
A Novel Approach for Distributed Password Cracking Based on
Command Line

Kaushal Shah a and Dhaval Vasava
School of Technology,Pandit Deendayal Energy University, Gandhinagar, India

Keywords: Password, Hash Cracking, Distributed Cracking, Dictionary Attack, Brute Force Attack, Online Attack

Abstract: Password cracking process still continues to remain prevalent during a pentest or a digital forensic
investigation. In both cases, time is critically important. Most of the password cracking tools available today
can be used to crack different types of hashes and encryption media. Though these tools utilize system
components to enhance their performance, still it might not crack it in the required duration of time. This
process of cracking pass- words could be accelerated with the help of distributed password cracking technique.
This paper aims at studying and analysing some of the popular password cracking tools and to propose a new
command-line distributed password cracking tool which aims to resolve some of the issues with current
distributed password cracking tools.

1 INTRODUCTION

Password based authentication has been there for a
very long time and though the security provided by
such an authentication mechanism solely depends on
the user: the character set used by user while creating
the pass- word, the password length, the uniqueness
of the password, the guess ability of the password
through social engineering; it’s still widely used and
it unlikely to be replaced by other authentication
mechanism in upcoming few years (Hranicky`,
Zobal, et al. , 2020) (Pervan, Knezovi´, et al. , 2022),
(Pervan, Knezovi´, et al. , 2019), (HRANICKY´ ,
2022), (Jourdan and Stavrou, 2019). Therefore, it is
of utmost importance to set a strong password every
time during registration.

Passwords which are created without using any
password policy are generally considered to be weak
because a user will most likely set a password which
would be easy for him/her to remember and so the
user ends up either having a password of small length
or would select a well-known password and in both
cases, the attacker would crack those type of
passwords in few seconds with the help of some of
the popular password cracking tools which are freely
available today. Therefore, nowadays it has become
very common to use a password policy while

a https://orcid.org/ 0000-0002-8494-9752

registering a user for a service and in that way users
will be forced to create a strong Password for
themselves (Siponen, Puhakainen, et al. , 2020),
(Guo, Zhang, et al. , 2019). The most basic password
policy requires the password to be of minimum length
8, the character set used for creating password should
contain at least one lowercase alphabet, at least one
uppercase alphabet, at least one digit and at least one
special character. As today’s users have a large
presence in the online world which ranges from social
media platforms to bank accounts, creating and
remembering each and every password is extremely
difficult for a user and so users may end up using the
same password for different accounts. Though this
problem can be easily resolved using a password
manager, there is a risk of losing everything once the
password manager itself is compromised. And also
with password manager, the passwords created are so
random in nature that remembering even a few of
them can be nearly impossible for some users. Like
every coin has two sides, password cracking too can
be used in a good way and in a bad way and it solely
depends on the user’s intention. While an attacker
can use a password cracking tool for gaining access
to someone’s account/system, a penetration tester can
use the same tool for auditing the password policy of
a company and its users. These password cracking
tools can prove to be very helpful during password

Shah, K. and Vasava, D.
A Novel Approach for Distributed Password Cracking Based on Command Line.
DOI: 10.5220/0013597600004664
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 3rd International Conference on Futuristic Technology (INCOFT 2025) - Volume 2, pages 581-587
ISBN: 978-989-758-763-4
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

581

recovery of an account/system either hit by malware
or even in simple cases like when a user forgets
his/her password or during forensics. There are many
different password cracking techniques like brute
forcing, dictionary based attacks, hybrid attack
which involves a combination of both brute forcing
and dictionary based attack, rainbow cracking
method for hash cracking and even through the use
of social engineering techniques (Rudy, Rodwald,
et al. , 2020), (Zion, 2018), (Shah, Patel, et al. ,
2020), (Shah and Jinwala, 2019) Some of the
existing popular password cracking tools
incorporate these techniques to provide flexibility
to the user while cracking a password. Some of these
tools utilize system components like CPU and GPU
for effective password cracking. Even though with
such powerful tools sometimes it takes a very long
time to brute-force a password. Though one can
improve system configurations like allocating more
powerful CPUs, GPUs, RAM, storage etc but it then
increases the cost drastically. Some major pen-testing
organizations have a dedicated rig for password
cracking but other organizations, researchers or pen-
testers who would like to test a system against a
password cracking tool can’t simply afford such a rig.
Having a distributed password cracking tool in such
cases will aid in testing the system on the same level
as that of the rig but with minimum cost compared to
that of the rig. Utilizing processing power of other
hosts on the network will not only speed up the
process but it also means that every host will have a
lower load compared to when a single host utilizing
all its resources for the task of cracking a password
which will result in decrease of system performance
during other task done by user while the password
cracking task is running in background.

