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Abstract: In the current landscape of data analytics, data scientists predominantly utilize in-memory processing tools 
such as Python’s pandas or big data frameworks like Spark to conduct exploratory data analysis (EDA). These 
methods, while powerful, often entail substantial trade-offs, including significant consumption of time, 
memory, and storage, alongside elevated data scanning costs. Considering these limitations, we developed 
iDAT, a cost-effective interactive data exploration method. Our method uses a deep neural network (NN) to 
learn the relationship between queries and their results to provide a rapid inference layer for the prediction of 
query results. To validate the method, we let 20 data scientists run EDA (exploratory data analysis) queries 
using the system underlying this method. We show that it reduces the need to scan data during inference 
(query calculation). We evaluated this method using 12 datasets and compared it to the latest query 
approximation engines (VerdictDB, BlinkDB) in terms of query latency, model weight, and accuracy. Our 
results indicate that the iDat predicted query results with a WMAPE (weighted mean absolute percentage 
error) ranging from approximately 1% to 4%, which, for most of our datasets, was better than the results of 
the compared benchmarks.

1 INTRODUCTION 

The emergence of big data offers the potential to gain 
unprecedented insights, yet this comes with the 
challenge of increased processing latency and greater 
demand for computational resources when querying 
extensive datasets (Chaudhuri et al., 2017). 
Frequently, data scientists engaged in exploratory 
data analysis must handle large datasets, repeatedly 
querying them to statistically describe and extract 
insights and relationships. 

These tasks require a query engine that is rapid, 
efficient, and cost-effective but does not depend on 
delivering precise results. For such tasks, providing 
approximate estimations of the characteristics and 
statistics of the data is often adequate. In these 
instances, the use of Approximate Query Processing 
(AQP) methods becomes particularly advantageous. 

There are other scenarios where a data estimate is 
enough, such as reporting, visualization, fast decision 
making, and even process simulation. Moreover, 
several factors must be considered when evaluating 
the applications of query approximation: (1) raw data 
may not always be accessible, occasionally due to 
privacy restrictions or compliance with GDPR 
regulations; (2) maintaining and processing raw data 

in a database can be expensive; and (3) raw datasets 
may exhibit inconsistencies or have missing data. 

Ultimately, when data volumes exceed the 
capacity of a single machine, data processing platform 
providers such as Hadoop, Spark, and Google Cloud 
Dataflow tackle this challenge by scaling out 
resources. This strategy, while addressing volume 
issues, can become inefficient and cost-prohibitive for 
managing large and distributed data sources 
(Sivarajah et al., 2017). In addition, this approach 
encounters difficulties when there is a need for real-
time data interaction and a high degree of 
responsiveness from users or systems. Consequently, 
research indicates that data exploration can be 
conducted effectively using approximate methods 
(Slezak et al., 2018). 

That said, the concept of AQP is robust and 
possesses disruptive market potential. Thus, the 
ability to answer analytic queries "approximately," at 
a fraction of the cost required for traditional query 
execution, is particularly appealing. Leveraging the 
capabilities of AQP could significantly enhance our 
ability to quickly and efficiently explore large 
volumes of data (Li and Li, 2018). 

This forms the basis of our motivation to develop 
a swift EDA tool in for data scientist and analysts. To 
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firmly back up this motivation, let us take a 
hypothetical use case where a group of 10 analysts 
explore the relationship between life expectancy and 
socioeconomic factors (such as income). A cloud 
storage with 20 data attributes is available for this task 
and populates the related data for every adult in the 
world (5.3 billion adults globally) and takes 
approximately 5.3 TB (20 fields×50 bytes= 1KB per 
adult). To calculate the required number of queries for 
such research, we will assume that only three 
continuous variables are taken into the analysis: (1) 
income, (2) expenditure (spending on goods and 
services) and debt (loans and mortgages) where each 
factor is binned into 10 levels. The total combinations 
of these factors will increase to 1000, which is 
approximately the number of queries required for a 
single analyst to execute. If every analyst explores 
different sets of factors, we can assume that 
approximately 10,000 queries will be needed to 
calculate the average life expectancy grouped by each 
city (10,000 cities worldwide) for this research, with 
each scanning 5.3 TB of data. For simplicity, we 
assume that there is no storage cost, and only the 
compute cost will be considered. This will incur a 
compute cost of 83$ for a single query (based on 
AWS Lambda: 0.00001667$ per GB processed). 
Overall costs for all queries are 830,000$. Scanning 
5TB is estimated to take 11.5 hours (based on a high-
speed connection of 1 Gb per second). 

