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Abstract: Images are one of the fundamental modes of data storage and transfer. Images lose perceptual quality due to 
degradation from various sources like compression, corruption and noise with the degradation process is 
unknown. Modern deep convolutional neural networks (CNNs) are specialized for image processing tasks 
and can be used to restore an original image from its degraded copy in a process called image super resolution. 
Training such models needs huge amounts of multi-domain image data for better generalization. Evaluating 
these models in real world is even more difficult due to the lack of high resolution reference images. This 
project proposes and trains a CNN architecture based on ConvNeXt that assesses the quality of images by 
assigning a score to each image. The model achieves a score of 0.92 PLCC and 0.94 SRCC on the KonIQ test 
set on par the current SOTA convolutional models for IQA. The proposed model can in-turn be used to 
evaluate the real-world performance of deep learning models, that are trained to perform image super 
resolution, on images with no corresponding high-resolution reference images (blind). 

1 INTRODUCTION 

Our everyday lives generate a significant amount of 
image or video data in this era of rapidly advancing 
multimedia technology. Numerous conventional and 
learning-based lossy compression techniques have 
been proposed to lower the bandwidth and storage 
costs brought about by these data. However, it is 
challenging to quantify the distortion caused by these 
methods, and acquiring the Mean Opinion Score 
(MOS) manually is costly and presents challenges for 
receiving prompt feedback in a production setting. 
Therefore, we want to establish an accurate and 
efficient picture quality assessment metric that is near 
to subjective quality assessment and can be easily used 
in compression and other low-level vision activities in 
order to fulfill the increasing visual needs of the 
industry and the general public. The objective of the 
IQA task is to anticipate the subjective viewpoints of 
human viewers. The three primary kinds of IQA 
methods now in use are full-reference (FR), reduced-
reference (RR), and no-reference (NR) methods. 
Although NR models, like NIQE (Gu et al., 2019), are 
highly adaptable in real-world settings, it is 
challenging to forecast raters' emotions in the absence 
of reference images. FR models, which are still often 
utilized in many visual reconstruction tasks, primarily 

focus on the changes in texture and structure between 
the distorted images and the reference image. The 
most well-known FR reference measures are 
Structural Similarity (SSIM) and Peak Signal-to-
Noise Ratio (PSNR; Boose et al., 2018), which 
concentrate on the structural and pixel differences 
between two pictures, respectively. Because of their 
low computational complexity and outstanding 
performance on prior tasks, they are frequently chosen 
as optimization targets. Additionally, the evaluation of 
video quality has popularized fusion-based metrics 
like VMAF (Xu et al., 2021). But as deep learning 
technology advances—particularly with the use of 
GANs (Jiang et al., 2019) in image compression, 
restoration, and other domains—the reconstruction of 
images becomes more difficult to assess because it 
now includes noise that resembles real textures, 
sharper edges, and unrealistic generation artifacts. The 
quality of these photographs cannot be adequately 
evaluated by conventional metrics. In this regard, deep 
learning-based metrics for assessing perceptual 
quality (Zhao et al., 2021; Yamashita and Markov, 
2020) perform better in the IQA challenge. Cheon et 
al. (Wang et al., 2022) suggested using a transformer 
(Ma et al., 2017) to deal with the bogus visuals 
because of the transformers' great expressive ability. 
The KonIQ-10k (Gu et al., 2019) dataset's distinct 
features and adherence to real-world settings make it 
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stand out as a top benchmark for assessing IQA 
algorithms. KonIQ-10k is an IQA dataset that includes 
10,325 photos from the diversified YFCC100m (Xu et 
al., 2021) dataset. It differs from many other IQA 
datasets that frequently rely on artificially 
manufactured distortions to capture a wide range of 
content and photographic styles. Through a carefully 
managed crowdsourcing approach, these photographs 
were exposed to actual aberrations typically found in 
real-world circumstances, such as noise, blurring, and 
compression faults. By ensuring that the distortions 
accurately represented differences in image quality, 
this method improved the dataset's ecological 
validity.In this study, we explore the capabilities of the 
ConvNeXt (Boose et al., 2018) architecture for Image 
Quality Assessment (IQA), with a particular emphasis 
on applying it with the KonIQ-10k dataset. The 
ConvNext architecture is shown in Fig. 1. This dataset 
offers a strong standard for assessing IQA algorithms 
because of its extensive and varied collection of 
realistically warped photos matched with user-
submitted quality ratings. We achieve this by carefully 
optimizing a ConvNeXt model that has already been 
trained for this dataset. This allows us to take use of 
the model's strong feature extraction capabilities and 
identify complex image quality patterns. We do a 
comprehensive assessment of our refined ConvNeXt 
model's predictive capacity for human perception of 
image quality using commonly used IQA measures, 
such as Spearman's Rank Correlation Coefficient 
(SRCC) and Linear Correlation Coefficient (LCC). 
We conduct a thorough comparative analysis against 
the most advanced IQA techniques in order to give a 
thorough grasp of our model's capabilities. We also 
examine the relative advantages and disadvantages of 
our ConvNeXt-based method in relation to the larger 
field of IQA research. Our goal is to advance the field 
of perception-aligned image quality evaluation by 
providing insightful information on the practicality 
and effectiveness of ConvNeXt for real-world IQA 
applications and encouraging more research into this 
intriguing architecture.his dataset offers a strong 
standard for assessing IQA algorithms because of its 
extensive and varied collection of realistically warped 
photos matched with user-submitted quality ratings. 

