘country’, ’city’, ’income’,
’gender’, year’, ’status’, ’Life Expectancy’, ’Adult
mortality’, ’expenditure’ and more. The method is
designed to generate many queries that conform to a
query template defined by the following:

1) S =< s1,s2, ...si > – denotes the set of optional
aggregation functions (e.g. avg, count).

 2) col(n) – denotes a numeric data column in the
dataset (e.g., ‘income’).
3) col(d) – denotes a discrete (categorical) data

column in the data set (e.g. ‘city’ ‘gender’).
4) ai(col) – denotes an aggregation function ai ∈ A

that is applied on valid col col (either col(n) or
col(d)) in a ’SELECT’ query clause (e.g.,
avg(‘Life expectancy’), max(‘Life expectancy’),
or count()).

5) range
col(n)(f,c) – a ‘range’ constraint argument

defined on a numeric data column col(n), where
f is a floor edge (low) in the range and c is a
ceiling edge (high) in the range through the
values of col(n). The ‘range’ constraint is
executed as a ‘between’ SQL operator.

6) exist
col(n)(mi) – an ‘exist’ constraint argument

defined on a discrete data column col(d), where
(mi) is a valid list of values from col(d) such that
all records associated with any value from this
list will return in the results set.

3.1 Analytical Queries Structure

iDat supports queries with multiple ai(col) grouped by
multiple col(d) columns. Although this enables
flexibility in exploring and analysing large datasets, it
poses the following two challenges: (1) Different
ai(col) (aggregated columns) may distribute very
differently, and (2) the challenge of predicting an
output which may have varying dimensions. The
latter stems from the fact that a "Group By" query can
return a table of one or more rows, as shown by the
example in Table II, which presents the result of the
following example query:

SELECT city, gender, avg(’Life expectancy’)
FROM life_exp le RIGHT OUTER JOIN geo_country
gc ON le.city = gc.c_code WHERE income between
(10000 and 20000) AND expen-diture between (50000
and 60000) GROUP BY city, gender

To tackle these challenges, we represent each
"Group By" query into multiple ‘flat’ (with no "Group
By" term) queries with a single aggregation function.
These queries, by definition, return one scalar. In this
way, every RNN network has an output layer that
consists of a single linear output that is trained to learn
a specific distribution of aggregation functions. This
is an example for a ‘flat’ query:
SELECT avg(’Life expectancy’) FROM life_exp le
RIGHT OUTER JOIN geo_country gc ON le.city =
gc.c_code WHERE income between (10000 and
20000) AND expenditure between (50000 and
60000) AND city = ‘New York’ and gender = ‘male’

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

606

Table 1: Comparison of AQP to state-of-the-art query approximation engines.

Paper Name
Flat Query

Latency in sec.
(per 1Tb data)

Guaranteed
Error Bound

GPU
Support

Training
Requirement

Preprocessing/
Sampling

Requirement

Queries’ Batch
Concurrent
Processing

Support
Result

Confidence

(28) (29) Hive Hadoop 400 no yes no yes yes NA
(30) (28) Hive Spark 40 no yes no yes yes NA
(31) (11) BlinkDB 2 2-10% no no yes yes 95%
(10) (32) SnappyData 1.5 NA no no yes yes NA
(23) (21) VerdictDB 1 2.6% no no yes yes 95%
(33) (34) DICE 0.5 10% no no yes no NA

(14) DeepGen NA 0.1-1.25% yes yes yes yes No
(15) ML AQP 20 1-5% no yes yes no NA

Our Method AQP 10 <2.5% yes yes yes yes NA

This query was extracted from the results of the
Group By query as seen in Table 2.