In summary, the described use case takes 
significant resources in terms of costs and time to 
perform data exploration tasks for such research. 
Naturally, the above pipeline is not feasible for most 
companies; this is the reason why analysts will sample 
a fraction of the data and risk introducing sampling 
biases that can skew research results. The method we 
developed for this applied research is based on this 
work (Regev et al., 2021) and may serve as a good fit 
to the described use case. We significantly improved 
the work of (Regev et al., 2021) by enriching the 
query structure to support complex SQL logic such as 
Join/Outer Join operations, added statistical functions 
(i.e. median, 25%, 75%) and most importantly added 
support to scenarios where raw dataset changes 
quickly. In addition, contrary to (Regev et al., 2021), 
we tested iDat in real EDA scenarios letting data 
scientists and analysts interact with it. The AQP 
approach may introduce slight inaccuracies, and the 
trade-off is acceptable for use cases where cost, speed, 
and efficiency are prioritized over exact precision. In 
this research, we specifically focus on data 
exploration which is a common task for data scientist 
and analysts. Data exploration in large datasets can be 
resource intensive and requires significant 

computational power to query, aggregate, and 
visualize vast amounts of data. This process may 
incur high costs in terms of processing time, cloud 
storage, and compute resources, especially when 
repeated queries or full dataset scans are involved. In 
addition, slow query performance can hinder analyst 
productivity, delaying insights and decision making. 
These summaries the justification for a light ML 
(Machine Learning) based SQL query executor. 

Previous methods for query approximation were 
predominantly concentrated on constructing 
representative data samples. The efficacy of these 
approaches depends on the use of statistical methods 
to furnish a confidence interval for the approximated 
results. However, for complex and dynamic datasets, 
innovative sampling methods must be employed and 
recalculated frequently to ensure that they remain in 
sync with the database (Mozafari and Niu, 2015). In 
addition, other techniques have utilized data 
summaries, prepared in advance, to represent raw data 
in compact and aggregated form (Cormode et al., 
2012). Finally, existing solutions based on this 
approach aim to approximate predefined query 
configurations (Cuzzocrea and Saccà, 2013), like the 
design of online analytical processing (OLAP) cubes. 
This raises concerns about the applicability of these 
solutions for the exploration of generic data (Nguyen 
and Nguyen, 2005). Other proposed methods focus on 
facilitating query approximation in streaming and 
interactive systems through the use of distributed data 
processing engines such as Hive, Spark SQL, Impala, 
Amazon Redshift, and Presto (Ramnarayan et al., 
2016), (Agarwal and Mozafari, 2013).Although these 
methods can provide accurate and rapid results, 
depending on the size and tuning of the Spark 
cluster—they can be cost prohibitive and require the 
ability to store and access the data. 

In this paper, we present an iDat - a method based 
on a NN to provide a rapid interactive EDA tool. The 
primary motivation behind this research is to reduce 
query latency, reduce computational expenses, and 
maintain high accuracy in model predictions. We 
show that our selected approach significantly reduces 
data scans and query latency, particularly for large-
scale datasets. Consequently, it is suitable for use in 
exploratory analysis and real-time dashboards at cost-
sensitive environments. Our method consists of these 
phases: First, a set of analytical queries is generated 
(without prior knowledge required on the raw 
dataset). In the second phase, we utilize an embedding 
method to represent the queries in numeric format. 
Last, we train deep sequential NN (RNN) model is 
trained to learn approximations for query results, 
based on the training set. 
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We tested this method in the field by allowing 20 
data scientists and analysts to execute data 
exploration queries using our method. iDat was 
evaluated on 12 datasets from the technology industry 
and evaluated the accuracy of the model by 
comparing the model predictions for queries (driven 
by data scientists and analysts) with the true labels 
acquired from the database. We also measured query 
latency derived from the model inference time. The 
results show that our method predicted the results of 
the query with a normalized root mean squared error 
(WMAPE) ranging from approximately 1 to 4 %. In 
terms of execution latency, the mean query latency 
(mean QL) ranges from approximately 2 ms/q 
(milliseconds per query) to 32 ms/q. We also 
evaluated our method’s performance on large batches 
of queries (processed in parallel on a GPU). 
In summary, the contributions of this paper are as 
follows: • we introduce a novel method for producing a 

lightweight sequential NN which provides a 
high query throughput. • we propose an effective query processing 
method for practical data exploration use-cases, 
with extremely fast query response times for big 
data platforms. • Finally, we make our code and datasets publicly 
available. 