1.1 Our Contributions

We have reviewed some of the existing tools carried
out in the area of password cracking, which mostly
revolves around popular tools like Hashcat, John The
Ripper and THC Hydra, and distributed password
cracking, which involves tools like Fitcrack and
Hashtopolis. Based on the analysis of these tools, we
proposed a new light-weight command-line
distributed password cracking tool which covered
some of the flaws of the current password cracking
tools.

2 LITERATURE REVIEW

A review of work done in the area of password
cracking was carried out. It involves going through
some of the existing password cracking tools like
hashcat, JohnTheRipper and Hydra to learn about
their working, some of the novel techniques they use
to crack passwords and other features which make
them top choices for anyone in the cyber world in the
area of password cracking. Some of the existing
distributed password crackers like Hashtopolis and
Fitcrack have also been considered as part of the
literature review. Yisa et al. (Yu and Yin, 2021)
reviewed some of the top open-source password
cracking tools. The review paper starts with
discussing different forms of password authentication
and then the different types of password cracking
techniques like dictionary attacks, brute-force attack,
hybrid attack and rainbow tables. Later, for every
password cracking tool that was taken into
consideration, a brief overview and features were also
listed out. Some of the best practices for password
protection were also mentioned which includes the
use of salting for storing passwords, use of strong
passwords which are formed by combination of
capital letters, small letters, numbers and special
characters and the use of multi-factor authentication.
Pahuja and Sidana(Pahuja and Sidana, 2021)
compared different password cracking tools from an
implementation point of view. The authors
considered three tools for their study. Besides
considering pre-installed tools like Hashcat and John
The Ripper, they have also considered another tool
called Fcrackzip, which is different from other two,
as this one only focuses on zip password cracking.
John The Ripper and Hashcat mainly focuses on hash
cracking but the former could be used to crack zip
files with the help of additional tools like zip2john. A
comparative analysis of above mentioned tools was
also provided in a tabular form, which showed the
functionality/working of the tools as well as the
complexity associated with each of those tools.

Kakarla et al. (Kakarla, Mairaj, et al. , 2018)have
discussed a few password cracking tools with an
emphasis on THC Hydra. They started with first
discussing different pass- word cracking techniques
then proceeded to explain the technicalities of THC
Hybra by demonstrating attacks on FTP, SSH and
SMTP servers. Lastly, few protective measures that
are taken against password cracking were also
discussed. Hranicky` et al. (Hranicky`, Zobal, et al.
, 2019), in their paper, have first discussed the
need for dis- tributed password cracking. They used
the self-proclaimed fastest cracking tool, Hashcat, to

INCOFT 2025 - International Conference on Futuristic Technology

582

develop a distributed Hashcat tool using the BOINC
framework called Fitcrack. In their literature survey,
they considered many works that were done in the
area of distributed cracking but only considered
Hash- topolis for comparing their work as at that time
Hashtopolis was the only one, which was a popular,
well-maintained and open-source solution for dis-
tributed computing, as mentioned in their paper.
Then, the architecture of their proposed work was
discussed with a brief discussion on each of their
components. The tool incorporated different
distribution strategies for different types of attack
modes. Their analytical results and comparison,
shows that Fitcrack performs better than Hashtopolis.

Password cracking tools like Hashcat (Jens
Steube (Steube, 2015)), John The Ripper (openwall
(openwall, 2011)) and THC Hydra (vanhauser thc
(Yisa, Baba, et al. , 2016), each have their own set of
features that make them popular even today. Hashcat
supports over 300 types of hashes and it is the world’s
fastest password cracker, as mentioned in their
official website. John The Ripper can easily identify
the hash type of the hash to crack, whereas for hashcat
we need to have the hash type of the hash and then we
can proceed to cracking that hash. Though, there are
other separate tools like hash-identifier (Zion3R)
which can help identify the hash but that feature is
currently not available by hashcat. John The Ripper
can also crack zip files and ssh keys with the help of
other separate tools zip2john (openwall, 2011c) and
ssh2john (openwall, 2011). THC Hydra supports
many different protocols that one can use to conduct
an online password cracking attack. There isn’t a
single tool which incorporates all of these capabilities
and therefore our work somewhat focuses on doing
so. Though existing distributed password tools like
Fitcrack and Hashtopolis can significantly improve
the password cracking time, their installation and
setup process is quite lengthy and could be somewhat
complex for newbies. Also, as a node is entirely
dedicated to the server, we need to have at least two
nodes to work with it. We can definitely use Hashcat
for a single node, but that means that we need to have
more than one tool in our toolbox. In this paper, we
try to eliminate this issue, by developing a command-
line lightweight distributed password cracking tool in
python3, which could work both as a standalone
application as well as a distributed password cracking
application.