Table 2: An example of a ‘Group by’ result set.

city gender avg(age) max(age)
New York male 51.8 92.5

London male 48.2 89.5
New York female 52.9 94.2

London female 49.1 96.1

3.2 Generating Training Set

To train a deep NN the method generates a large
training set of queries. We used multiple steps which
are described ahead to create a representative training
set of SQL queries. The query template consists of:
(1) the ’SELECT’ clause parameters, (2) the filter
template (i.e., the WHERE clause parameters), and
(3) the name(s) of the table(s). In this phase, the set of
aggregation functions paired with a set of target data
columns is defined. The method then constructs a
’SELECT’ clause consisting of the selected
aggregation functions, which are applied on a set of
the target data columns {ai(colj)}.

All of the aggregation functions can be applied on
numeric data columns, however, the only aggregation
functions that can be applied on discrete columns are
′count′ and ′countDistinct.′ In our example, assuming
that the domain expert chooses to apply all of the
aggregation functions A on all valid {ai(colj)}, the
result is the following ’SELECT’ clause:
SELECT avg(’Life expectancy’), max(’Life expectancy’)

As mentioned, each {ai(colj)} will have a
designated model that will be trained to learn its
unique distribution. This means that the training set
will be split for each {ai(colj)} and will be learned
separately. In our example, the first training set will

consist of queries with avg(’Life expectancy’) in the
’SELECT’ clause, the second training set will consist
of queries with MEDIAN(’Life expectancy’) and so
on. Next, a filter is defined that includes the list of
numeric data columns col(n) and discrete data columns
col(n). Then, for each defined querytemplate, the
method generates a set of queryinstances as follows.

3.3 Formulating Filters

Here, the method generates filters consisting of (1)
numeric data columns col(n), and (2) discrete data
columns col(n) in the following manner:

1) For each col(n), our methods calculate the
intervals defined by the minimum value, the first
quartile (25%), the median, the third quartile
(75%), and the maximum value (four intervals).
To select the lower and upper bounds of a
numeric column constraint range

col(n)(f,c), we
select two intervals randomly. Then, from each
selected interval, we randomly choose a value
sampled from a uniform distribution. This
process results in two numeric values that form
a filter, range_col(n)(f,c) such that the smaller
value will define the lower bound and the larger
value will define the upper bound, for example
rangeincome(10125,81590).

2) To construct a discrete filter, our method uses an
"IN" constraint argument defined on a discrete
data column col(n), filtered by vk, which is a list
of possible members of col(n). To determine
which member to use in each filter, the method
constructs a ‘Group by’ term on the discrete
columns. Once the query is executed against the
dataset, the method systematically extracts all
possible combinations of members that exist in
the result set and constructs a discrete filter for
each combination. In our example, this is one

IDAT: An Interactive Data Exploration Tool

607

possible combination of the members for city
and gender:
{existcity(′NewYork′),existgender(′Male′)}.

3) Finally, each combination of discrete filters is
paired with each of the numeric filters to form a
query filter; for example,

{rangeincome(10125,81590),existcity(‘NewYork′),existgender(‘Male′)}.

3.4 Generating ‘JOIN’ Clause

In this step, a join clause is added to the query. iDat
supports ’INNER’ and ’OUTER’ joins (left and
right). The join key is configured within the schema
configuration files and is taken to build the ’JOIN’
syntax in the following format:

{join_typeleft_table(left_key),right_table(right_key)}
where join_type can contain the values: (1)

INNER, (2) LEFT, (3) RIGHT and (4) CROSS (for
the last option key is not relevant) e.g. life_exp ls
RIGHT OUTER JOIN geo_country gc ON ls.city =
gc.c_code

3.5 Embedding Layer Encoder

This phase’s goal is to transform string SQL queries
to numeric matrices. At this stage, a list of ‘flat’ SQL
queries and their real labels (result) is available. Since
RNN can only receive numeric input, we encode the
queries into an embedding space, which produces
numeric matrices (see Figure 1). For that, we use an
encoder model that is constructed on the fly (during
SQL query generation), making use of a multi-hot
encoding technique. The encoding process starts by
mapping all unique query tokens that exist in the
training set Q and assigning each a sequential numeric
value, as illustrated in Figure 1 (for example, the
token avg (’Life expectancy’) is assigned to the value
00001). Each numeric value is then transformed into
a binary numeric representation (base 2). Numeric
query tokens (scalars) are also transformed into their
binary (base 2) representation.