@https://anonymous.4open.science/r/aqp\_jurassic-
5B0E 

2 RELATED WORK 

In the following sections, we address 4 current 
methods with which interactive data exploration may 
be carried out: (1) real-time processing, (2) ML based 
method, (3) In-memory processing, and (4) 
processing through data summaries. 

Real-time processing. Introduced in 2015, the 
SnappyData engine (Ramnarayan et al., 2016) was 
specifically engineered to facilitate query 
approximation within streaming and interactive 
systems. This foundational work featured in the initial 
SnappyData publication was based on the knowledge 
derived from the BlinkDB project (Agarwal and 
Mozafari, 2013). Additionally, Spark, an in-memory 
data processing engine distributed across systems, is 
designed to optimize smart query caching (termed as 
delta update queries) and employs confidence 
intervals to mitigate data loss. Spark further enhances 
performance by managing on-line aggregation, which 
entails processing a small segment of the entire 
dataset. This approach enables immediate 

presentation of the approximated preliminary results 
(Zeng et al., 2015). 

ML method for data processing. The database 
research community has developed innovative ML-
based techniques for Approximate Query Processing 
(AQP) that substantially accelerate the provision of 
approximate query results, achieving speeds orders of 
magnitude faster than traditional DBMS methods 
used for calculating exact results. In these papers 
(Thirumuruganathan et al., 2013), (Savva et al., 
2020), researchers used deep generative models, 
particularly variational autoencoders (VAEs), to 
execute aggregate queries in interactive applications 
such as data exploration and visualization. This 
research (Savva et al., 2020) also incorporated 
machine learning models to approximate the 
aggregated SQL queries. Models such as gradient 
boost machines (GBMs), XGBoost, and LightGBM 
were trained to predict the results of aggregated 
queries. The efficacy of our method relative to 
established methods is summarized in Table 1. 

In-memory data processing with sampling. In 
contexts where the volume of data is extensive and 
memory capacity is constrained; sampling can 
facilitate in-memory processing. Various 
methodologies have been developed to approximate 
database queries, predominantly through the 
execution of queries on intelligently selected data 
samples (Mozafari and Niu, 2015). These techniques 
employ statistical methods to provide an estimated 
result within a specified confidence interval. 

Although numerous studies have examined the 
advantages of data sampling (Bagchi et al., 2007), 
(Babcock et al., 2001), (Chuang et al., 2009), their 
integration into streaming engines remains limited 
(Chandramouli et al., 2014), (Zaharia et al., 2013). An 
exception is the SnappyData project (Ramnarayan et 
al., 2016), an analytics database optimized for 
memory usage that uses the High-Level Accuracy 
Contract (HAC), a concept which was implemented 
in VerdictDB (Mozafari et al., 2018). VerdictDB 
operates at the driver level, intercepting analytical 
queries issued to the database and rewriting them into 
another query that yields sufficient information to 
compute an approximate answer. The predominant 
approach in Approximate Query Processing (AQP) 
systems involves the use of stratified sampling, which 
relies on prior knowledge of data distributions, 
although such knowledge is not always available (Li 
an Li, 2018), (He et al., 2018), (Savva et al., 2020). 
However, such methods that use uniform random 
sampling are less effective for "Group By" queries, 
which is crucial in conducting exploratory data 
analysis. In contrast, stratified sampling has been 
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shown to be more efficient for such tasks (Acharya et 
al., 1999). However, stratified sampling methods 
generally require significant pre-processing time for 
data preparation to approximate a known set of 
queries. Although this approach may be effective for 
certain applications, it can be inefficient for 
interactive data exploration, which typically involves 
ad hoc and unforeseen queries (Galakatos et al., 
2017), (Acharya et al., 1999). 

Processing with data summaries. With this 
approach, AQP is applied to data summaries that were 
prepared in advance (Cormode et al., 2012). This 
approach, along with the sampling methods discussed 
above, is considered complementary (Ramnarayan et 
al., 2016). Existing mechanisms for constructing data 
summaries are tailored to approximate predefined 
query configurations (Cuzzocrea and Saccà, 2013), 
analogously to the way that OLAP cubes are designed 
to compute predetermined data aggregations. 