 
Figure 1: The overall architecture of the ConvNeXt Neural 
Network. 

2 RELATED WORK 

Deep-learned BIQA techniques (Gupta et al., 2020) 
have become a potent tool that acquires quality 
features directly and end-to-end from distorted images. 
These techniques, which use deep neural networks to 
automatically optimize quality forecasting models, 
outperform manually constructed BIQAs in terms of 
performance (Wang et al., 2022). There are two main 
categories of deep learning BIQAs: supervised 
learning-based and unsupervised learning-based 
techniques. 

Annotated training data is necessary for supervised 
methods, but unsupervised learning-based techniques 
do not depend on high-quality labels during training. 
It is noteworthy that alternative learning modalities, 
like reinforcement learning (Yamashita and Markov, 
2020), (Gu et al., 2021), are applicable to the deep-
learned BIQA problem. In contrast to supervised and 
unsupervised BIQA techniques, these learning 
modalities are utilized less frequently. The primary 
aim of supervised learning-based BIQA (Harris et al., 
2018) is to reduce the difference between the expected 
score and the human observers' subjective MOS value.  

 
Figure 2: Process Flow of the Experiment. 

The area of BIQAs has made great progress since 
the advent of supervised learning. By utilizing certain 
techniques, current supervised learning-based BIQAs 
address the issue of sparse training data. The primary 
foundation of sample-based BIQAs is increasing the 
capacity of training samples, which typically use 
patchlevel quality characteristics to forecast an image-
level score. All patches inside a specific picture are 
immediately shared with the same image-level 
annotations via allocation-based BIQAs (Wang et al., 
2022). The association between patch-level 
characteristics and the overall image-level quality 
scores has been originally demonstrated using these 
approaches. Weighted features (Bulat et al., 2018), 
weighted judgments (Zhang et al., 2021), and other 
enhancements have been made with the goal of 
improving this enhancements have been made with 
the goal of improving this connection. Weighted 
decisions (Zhang et al., 2021), voting decisions (Jiang 
et al., 2019), and weighted features (Bulat et al., 2018) 
have all been included in an effort to further refine this 
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correlation. In more recent attempts, a generic feature 
representation has been learnt and the input picture has 
been expanded into multi-scale patches (Dosovitskiy 
et al., 2021). Nevertheless, these allocation-based 
techniques have difficulties capturing highly non-
stationary feature representations due to the inherent 
uncertainty in picture content (Jiang et al., 2019). 
Allocation-based BIQAs can perform better and 
produce more accurate quality predictions by creating 
more resilient feature representations that can adjust 
to local fluctuations and complex relationships 
between the content and distortion. generational. 
Patch-level scores are typically used by generation-
based BIQAs to develop a supervised model. The 
relationship between various modalities may be used 
in the future to investigate the training data volume 
problem. The resilience of the forecasting 
performance is enhanced when a deep-learned model's 
low-level embedding characteristics are enriched from 
various angles through the expansion of data 
modalities (Zhao et al., 2021). 

3 METHADOLOGY 

The goal of this research is to forecast picture quality 
using the ConvNeXt architecture without requiring an 
ideal reference image. No-Reference Image Quality 
Assessment (NR-IQA) is a crucial task in practical 
scenarios. Fig. 2 shows the overall process flow of this 
research. Attempting to evaluate pictures taken with a 
phone camera or ones that have been Photoshopped is 
difficult as there is rarely a perfect original to compare 
them to. Modern deep learning models such as 
ConvNeXt have demonstrated exceptional ability to 
comprehend pictures, doing well on tasks like object 
recognition and scene classification. Its power is in the 
way it is able to extract relevant information from 
photographs. The goal of this research is to use this 
power for NR-IQA. Training a ConvNeXt model to 
identify favorable picture characteristics in the 
absence of a perfect example is our aim. 