Figure 1: Inducing an embedding layer encoder.

3.6 Training Set Labels

As the goal of the second phase to acquire training set
labels, iDat must run the queries in the database to get
real results. We used Postgres DB to run these
queries. The characteristics of the data sets, their
footprint, and other important statistical metrics are
shown in Table 3.

3.7 NN Training

In the last stage, the algorithm pipeline builds a
sequential NN network (RNN). We chose sequential
NN (i.e. RNN) since this method have been shown to
be efficient in learning complex sequential data,
which was our initial motivation for selecting this
architecture (Lipton et al., 2015).

3.8 Data Changes

To handle new data entering the data base, we build a
hybrid retrain set of SQL queries that will consist of
newly inserted data records and old data records that
have been learned by the model. This is described in
the following method:

1) Time reference - Mark data records with insert
date-time column referred as "insert_dt" and
model training datetime refereed to as
"model_train_dt".

2) Small retrain set - Using the above-mentioned
date-time columns, build a relatively small
retrain set of SQL queries that will span both
newly inserted records and existing records.

3) Query split - split each query to two queries
according to the "model_train_dt":

a) "model_query" - this query will impute a filter
which is less than "model_train_dt". Acquire
a label for these queries by running a query
against the existing model.

b) "data_query" - this query will impute a filter
which is equal or greater than "model_
train_dt". Acquire a label for these queries by
running a query against the data base.

4) Query merge - "model_query" and "data_query"
results according to aggregation function logic:
If "Sum" function is used, sum results of the
queries, if "Average" function is used, calculate
weighted (by the count of records from each
query) average, if "Count" function is used, sum
up the counts, and if "Min/Max" is used, take
one of the values from the 2 queries according to
the function logic.

5) Retrain - Run retrain task on the merged SQL
query set.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

608

Figure 2: AQP data changes adaptation method.

4 EVALUATION

For evaluation we gathered a group of 20 data
scientists working in leading technology companies
and requested each to provide a set of 10 data
exploration queries for each of the following data sets.
Then, we acquired the queries predictions from iDat
and evaluated the results in terms of accuracy and
latency, as described above.

4.1 Data Sets

The system was evaluated using 12 unique datasets,
both proprietary and open source. The characteristics
of the data sets are presented in Table 3.

4.2 Training Sets Partition

For each dataset, a training set was generated and
split, using the sklearn cross_validation (˙train_
test_split) Python package, into three datasets:
(1) training set - 70% of the queries, (2) validation set
- 15%, and (3) testing set - 15%.

4.3 Handling Overfitting

To avoid overfitting, i.e., a scenario in which the
model memorizes the training set and does not
generalize to the test set, the following steps were
performed: (1) All RNN models (for each dataset)
were validated during optimization (backpro-
pagation) on a randomly selected hold-out set (i.e., the
validation set). (2) After the last training epoch, we
obtained the evaluation metric values for the
inferences made on a second hold-out set (i.e., the test
set), which was randomly selected before the training
took place. (3) Steps 1 and 2 were repeated 30 times,
and the average was used when evaluating our
method’s performance on each metric.

4.4 RNN Cost Function

The RNN network was trained to minimize a
quadratic cost function defined as:

Where Yi is the real query result, Yˆi is the model’s
approximated query result, and n is the batch size.

4.5 Evaluation Metrics

Since the target variable (query result) is continuous,
the RMSE regression might be a natural candidate for
a cost function, however it can yield an un-normalized
range of values and is greatly influenced by the
problem’s scale. For this reason, we sought a robust
loss metric that would allow us to compare
performance between data sets with significantly
different distributions. To achieve this, we opted to use
a normalized metric: MAPE and weighted MAPE,
defined as follows:

Where i represents a query from the test set, Yi is the
real query result, Yˆi is the model’s approximated
query result, and n is the size of the validation set, and
wi is the weight for the i-th query, which is
proportional to the row count of Yi.