These strategies evoke concerns about their 
suitability for generic data exploration, which 
requires a broad spectrum of queries to effectively 
summarize the data (Nguyen and Nguyen, 2005). 
Such queries might not always be available or 
predefined. The concept of employing data 
summaries to reduce query latency was initially 
proposed by (Jagadish et al., 1998), who used 
histograms to this end. Furthermore, there exists a 
substantial body of research dedicated to the 
implementation of data summaries in relational 
database management systems (DBMSs) (Gibbons et 
al., 1997). 

3 PROPOSED METHOD 

Our method utilizes a ML supervised learning 
pipeline starting by building a training set of SQL 
queries, encoding the queries, labelling the queries 
and finally fitting a deep sequential NN (Neural 
Network in RNN architecture). The final model (NN) 
is used to predict new user SQL queries without 
scanning the raw data set. First, we define the query 
structure and the terminology of the data scheme. As 
an example, assume a table ‘life_exp’ that includes 
data on health status, as well as many other related 
factors for all countries. The table includes the 
following columns: ‘country’, ’city’, ’income’, 
’gender’, year’, ’status’, ’Life Expectancy’, ’Adult 
mortality’, ’expenditure’ and more. The method is 
designed to generate many queries that conform to a 
query template defined by the following: 

1) S =< s1,s2, ...si > – denotes the set of optional 
aggregation functions (e.g. avg, count). 

 2) col(n) – denotes a numeric data column in the 
dataset (e.g., ‘income’). 
3) col(d) – denotes a discrete (categorical) data 

column in the data set (e.g. ‘city’ ‘gender’). 
4) ai(col) – denotes an aggregation function ai ∈ A 

that is applied on valid col col (either col(n) or 
col(d)) in a ’SELECT’ query clause (e.g., 
avg(‘Life expectancy’), max(‘Life expectancy’), 
or count()). 

5) range
col(n)(f,c) – a ‘range’ constraint argument 

defined on a numeric data column col(n), where 
f is a floor edge (low) in the range and c is a 
ceiling edge (high) in the range through the 
values of col(n). The ‘range’ constraint is 
executed as a ‘between’ SQL operator. 

6) exist
col(n)(mi) – an ‘exist’ constraint argument 

defined on a discrete data column col(d), where 
(mi) is a valid list of values from col(d) such that 
all records associated with any value from this 
list will return in the results set.  

3.1 Analytical Queries Structure 

iDat supports queries with multiple ai(col) grouped by 
multiple col(d) columns. Although this enables 
flexibility in exploring and analysing large datasets, it 
poses the following two challenges: (1) Different 
ai(col) (aggregated columns) may distribute very 
differently, and (2) the challenge of predicting an 
output which may have varying dimensions. The 
latter stems from the fact that a "Group By" query can 
return a table of one or more rows, as shown by the 
example in Table II, which presents the result of the 
following example query: 

SELECT city, gender, avg(’Life expectancy’) 
FROM life_exp le RIGHT OUTER JOIN geo_country 
gc ON le.city = gc.c_code WHERE income between 
(10000 and 20000) AND expen-diture between (50000 
and 60000) GROUP BY city, gender 

To tackle these challenges, we represent each 
"Group By" query into multiple ‘flat’ (with no "Group 
By" term) queries with a single aggregation function. 
These queries, by definition, return one scalar. In this 
way, every RNN network has an output layer that 
consists of a single linear output that is trained to learn 
a specific distribution of aggregation functions. This 
is an example for a ‘flat’ query: 
SELECT avg(’Life expectancy’) FROM life_exp le 
RIGHT OUTER JOIN geo_country gc ON le.city = 
gc.c_code WHERE income between (10000 and 
20000) AND expenditure between (50000 and 
60000) AND city = ‘New York’ and gender = ‘male’ 
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Table 1: Comparison of AQP to state-of-the-art query approximation engines. 