3 PROPOSED WORK

A light-weight tool written in python3 which could
serve as both a standalone application (like hashcat,
hydra etc) as well as a distributed application (like
Hashtopolis, Fitcrack, etc) for the purpose of
password cracking. By default, the tool will work as
a standalone application but it can be used as a
distributed application by simply providing the
appropriate flag/argument. The node/host could
either be used as a server machine or as a client
machine when using the tool as a distributed
application. Currently, it incorporates the following
attack techniques to crack the password : dictionary
based at- tack, bruteforce based attack and online
dictionary attack. The distributed password cracking
process starts with the hash type identification phase
as shown in Fig 1, in which the hash type of the
provided hash is categorized into the following hash
types : MD4, MD5 and the SHA-1, SHA-2, SHA-3
families, based on the hash length of the provided
hash(es). A character set check ensures that the
entered input is indeed a hexadecimal string and a
valid hash. The type of identification can result in
having multiple hash types for a provided hash. For
example, a hash of 512 bits, could either be a SHA512
hash or SHA3512 hash. In such cases, the tool takes
both of the hash types into consideration and so for

Figure 1: Flowchart of the proposed scheme

A Novel Approach for Distributed Password Cracking Based on Command Line

583

each guessed password, it calculates hash digest for
both the hash types and compares both of them with
the provided hash. After this hash type identification
phase, depending on the attack technique, wordlist
pre-processing phase in case of dictionary attack or
brute force setup phase in case of brute-force attack
starts. The entire process of the proposed password
cracking work is depicted in Figure 1.

3.1 Dictionary Attack

The process of wordlist-based attack starts with the
phase of pre-processing of wordlist(s). Support has
been provided to process and use multiple wordlists
in order to crack the hash. The preprocessing phase
includes reading the wordlist(s) and merging them to
generate a single wordlist (with no duplications of
words). That wordlist is then divided into smaller
chunks. The reason for having a pre-processing
wordlist phase is because, some of the popular
wordlists like ‘rockyou’ and ‘10-million-password-
top-list-1000000.txt’ by ‘seclist’, contain millions of
words and it is very likely that they have a high
percentage of overlapping words and this could result
in overall increase in the cracking time of the hash.
Also, there is no point in repeating the words in a
password cracking process. The wordlist pre-
processing process usually starts in a different thread
and leaves the main thread for the server to listen for
incoming connections from the clients. This way, the
overall performance of the program is improved
especially when there are a number of wordlists and
a number of clients to connect.

After the wordlists pre-processing phase and after
all the clients are connected, the server sends the
chunk of data to clients, which includes the hashes
that need to be cracked, the chunk that needs to be
used and the attack technique that needs to be used
for cracking the hash and some other configurations.
Each client including the server itself will participate
in the cracking phase and will utilize the chunk they
received to crack the hash. If the hash is cracked by
any of the clients, then it will send a message to the
server informing it about the same, along with the
cracked password. The server will then update its list
of hashes left to crack and will send that updated
hashes list to others in the network, when they send a
message re- questing the next chunk of data. This
process will continue until there are no hashes left to
crack or there are no chunks left with the server. At
the end of this whole process, the server will close all
the connections and list all the passwords cracked
during the complete process.

3.2 Bruteforce Attack

This process starts with the brute-force setup phase
on the server side, in which, based on the given
configuration options/arguments such as pass- word
pattern/charset, minimum and maximum password
length, all possible characters at the
first/start/leftmost position of the word is guessed and
then a list of tuples is generated, where the first item
of the tuple would be one of all the possible characters
that were guessed for the first position, whereas the
second argument/element in the tuple will indicate the
length of strings that are to be generated starting with
the character at the first item. For example, (a,8)
indicates that the node having this tuple will have to
generate all the strings starting with character ‘a’ and
of length ‘8’. After this setup phase, the cracking
phase begins where each node in the network will
take one tuple from the list of tuples and will perform
the brute force attack. As the process of handling
client and bruteforcing are on separate threads
(Python-Software-Foundation, 2012b), the server
will also participate in the cracking phase. Unlike
dictionary attack, which is a I/O bound task,
bruteforce attack is a CPU bound task and so we have
used the concept of multiprocessing (Python-
Software-Foundation, 2012a) for increasing the
performance of the system. By default, it uses 10
processes to do the work. As with the dictionary
attack, this process will continue until there are no
hashes left to crack or there are no tuples left with the
server. In case a hash has been cracked, the client and
the server will work the same way as it was in the
dictionary attack. At the end, all the connections are
closed and all cracked passwords are listed by the
server.