In addition we measured the model performance
based on the time elapsed to perform a SQL query
prediction as described ahead:

IDAT: An Interactive Data Exploration Tool

609

Table 3: Datasets’ characteristics.

Dataset

Proprieta
ry data
source

Target function # attr(n)# attr(c) # rows # queries
Mean
entrop
y

Input
tensor

variance
Target
column

STD
1 average_revenue Yes avg (revenue) 3 2 1000000000 5205078 6.293 0.154 40400000
2 average_success_rate Yes avg (build_time) 2 3 2333293 415791 2.264 5.421 19.196
3 count_product_pass Yes count (machine_id) 1 5 4000000000 811928 0.942 0.151 2350516
4 count_product_fail Yes count (machine_id) 1 5 95484 451173 0.942 0.153 8613
5 count_product_false_calls Yes count (machine_id) 1 5 350232 378111 0.942 0.202 215315
6 count_churn_customers Yes count (customer_id) 4 3 9263836 62092 2.782 0.13267 530
7 sum_duration_call Yes sum (duration) 3 2 9349 100000 3.198 0.167 861
8 average_ibm_price No avg (close_price) 1 2 1048575 340489 0.343 0.125 471
9 average_realestate_price No avg (price) 3 2 22489348 508086 2.113 0.105 236

10 avg_stock_close_price No avg (close_price) 2 1 63267 8721 5.703 0.157 118
11 average_paid_days Yes avg(actual_paid_days) 3 2 100000000 508365 0.451 0.099 25667553
12 average_build_duration Yes avg (duration) 1 3 22276094 325935 0.993 0.129 7487

 (4)
Where t is the total number of validation queries and
QLi is the Query Latency for the i-th query, measured
in ms.

 (5)

In addition, we calculated the queries’ throughput
(using the GPU to approximate a batch of queries),
which is referred to as QT:

Where T is the total latency of the batch mode
prediction operation, and Q is the number of queries
used in the testing set.

4.6 Benchmark Methods

We compare our method to two state-of-the-art
methods: (1) VerdictDB (Mozafari et al., 2018), a
novel AQP method that accelerates analytical queries,
and (2)

BlinkDB (Agarwal and Mozafari, 2013) - an
approximate query engine for running interactive
SQL queries on large volumes of data. We use the
mean query latency (QL) and WMAPE metrics to
evaluate performance and accuracy respectively.

5 EXPERIMENTAL RESULTS

For each dataset, Table 4 specifies the RNN network
training parameters and the trained models’
performance metrics. These results were gathered

from the execution of SQL queries source from the
group of 20 data scientists taking part in this study.

5.1 Accuracy

As expected, the WMAPE value for the largest
models (datasets number 1,4,8), with RNN layer with
512 neurons and a dense layer with 400 neurons, was
the lowest (most accurate), with a range from of 1-
1.5%, while for the smallest model (dataset number
6), RNN layer with 128 neurons and a dense layer
with 200 neurons, was the highest, with a value of
3.48 (least accurate).

5.2 Query Latency Performance

In dataset number 10, using the GPU, iDat performed
a throughput (QT) of approximately 120K (with a
large batch of 2048) queries per second was
measured, while in dataset number 4, a single query
latency (QL) for our largest (slowest) model lasted
approximately 32 ms.

5.3 Benchmark Comparison Results

Figures 4 and 3 depict the accuracy and latency of
iDat and the benchmark methods, VerdictDB
(Mozafari et al., 2018), and BlinkDB (Agarwal and
Mozafari, 2013), on all the datasets. Figure 5 presents
the results of a nonparametric paired Ttest analysis
used to determine if our method is statistically better
than the compared benchmarks in terms of accuracy
(WMAPE) and query latency (mean QL). From this
analysis it is evident that our method was superior for
the majority of the datasets examined (both on the
accuracy and latency metrics), however these

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

610

differences were not statistically significant. In
addition, we evidently show that iDat method can be
used in the field by data scientists to perform data
exploration task on very large data sets.