Paper Name 
Flat Query 

Latency in sec. 
(per 1Tb data) 

Guaranteed 
Error Bound

GPU
Support

Training 
Requirement

Preprocessing/
Sampling 

Requirement

Queries’ Batch 
Concurrent 
Processing 

Support 
Result 

Confidence

(28) (29) Hive Hadoop 400 no yes no yes yes NA 
(30) (28) Hive Spark 40 no yes no yes yes NA 
(31) (11) BlinkDB 2 2-10% no no yes yes 95% 
(10) (32) SnappyData 1.5 NA no no yes yes NA 
(23) (21) VerdictDB 1 2.6% no no yes yes 95% 
(33) (34) DICE 0.5 10% no no yes no NA 

(14) DeepGen NA 0.1-1.25% yes yes yes yes No 
(15) ML AQP 20 1-5% no yes yes no NA 

Our Method AQP 10 <2.5% yes yes yes yes NA 
 

This query was extracted from the results of the 
Group By query as seen in Table 2. 

Table 2: An example of a ‘Group by’ result set. 

city gender  avg(age) max(age)
New York male  51.8 92.5

London male  48.2 89.5
New York female  52.9 94.2

London female  49.1 96.1

3.2 Generating Training Set 

To train a deep NN the method generates a large 
training set of queries. We used multiple steps which 
are described ahead to create a representative training 
set of SQL queries. The query template consists of: 
(1) the ’SELECT’ clause parameters, (2) the filter 
template (i.e., the WHERE clause parameters), and 
(3) the name(s) of the table(s). In this phase, the set of 
aggregation functions paired with a set of target data 
columns is defined. The method then constructs a 
’SELECT’ clause consisting of the selected 
aggregation functions, which are applied on a set of 
the target data columns {ai(colj)}. 

All of the aggregation functions can be applied on 
numeric data columns, however, the only aggregation 
functions that can be applied on discrete columns are 
′count′ and ′countDistinct.′ In our example, assuming 
that the domain expert chooses to apply all of the 
aggregation functions A on all valid {ai(colj)}, the 
result is the following ’SELECT’ clause: 
SELECT avg(’Life expectancy’), max(’Life expectancy’) 

As mentioned, each {ai(colj)} will have a 
designated model that will be trained to learn its 
unique distribution. This means that the training set 
will be split for each {ai(colj)} and will be learned 
separately. In our example, the first training set will 

consist of queries with avg(’Life expectancy’) in the 
’SELECT’ clause, the second training set will consist 
of queries with MEDIAN(’Life expectancy’) and so 
on. Next, a filter is defined that includes the list of 
numeric data columns col(n) and discrete data columns 
col(n). Then, for each defined querytemplate, the 
method generates a set of queryinstances as follows. 

3.3 Formulating Filters 

Here, the method generates filters consisting of (1) 
numeric data columns col(n), and (2) discrete data 
columns col(n) in the following manner: 

1) For each col(n), our methods calculate the 
intervals defined by the minimum value, the first 
quartile (25%), the median, the third quartile 
(75%), and the maximum value (four intervals). 
To select the lower and upper bounds of a 
numeric column constraint range

col(n)(f,c), we 
select two intervals randomly. Then, from each 
selected interval, we randomly choose a value 
sampled from a uniform distribution. This 
process results in two numeric values that form 
a filter, range_col(n)(f,c) such that the smaller 
value will define the lower bound and the larger 
value will define the upper bound, for example 
rangeincome(10125,81590). 

2) To construct a discrete filter, our method uses an 
"IN" constraint argument defined on a discrete 
data column col(n), filtered by vk, which is a list 
of possible members of col(n). To determine 
which member to use in each filter, the method 
constructs a ‘Group by’ term on the discrete 
columns. Once the query is executed against the 
dataset, the method systematically extracts all 
possible combinations of members that exist in 
the result set and constructs a discrete filter for 
each combination. In our example, this is one 

IDAT: An Interactive Data Exploration Tool

607



possible combination of the members for city 
and gender: 
{existcity(′NewYork′),existgender(′Male′)}. 

3) Finally, each combination of discrete filters is 
paired with each of the numeric filters to form a 
query filter; for example, 

{rangeincome(10125,81590),existcity(‘NewYork′),existgender(‘Male′)}. 