3.3 Online Attack

For the online attack mode, the flow will be similar to
that of a dictionary- based attack except that instead
of cracking the hash, this time it will be working on
cracking the password of the login page of a web app.
For such an attack, it uses selenium under the hood.
Selenium not only takes care of the cookies, but it also
takes care of the other security elements like the
hidden fields of a web app, if any. And this was the
reason selenium was preferred ahead of the ‘request’
module, which is generally used when dealing with
requests in Python. The user only needs to provide the
target url, the username and the wordlist to work with.
The server will then send the chunks that were
generated during the pre-processing wordlist phase to
clients along with the target url and the username.

INCOFT 2025 - International Conference on Futuristic Technology

584

Each of the nodes, including server, will then
initialize the cracking process by running the browser
through selenium in headless mode and it will then
find the appropriate location in the web page (target)
for entering the username and the guessed password
from the wordlist. As selenium requires appropriate
drivers to run a browser, another module ‘webdriver-
manager’ was used to download the necessary drivers
for selenium to work with. The process in case of any
successful login, will be the same as it was for the
successful hash crack process in brute force and
dictionary attack except that the server will not
inform others on the network as it did in other two
attacks. The process ends when there are no chunks
left to work with.

4 RESULTS AND ANALYSIS

For comparative analysis of the tool, two distinct
physical machines were used, one acting as a server
and the other as the client machine. As shown in the
table 1, two completely different nodes with different
architecture and OS were used to carry out the test.
Both nodes also differ in memory space allotted to
them to see if there is any performance issue because
of it. The nodes were communicating with each other
on a home network, rather than having a completely
isolated environment as in most of the real-world
scenarios we would have regular traffic going through
the network. And so it’s important to test the
performance of these tools in such an environment.

Table 1: System Configuration of server and client machine

 Server Machine Client Machine
OS Ubuntu 20.04.5

LTS
x86 64

Kali GNU/Linux
Rolling x86 64

Kernel 5.15.0-52-generic 5.16.0-kali7-amd64
CPU AMD Ryzen 5

4600H
with Radeon G

Intel i5-2300 @
2.793GHz

GPU VMware SVGA
II adapter

VMware SVGA
II adapter

Memory 3924 MiB 2938 MiB

For dictionary attack, some of the current popular

wordlists were used, like ‘rockyou.txt’ (which is
already available in Kali Linux under the
‘/usr/share/wordlists/’ directory) and all the wordlists
by seclists (Miessler, 2012) under the passwords
category. The results of this test are shown in table 2.
The cracking time of Hashtopolis and DPC (proposed
tool) were noted on using different wordlists. And the

hash of the last word in the list was used in each
of the experiments. Note that the time noted was in
the format : ‘hh:mm:ss’. The category ‘all’ in table 1
indicates that all the wordlists from SecLists (it
includes the following wordlists :‘10-million-
password-list-top-100.txt’, ‘10- million-password-
list-top-1000.txt’,‘10-million-password-list-top-
10000.txt’, ‘10-million-password-list-top-
100000.txt’, ‘10-million-password-list-top-
1000000.txt’. ‘10-million-password-list-top-500.txt’,
‘100k-most-used-passwords-NCSC.txt’, ‘10k-most-
common.txt’, ‘1900-2020.txt’, ‘500-worst-
passwords.txt’, ‘SplashData- 2014.txt’, ‘SplashData-
2015-1.txt’, ‘SplashData-2015-2.txt’, ‘best1050.txt’,
‘best110.txt’, ‘best15.txt’, ‘common-passwords-
win.txt’, ‘medical-devices.txt’, ‘top-20-common-
SSH-passwords.txt’, ‘top-passwords-shortlist.txt’,
‘worst-passwords- 2017-top100-slashdata.txt’) +
‘rockyou.txt’ were used.

As seen in table 2, in some cases the proposed
DPC tool works better than Hashtopolis, while in
some cases the Hashtopolis is better than the DPC
tool. Thus, we can say that they are very close to each
other in terms of performance.