Figure 3: Comparing the accuracy (WMAPE) performance
of iDat with Verdict and Blink.

Figure 4: Comparing the query latency (mean QL)
performance of iDat with Verdict and Blink.

6 DISCUSSION

Our method in this study predicts the results of the
query within a controlled error (WMPAE), ranging

between 1% to 4%, QL ranges from 2 ms/q to 32
ms/q for a single query. Moreover, for large datasets
(20M - 4B records), our method is two orders of
magnitude faster than the benchmarks used in our
comparison. Based on these encouraging results, we
began to consider the proposed method a novel data
exploration tool for data scientists, capable of
reducing heavy lifting database processing and
reducing incurred storage and scanning costs. Our
method can also predict missing data points or data
points that span into the future e.g. see 10th dataset
(avg_stock_close in Table 3) obtained an WMAPE of
approximately 0.2% for the testing set with future
dates. From the perspective of scale, compared with
other state-of the-art methods, our method can scale
to large datasets (>2M rows) mainly because our
method decouples the data from the query layer once
training finishes. Finally, our method has the
advantage of being lean (2.7Mb on average). This
enables fast inference (query predictions) and
deployment in client production clusters.

However, there are few shortcomings of our method
as follows:

1) Training set generation - generating a set of SQL
queries with a reference to a dataset might not
always represent the user queries’ requirements.

2) Sampling data to generate query filters might
shift the model toward representation of queries
that span on the sampled data on the expense of
data which was not sampled.

3) Initial training time - When our method is trained
for the first time, training may last up to 12
hours.

Table 4: Model performance and accuracy metrics on the datasets.

 RNN architecture and hyper-parameters Model performance

Dataset name LR Batch
size

RNN
neurons

Dense
neurons

Input
shape GPU Type QT

(q/s)
QL

(ms/q) WMAPE
RNN

size(Mb)
1 average_revenue 1.E-05 2048 512 400 (7,17) GTX 2060 24398 2.61 1.75 3.47
2 average_success_rate 1.E-02 1024 128 200 (7,17) GTX 2060 42974 2.46 3.48 2.38
3 count_product_pass 1.E-04 2048 512 400 (16,18) GTX 2060 1911 27.37 1.87 3.75
4 count_product_fail 1.E-03 1024 512 400 (16,18) AWS K80 6071 28.41 2.10 3.75
5 count_product_false_calls 1.E-04 1024 512 400 (16,18) AWS K80 1798 28.17 1.52 3.75
6 count_churn_customers 1.E-02 2048 128 200 (17,17) AWS K80 20854 3.45 2.11 2.54
7 sum_duration_all 1.E-02 512 512 400 (7,20) GTX 2060 1982 3.77 1.21 3.61
8 average_ibm_price 1.E-02 128 256 200 (7,62) AWS K80 25681 3.35 1.59 2.91
9 average_realestate_price 1.E-02 1024 128 200 (13,61) GTX 2060 74071 2.90 1.87 2.81

10 avg_stock_close_price 1.E-02 2048 128 200 (6,61) GTX 2060 120288 4.14 3.10 2.95
11 average_paid_days 1.E-05 2048 128 200 (27,7) AWS k80 60074 2.01 2.13 2.62
12 average_build_duration 1.E-04 1024 256 200 (10,32) GTX 2060 11956 3.95 1.02 2.71

IDAT: An Interactive Data Exploration Tool

611

7 CONCLUSION

The primary goal of this research was to implement a
novel approach for EDA scenarios for the practical
use of data scientists and analysts. Existing query
methods require ongoing access to the underlying
data. Once training has taken place, our proposed
method does not require an on-line connection to the
data to explore the data. This opens a variety of
potential use cases for big data analytics.

REFERENCES

Acharya, S., Gibbons, P. B., Poosala, V. and Ramaswamy,
S. “The aqua approximate query answering system,” in
Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, 1999, pp. 574–576.