3.4 Generating ‘JOIN’ Clause 

In this step, a join clause is added to the query. iDat 
supports ’INNER’ and ’OUTER’ joins (left and 
right). The join key is configured within the schema 
configuration files and is taken to build the ’JOIN’ 
syntax in the following format: 

{join_typeleft_table(left_key),right_table(right_key)} 
where join_type can contain the values: (1) 

INNER, (2) LEFT, (3) RIGHT and (4) CROSS (for 
the last option key is not relevant) e.g. life_exp ls 
RIGHT OUTER JOIN geo_country gc ON ls.city = 
gc.c_code 

3.5 Embedding Layer Encoder 

This phase’s goal is to transform string SQL queries 
to numeric matrices. At this stage, a list of ‘flat’ SQL 
queries and their real labels (result) is available. Since 
RNN can only receive numeric input, we encode the 
queries into an embedding space, which produces 
numeric matrices (see Figure 1). For that, we use an 
encoder model that is constructed on the fly (during 
SQL query generation), making use of a multi-hot 
encoding technique. The encoding process starts by 
mapping all unique query tokens that exist in the 
training set Q and assigning each a sequential numeric 
value, as illustrated in Figure 1 (for example, the 
token avg (’Life expectancy’) is assigned to the value 
00001). Each numeric value is then transformed into 
a binary numeric representation (base 2). Numeric 
query tokens (scalars) are also transformed into their 
binary (base 2) representation. 

 
Figure 1: Inducing an embedding layer encoder. 

3.6 Training Set Labels 

As the goal of the second phase to acquire training set 
labels, iDat must run the queries in the database to get 
real results. We used Postgres DB to run these 
queries. The characteristics of the data sets, their 
footprint, and other important statistical metrics are 
shown in Table 3. 

3.7 NN Training 

In the last stage, the algorithm pipeline builds a 
sequential NN network (RNN). We chose sequential 
NN (i.e. RNN) since this method have been shown to 
be efficient in learning complex sequential data, 
which was our initial motivation for selecting this 
architecture (Lipton et al., 2015).  

3.8 Data Changes 

To handle new data entering the data base, we build a 
hybrid retrain set of SQL queries that will consist of 
newly inserted data records and old data records that 
have been learned by the model. This is described in 
the following method: 

1) Time reference - Mark data records with insert 
date-time column referred as "insert_dt" and 
model training datetime refereed to as 
"model_train_dt". 

2) Small retrain set - Using the above-mentioned 
date-time columns, build a relatively small 
retrain set of SQL queries that will span both 
newly inserted records and existing records. 

3) Query split - split each query to two queries 
according to the "model_train_dt": 

a) "model_query" - this query will impute a filter 
which is less than "model_train_dt". Acquire 
a label for these queries by running a query 
against the existing model. 

b) "data_query" - this query will impute a filter 
which is equal or greater than "model_ 
train_dt". Acquire a label for these queries by 
running a query against the data base. 

4) Query merge - "model_query" and "data_query" 
results according to aggregation function logic: 
If "Sum" function is used, sum results of the 
queries, if "Average" function is used, calculate 
weighted (by the count of records from each 
query) average, if "Count" function is used, sum 
up the counts, and if "Min/Max" is used, take 
one of the values from the 2 queries according to 
the function logic. 

5) Retrain - Run retrain task on the merged SQL 
query set. 
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Figure 2: AQP data changes adaptation method. 

4 EVALUATION 

For evaluation we gathered a group of 20 data 
scientists working in leading technology companies 
and requested each to provide a set of 10 data 
exploration queries for each of the following data sets. 
Then, we acquired the queries predictions from iDat 
and evaluated the results in terms of accuracy and 
latency, as described above. 

4.1 Data Sets 

The system was evaluated using 12 unique datasets, 
both proprietary and open source. The characteristics 
of the data sets are presented in Table 3. 

4.2 Training Sets Partition 

For each dataset, a training set was generated and 
split, using the sklearn cross_validation (˙train_ 
test_split) Python package, into three datasets:  
(1) training set - 70% of the queries, (2) validation set 
- 15%, and (3) testing set - 15%. 

4.3 Handling Overfitting 

To avoid overfitting, i.e., a scenario in which the 
model memorizes the training set and does not 
generalize to the test set, the following steps were 
performed: (1) All RNN models (for each dataset) 
were validated during optimization (backpro-
pagation) on a randomly selected hold-out set (i.e., the 
validation set). (2) After the last training epoch, we 
obtained the evaluation metric values for the 
inferences made on a second hold-out set (i.e., the test 
set), which was randomly selected before the training 
took place. (3) Steps 1 and 2 were repeated 30 times, 
and the average was used when evaluating our 
method’s performance on each metric. 

4.4 RNN Cost Function 

The RNN network was trained to minimize a 
quadratic cost function defined as: 

 
Where Yi  is the real query result, Yˆi  is the model’s 
approximated query result, and n is the batch size. 