3.1 ConvNeXt Architecture 

The core of ConvNeXt's architecture is a hierarchical 
structure made up of several steps, each of which is 
in charge of extracting features at various sizes. As 
information moves across the layers, this hierarchical 
representation enables the network to gradually learn 
ever-more-complex patterns. ConvNeXt is mostly 
composed of specialized blocks that were modeled by 
the design of the Swin Transformer. These blocks 
make use of depthwise convolutions, which 

individually process each channel to lower computing 
costs while maintaining spatial information. Most 
importantly, ConvNeXt blocks have inverted 
bottleneck layers, which provide effective feature 
map reduction and extension, hence improving the 
network's capacity to collect fine features. Fig. 3 
shows the ConvNeXt blocks along with the inverted 
bottleneck. 

 
Figure 3: The ConvNeXt block built using an inverted. 

ConvNeXt uses Layer Normalization, in contrast to 
standard convolutional networks, which frequently 
utilize Batch Normalization. This decision enhances 
training stability, especially when utilizing varied 
batch sizes or training data. ConvNeXt uses Global 
Average Pooling to minimize the spatial dimensions 
of the feature maps after processing the input picture 
via the hierarchical stages. This produces a succinct, 
global representation of the image information. For 
the ultimate prediction, this representation is 
subsequently given to the network's classification 
head—in our example, the regression head. 
ConvNeXt offers an effective framework for image 
analysis by fusing the advantages of transformer-
based and convolutional architectures.  
We predict that its effective architecture and capacity 

to extract both local and global picture characteristics 
will allow our model to global picture characteristics 
will allow our model to efficiently learn the little 
patterns and aberrations suggestive of high-quality 
images. 
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3.2 Training 

We use a transfer learning strategy to efficiently train 
our ConvNeXt-based NR-IQA model by utilizing the 
insights from pre-training on the large ImageNet 
(Wang et al., 2022) dataset. This approach greatly 
speeds up the training process on the KonIQ-10K 
dataset and improves generalization capabilities by 
starting our model using weights that have already 
been trained to extract rich and relevant features from 
a wide range of pictures. The train-test split was 
selected to be 70% (KonIQtrain)-30% (KonIQtest) 
respectively. We make use of the well-liked and 
effective optimization method known as the Adam 
(Ma et al., 2019) optimizer, which is ideal for deep 
learning model training. When compared to more 
conventional optimization techniques like stochastic 
gradient descent (SGD), Adam's approach allows for 
faster convergence and perhaps improved 
performance by adjusting the learning rate for each 
parameter during training. Early stopping (Gu et al., 
2021) is one of the strategies we use to avoid 
overfitting. This method keeps track of the model's 
training results on a held-out validation set. To avoid 
the model from remembering the training data at the 
price of generalizing to unknown cases, the training 
process is stopped if the validation loss does not 
improve after a predefined period of epochs 
(patience). We carefully adjusted the Adam 
optimizer's hyperparameters, including the epsilon 
value and learning rate, to guarantee effective and 
stable training. In addition, we tested with various 
batch sizes to determine, considering our hardware 
limitations, the ideal trade-off between training time 
and memory usage.  

The machine used throughout the whole training 
procedure has a single NVIDIA T4 GPU with 15GB 
of VRAM. We were able to investigate a larger 
variety of hyperparameters and model topologies in a 
fair amount of time because to this hardware 
acceleration, which dramatically shortened training 
times. The training data, preprocessed as stated 
previously, was supplied to the model in batches, and 
the weights of the ConvNeXt backbone and the 
regression head were simultaneously updated to 
minimize the mean squared error (MSE) between the 
predicted and the mean squared error (MSE) between 
the predicted and ground-truth picture quality scores. 
Throughout the training phase, we kept a close eye on 
both the training loss and validation loss to evaluate 
the model's convergence and generalizability to new 
data. 

4 RESULTS AND DISCUSSION 

The results of our studies are shown in this part, 
offering some insight into the efficacy of the 
suggested ConvNeXt-based NR-IQA model. 
Analyzing the convergence and generalization 
capacity of the model, we first examine the training 
dynamics. Next, we visually examine the learnt 
convolutional kernels with the goal of comprehending 
the intrinsic representations of picture quality within 
the model. Lastly, we present sample inference 
findings that illustrate the advantages and 
disadvantages of the model by contrasting its 
predictions with ground-truth quality ratings. 