Agarwal, S., Iyer, A. P., Panda, A., Madden, S., Mozafari,
B. and Stoica, I., “Blink and it’s done: interactive
queries on very large data,” ACM, 2012.

Agarwal, S., Milner, H., Kleiner, A., Talwalkar, A., Jordan,
M., Madden, S., Mozafari, B. and Stoica, I., “Knowing
when you’re wrong: building fast and reliable
approximate query processing systems,” in
Proceedings of the 2014 ACM SIGMOD International
Conf. on Management of data, 2014, pp. 481–492.

Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden,
S. and Stoica, I., “Blinkdb: queries with bounded errors
and bounded response times on very large data,” in
Proceedings of the 8th ACM European Conf. on
Computer Systems, 2013, pp. 29–42.

Babcock, B., Datar, M. and Motwani, R., “Sampling from
a moving window over streaming data,” in 2002 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2002). Stanford InfoLab, 2001.

Bagchi, A., Chaudhary, A., Eppstein, D. and Goodrich, M.
T., “Deterministic sampling and range counting in
geometric data streams,” ACM Transactions on
Algorithms (TALG), vol. 3, no. 2, pp. 16–es, 2007.

Chandramouli, B., Goldstein, J., Barnett, M., DeLine, R.,
Fisher, D., Platt, J. C., Terwilliger, J. F. and Wernsing,
J. “Trill: A high-performance incremental query
processor for diverse analytics,” Proceedings of the
VLDB Endowment, vol. 8, no. 4, pp. 401–412, 2014.

Chaudhuri, S., Ding, B. and Kandula, S. “Approximate
query processing: No silver bullet,” in Proceedings of
the 2017 ACM International Conference on
Management of Data, 2017, pp. 511–519.

Chuang, K.-t., Chen, H.-l. and Chen, M.-s., “Feature-
preserved sampling over streaming data,” ACM
Transactions on Knowledge Discovery from Data
(TKDD), vol. 2, no. 4, pp. 1–45, 2009.

Cormode, G., Garofalakis, M., Haas, P. J. and Jermaine, C.,
“Synopses for massive data: Samples, histograms,
wavelets, sketches,” Foundations and Trends in
Databases, vol. 4, no. 1–3, pp. 1–294, 2012.

Cuzzocrea A. and Saccà, D., “Exploiting compression and
approximation paradigms for effective and efficient
online analytical processing over sensor network
readings in data grid environments,” Concurrency and
Computation: Practice and Experience, vol. 25, no. 14,
pp. 2016–2035, 2013.

Dokeroglu, T., Ozal, S., Bayir, M. A., Cinar, M. S. and
Cosar, A., “Improving the performance of hadoop hive
by sharing scan and computation tasks,” Journal of
Cloud Computing, vol. 3, no. 1, p. 12, 2014.

Galakatos, A., Crotty, A., Zgraggen, E., Binnig, C. and
Kraska, T. “Revisiting reuse for approximate query
processing,” Proceedings of the VLDB Endowment,
vol. 10, no. 10, pp. 1142–1153, 2017.

Gibbons, P. B., Matias, Y. and Poosala, V., “Fast
incremental maintenance of approximate histograms,”
in VLDB, vol. 97. Citeseer, 1997, pp. 466– 475.

He, W., Park, Y., Hanafi, I., Yatvitskiy, J. and Mozafari, B.,
“Demonstration of verdictdb, the platform-independent
aqp system,” in Proceedings of the 2018 International
Conf. on Management of Data, 2018, pp. 1665–1668.

Jagadish, H. V., Koudas, N., Muthukrishnan, S., Poosala,
V., Sevcik, K. C. and Suel, T., “Optimal histograms
with quality guarantees,” in VLDB, vol. 98, 1998, pp.
24–27.

Jayachandran, P., Tunga, K., Kamat, N. and Nandi, A.,
“Combining user interaction, speculative query
execution and sampling in the dice system,”
Proceedings of the VLDB Endowment, vol. 7, no. 13,
pp. 1697– 1700, 2014.