4.5 Evaluation Metrics 

Since the target variable (query result) is continuous, 
the RMSE regression might be a natural candidate for 
a cost function, however it can yield an un-normalized 
range of values and is greatly influenced by the 
problem’s scale. For this reason, we sought a robust 
loss metric that would allow us to compare 
performance between data sets with significantly 
different distributions. To achieve this, we opted to use 
a normalized metric: MAPE and weighted MAPE, 
defined as follows: 

 

 
Where i represents a query from the test set, Yi is the 
real query result, Yˆi is the model’s approximated 
query result, and n is the size of the validation set, and 
wi is the weight for the i-th query, which is 
proportional to the row count of Yi. 

In addition we measured the model performance 
based on the time elapsed to perform a SQL query 
prediction  as described ahead: 
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Table 3: Datasets’ characteristics. 

 
Dataset 

Proprieta
ry data 
source 

Target function # attr(n)# attr(c) # rows # queries
Mean 
entrop
y 

Input 
tensor 

variance 
Target
column 

STD 
1 average_revenue Yes avg (revenue) 3 2 1000000000 5205078 6.293 0.154 40400000
2 average_success_rate Yes avg (build_time) 2 3 2333293 415791 2.264 5.421 19.196
3 count_product_pass Yes count (machine_id) 1 5 4000000000 811928 0.942 0.151 2350516
4 count_product_fail Yes count (machine_id) 1 5 95484 451173 0.942 0.153 8613
5 count_product_false_calls Yes count (machine_id) 1 5 350232 378111 0.942 0.202 215315
6 count_churn_customers Yes count (customer_id) 4 3 9263836 62092 2.782 0.13267 530
7 sum_duration_call Yes sum (duration) 3 2 9349 100000 3.198 0.167 861
8 average_ibm_price No avg (close_price) 1 2 1048575 340489 0.343 0.125 471
9 average_realestate_price No avg (price) 3 2 22489348 508086 2.113 0.105 236

10 avg_stock_close_price No avg (close_price) 2 1 63267 8721 5.703 0.157 118
11 average_paid_days Yes avg(actual_paid_days) 3 2 100000000 508365 0.451 0.099 25667553
12 average_build_duration Yes avg (duration) 1 3 22276094 325935 0.993 0.129 7487

 

   (4) 
Where t is the total number of validation queries and 
QLi is the Query Latency for the i-th query, measured 
in ms. 

  (5) 

In addition, we calculated the queries’ throughput 
(using the GPU to approximate a batch of queries), 
which is referred to as QT: 

Where T is the total latency of the batch mode 
prediction operation, and Q is the number of queries 
used in the testing set. 

4.6 Benchmark Methods 

We compare our method to two state-of-the-art 
methods: (1) VerdictDB (Mozafari et al., 2018), a 
novel AQP method that accelerates analytical queries, 
and (2) 

BlinkDB (Agarwal and Mozafari, 2013) - an 
approximate query engine for running interactive 
SQL queries on large volumes of data. We use the 
mean query latency (QL) and WMAPE metrics to 
evaluate performance and accuracy respectively. 

5 EXPERIMENTAL RESULTS 

For each dataset, Table 4 specifies the RNN network 
training parameters and the trained models’ 
performance metrics. These results were gathered 

from the execution of SQL queries source from the 
group of 20 data scientists taking part in this study. 

5.1 Accuracy 

As expected, the WMAPE value for the largest 
models (datasets number 1,4,8), with RNN layer with 
512 neurons and a dense layer with 400 neurons, was 
the lowest (most accurate), with a range from of 1-
1.5%, while for the smallest model (dataset number 
6), RNN layer with 128 neurons and a dense layer 
with 200 neurons, was the highest, with a value of           
3.48 (least accurate). 

5.2 Query Latency Performance 

In dataset number 10, using the GPU, iDat performed 
a throughput (QT) of approximately 120K (with a 
large batch of 2048) queries per second was 
measured, while in dataset number 4, a single query 
latency (QL) for our largest (slowest) model lasted 
approximately 32 ms. 