 
Figure 4: The training loss and validation loss curves. 

4.1 Training Results 

Fig. 4 shows the training loss and validation loss 
curves. The model achieved 0.0066 Mean Absolute 
Error loss in the prediction of image quality scores on 
the test-set towards the end of the training. Early 
stopping was used to stop at this value just before the 
model was beginning to over-fit. The loss on the 
training set reached as low as 0.0015 which is also the 
standard deviation of the image quality scores as 
predicted by the model. The Pearson Linear 
Correlation Coefficient (PLCC) and the Spearman 
Rank Correlation Coefficient (SRCC) between the test 
set and the model’s prediction were 0.92 and 0.94 
respectively. 

4.2 Comparison with the State of Art 

The results of our suggested strategy on the KonIQ-
10k dataset are shown in Table 1, which shows how 
well it performs in comparison to state-of-the-art 
(SOTA) methods. Interestingly, the BIQA technique 
(Xu et al., 2023) uses a multi-crop ensemble approach 
for both training and testing, which has its own set of 
problems despite attempting to address the 
shortcomings of fixed-shape CNNs. Sampling 25 
crops each picture increases computing cost during 
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inference and introduces randomness because of the 
crop selection procedure, even though it may mitigate 
the fixed-shape restriction. Because each crop only 
shows a small section of the image, it may miss 
important global quality indicators.  

Our method performs well on assessing the 
quality of images. 

4.3 Visualization 

 
Figure 5: The visualizations of learnt kernels in the first 
convolutional layer of the network. 

We show the convolutional kernels from the first 
layer of the network to have a better grasp of the 
features learnt by our ConvNeXt-based NR-IQA 
model. Some of these learnt kernels are shown in Fig. 
5. It's interesting to note that a large number of these 
kernels have patterns that resemble texture analyzers, 
edge detectors, and noise-sensitive filters. This 
implies that the model is capable of recognizing 
subtle aspects of images, such sharpness, smoothness, 
and the existence of artifacts, that are frequently 
linked to perceptual quality.  

Visually evaluate the model's performance. A 
variety of photos, including ones with different levels 
of blur, noise, and compression errors, are displayed 
in this figure. We show the associated ground-truth 
score and the model's projected quality score for each 
image. The findings show that, for most distortions, 
our model accurately represents the relative quality 
differences over a range of distortions and generally 
agrees well with human perception. Furthermore, we 
show example inference results in Fig 6. 

 
 

 
Figure 6: Inferencing visualization of the trained model. 

Table 1: Comparision of SOTA methods on KoniqIQ-10k. 

APPROACH PLCC SRCC 
WaDIQaM (Ke et al., 2022) 0.794 0.799 
BIECON (Ledig et al., 2017) 0.620 0.681 

SFA (Yamashita and Markov, 2020) 0.859 0.847 
BRISQUE (Ma et al., 2019) 0.668 0.701 

BIQA (Xu et al., 2023) 0.902 0.918 
HOSA (Dosovitskiy et al., 2021) 0.674 0.697 

PQR (Wang et al., 2015) 0.873 0.881 
ILNIQE (Gu et al., 2021) 0.501 0.524 
DBCNN (Xu et al., 2021) 0.832 0.887 

MetaliQA (Jiang et al., 2019) 0.847 0.888 

ConvNeXt (Ours) 0.920 0.940 

5 CONCLUSION AND FUTURE 
WORK 

The usefulness of the ConvNeXt architecture for No-
Reference Image Quality Assessment (NR-IQA) was 
investigated in this study. Through the utilization of 
the KonIQ-10k dataset, we were able to refine the 
pre-trained ConvNeXt model and create an NR-IQA 
model that can reliably predict image quality scores 
without the need for reference pictures. Our findings 
show that the ConvNeXt-based model outperforms 
current state-of-the-art techniques in Spearman's 
Rank Correlation Coefficient (SRCC) and Linear 
Correlation Coefficient (LCC). The model was 
shown to be able to effectively capture low-level 
picture information linked to perceptual quality 
through the visualization of the learnt kernels. While 
more research is necessary to handle a variety of 
visual distortions and investigate other ConvNeXt 
versions, this work lays a solid basis for utilizing 
ConvNeXt's capabilities for precise and effective 
NR-IQA, opening the door for its use in a variety of 
practical image processing and computer vision 
applications. 
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