Kamat, N., Jayachandran, P., Tunga, K. and Nandi, A.,
“Distributed and interactive cube exploration,” in 2014
IEEE 30th International Conference on Data
Engineering. IEEE, 2014, pp. 472–483.

Li K. and Li, G., “Approximate query processing: What is
new and where to go?” Data Science and Engineering,
vol. 3, no. 4, pp. 379–397, 2018.

Li K. and Li, G., “Approximate query processing: What is
new and where to go?” Data Science and Engineering,
vol. 3, no. 4, pp. 379–397, 2018.

Lipton, Z. C., Berkowitz, J. and Elkan, C., “A critical
review of recurrent neural networks for sequence
learning,” arXiv preprint arXiv:1506.00019, 2015.

Mozafari B. and Niu, N., “A handbook for building an
approximate query engine.” IEEE Data Eng. Bull., vol.
38, no. 3, pp. 3–29, 2015.

Mozafari, B., Ramnarayan, J., Menon, S., Mahajan, Y.,
Chakraborty, S., Bhanawat, H. and Bachhav, K.
“Snappydata: A unified cluster for streaming,
transactions and interactice analytics.” in CIDR, 2017.

Nguyen H. S. and Nguyen, S. H., “Fast split selection
method and its application in decision tree construction
from large databases,” International Journal of Hybrid
Intelligent Systems, vol. 2, no. 2, pp. 149–160, 2005.

Park, Y., Mozafari, B., Sorenson, J. and Wang, J.,
“Verdictdb: Universalizing approximate query
processing,” in Proceedings of the 2018 International
Conf. on Management of Data, 2018, pp. 1461–1476.

Ramnarayan, J., Mozafari, B., Wale, S., Menon, S., Kumar,
N., Bhanawat, H., Chakraborty, S., Mahajan, Y.,

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

612

Mishra, R. and K. Bachhav, “Snappydata: A hybrid
transactional analytical store built on spark,” in
Proceedings of the 2016 International Conf. on
Management of Data, 2016, pp. 2153–2156.

Regev, N., Rokach, L. and Shabtai, A. “Approximating
aggregated SQL queries with LSTM networks,” in
2021 International Joint Conf. on Neural Networks
(IJCNN). IEEE, 2021, pp. 1–8.

Savva, F., Anagnostopoulos, C. and Triantafillou, P., “Ml-
aqp: Querydriven approximate query processing based
on machine learning,” arXiv preprint arXiv:
2003.06613, 2020.

Sivarajah, U., Kamal, M. M., Irani, Z. and Weerakkody, V.
“Critical analysis of big data challenges and analytical
methods,” Journal of Business Research, vol. 70, pp.
263–286, 2017.

Slęzak, D., Glick, R., Betlínski, P., and P. Synak, “A new
approximate´ query engine based on intelligent capture
and fast transformations of granulated data summaries,”
Journal of Intelligent Information Systems, vol. 50, no.
2, pp. 385–414, 2018.

Thirumuruganathan, S., Hasan, S., Koudas, N. and Das, G.,
“Approximate query processing using deep generative
models,” arXiv preprint arXiv:1903.10000, 2019.

Thirumuruganathan, Saravanan, et al., “Approximate query
processing for data exploration using deep generative
models,” in 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 2020, pp. 1309–
1320.

Todor, B., Ivanov; Max-Georg, “Evaluating hive and spark
sql with bigbench,” Arxiv.org, 2016.

Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S. and
Stoica, I. “Discretized streams: Fault-tolerant streaming
computation at scale,” in Proceedings of the twenty-
fourth ACM symposium on operating systems
principles, 2013, pp. 423–438.

Zeng, K., Agarwal, S., Dave, A., Armbrust, M. and Stoica,
I. “G-ola: Generalized on-line aggregation for
interactive analysis on big data,” in Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, 2015, pp. 913–918.

IDAT: An Interactive Data Exploration Tool

613