5.3 Benchmark Comparison Results 

Figures 4 and 3 depict the accuracy and latency of 
iDat and the benchmark methods, VerdictDB 
(Mozafari et al., 2018), and BlinkDB (Agarwal and 
Mozafari, 2013), on all the datasets. Figure 5 presents 
the results of a nonparametric paired Ttest analysis 
used to determine if our method is statistically better 
than the compared benchmarks in terms of accuracy 
(WMAPE) and query latency (mean QL). From this 
analysis it is evident that our method was superior for 
the majority of the datasets examined (both on the 
accuracy and latency metrics), however these 
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differences were not statistically significant. In 
addition, we evidently show that iDat method can be 
used in the field by data scientists to perform data 
exploration task on very large data sets. 

 
Figure 3: Comparing the accuracy (WMAPE) performance 
of iDat with Verdict and Blink. 

 
Figure 4: Comparing the query latency (mean QL) 
performance of iDat with Verdict and Blink. 

6 DISCUSSION 

Our method in this study predicts the results of the 
query within a controlled error (WMPAE), ranging 

between 1% to 4%, QL  ranges from 2 ms/q to 32 
ms/q for a single query. Moreover, for large datasets 
(20M - 4B records), our method is two orders of 
magnitude faster than the benchmarks used in our 
comparison. Based on these encouraging results, we 
began to consider the proposed method a novel data 
exploration tool for data scientists, capable of 
reducing heavy lifting database processing and 
reducing incurred storage and scanning costs. Our 
method can also predict missing data points or data 
points that span into the future e.g. see 10th dataset 
(avg_stock_close in Table 3) obtained an WMAPE of 
approximately 0.2% for the testing set with future 
dates. From the perspective of scale, compared with 
other state-of the-art methods, our method can scale 
to large datasets (>2M rows) mainly because our 
method decouples the data from the query layer once 
training finishes. Finally, our method has the 
advantage of being lean (2.7Mb on average). This 
enables fast inference (query predictions) and 
deployment in client production clusters. 

However, there are few shortcomings of our method 
as follows: 

1) Training set generation - generating a set of SQL 
queries with a reference to a dataset might not 
always represent the user queries’ requirements. 

2) Sampling data to generate query filters might 
shift the model toward representation of queries 
that span on the sampled data on the expense of 
data which was not sampled. 

3) Initial training time - When our method is trained 
for the first time, training may last up to 12 
hours.  

Table 4: Model performance and accuracy metrics on the datasets. 

 RNN architecture and hyper-parameters  Model performance 

# Dataset name LR Batch 
size 

RNN 
neurons

Dense 
neurons

Input 
shape GPU Type QT 

(q/s) 
QL 

(ms/q) WMAPE 
RNN

size(Mb)
1 average_revenue 1.E-05 2048 512 400 (7,17) GTX 2060 24398 2.61 1.75 3.47 
2 average_success_rate 1.E-02 1024 128 200 (7,17) GTX 2060 42974 2.46 3.48 2.38 
3 count_product_pass 1.E-04 2048 512 400 (16,18) GTX 2060 1911 27.37 1.87 3.75 
4 count_product_fail 1.E-03 1024 512 400 (16,18) AWS K80 6071 28.41 2.10 3.75 
5 count_product_false_calls 1.E-04 1024 512 400 (16,18) AWS K80 1798 28.17 1.52 3.75 
6 count_churn_customers 1.E-02 2048 128 200 (17,17) AWS K80 20854 3.45 2.11 2.54 
7 sum_duration_all 1.E-02 512 512 400 (7,20) GTX 2060 1982 3.77 1.21 3.61 
8 average_ibm_price 1.E-02 128 256 200 (7,62) AWS K80 25681 3.35 1.59 2.91 
9 average_realestate_price 1.E-02 1024 128 200 (13,61) GTX 2060 74071 2.90 1.87 2.81 

10 avg_stock_close_price 1.E-02 2048 128 200 (6,61) GTX 2060 120288 4.14 3.10 2.95 
11 average_paid_days 1.E-05 2048 128 200 (27,7) AWS k80 60074 2.01 2.13 2.62 
12 average_build_duration 1.E-04 1024 256 200 (10,32) GTX 2060 11956 3.95 1.02 2.71 
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7 CONCLUSION  

The primary goal of this research was to implement a 
novel approach for EDA scenarios for the practical 
use of data scientists and analysts. Existing query 
methods require ongoing access to the underlying 
data. Once training has taken place, our proposed 
method does not require an on-line connection to the 
data to explore the data. This opens a variety of 
potential use cases for big data analytics. 
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