Table 2: Dictionary based attack comparison

Wordlist No of
words

Hash
algortihm

Hashtopolis DPC

10-million-
password- list-

top-
1000000.txt

999,998 SHA1 09s 5s

rockyou.txt 14,344,392 MD5 29s 32s
10-million-

password- list-
top-

1000000.txt
+

rockyou.txt

15,344,390 SHA1 8s 6s

10-million-
password- list-

top-
1000000.txt

+
rockyou.txt

15,344,390 MD5 31s 40s

All 15,613,886 SHA1 3m 45s 33s
All 15,613,886 MD5 3m 10s 37s

In cases where multiple wordlists were used (as in

‘All’ category - where a total of 22 wordlists were
used), DPC performs way better than Hashtopolis
because of its wordlist preprocessing phase (where
repeated words among wordlists are eliminated), as
seen in Figures 2 and 3.

Comparison with FitCrack was not possible,
because the errors during installation and setup of

A Novel Approach for Distributed Password Cracking Based on Command Line

585

FitCrack client were not resolved within the duration
of this experiment. Thus, we can say that between
Hashtopolis and DPC, the latter performs better when
it comes to working with multiple wordlists.

Figure 2: SHA1 hash cracking performance comparison

Figure 3: MD5 hash cracking performance comparison

5 CONCLUSIONS

Even today passwords remain one of the most
dominant authentication methods. And so security of
passwords still plays a vital role in overall security of
the organization. Mainly, weak passwords are the
ones that are cracked easily while strong passwords
take relatively longer time to crack. The time to crack
may vary depending on factors like password length,
character set used to create password, the hash type
used to encrypt, the hardware con- figuration of the
system used for cracking etc. Password cracking
process, if successful, can become a valuable factor
in deciding the outcome of a cyber investigation. And
to further speed up the process of cracking, we can
make use of distributed password cracking tools.
Tools like Hashtopolis and FitCrack which are built
on top of hashcat do pretty good work when it comes
to distributed password cracking, provided they are
already installed and configured properly to use. But
when it comes to instantaneous use, these tools take a

considerable amount of time for installation and
initial setup. As the proposed tool is written in Python
and is bound to be used as a command line tool, it is
simply a matter of time to install and it’s ready to use.
The server also participating in cracking helps in
cases where there are not more than two nodes
available. And also gives the tool the ability to work
as a standalone application. Merging wordlist features
of this tool can prove to be useful when working with
multiple wordlists at a time. And with support for
online attack (http/https protocol), it stands out
among the other tools.

For making a one-stop solution for password
cracking, an extended work to make it feature-rich
application can be done. Various features like adding
support for other hash types, support for other
protocols and support for GPU based cracking can be
added to enhance the capabilities of the tool. In order
to make sure that the server and client communicate
in a secure fashion, efforts can be made in using ssh
protocol for communication.

In cases where the security/investigation team
have weak infrastructure, distributed password
cracking tools can prove to be very helpful, as it uses
the computing power of multiple nodes for cracking
which in turn depicts the behaviour of a high-end
system. Hence, we can say that there is a need for
distributed password cracking tools considering the
challenges we face today in penetration testing and
digital forensics.

REFERENCES

Dave, D., Kava, M., Gupta, R. K., and Shah, K. (2021).
Deep learning approaches for intrusion detection
system. In 2021 IEEE International Conference on
Technology, Research, and Innovation for Betterment
of Society (TRIBES), pages 1–6. IEEE.

Guo, Y., Zhang, Z., and Guo, Y. (2019). Optiwords: A new
password pol- icy for creating memorable and strong
passwords. Computers & Security, 85:423–435.

HRANICKY´, R. (2022). Digital forensics: The
acceleration of password cracking.

Hranicky`, R., Zobal, L., Ryˇsavy`, O., and Kol´aˇr, D.
(2019). Distributed password cracking with boinc and
hashcat. Digital Investigation, 30:161– 172.

Hranicky`, R., Zobal, L., Ryˇsavy`, O., Kol´aˇr, D., and
Mikuˇs, D. (2020). Distributed pcfg password
cracking. In European Symposium on Research in
Computer Security, pages 701–719. Springer.

Jens Steube, G. G. (2015). Hashcat - advanced password
recovery. https://hashcat.net/hashcat/. (last accessed on
20/11/22).

Jourdan, P. and Stavrou, E. (2019). Towards designing
advanced pass- word cracking toolkits: Optimizing the

INCOFT 2025 - International Conference on Futuristic Technology

586

password cracking process. In Adjunct Publication of
the 27th Conference on User Modeling, Adaptation and
Personalization, pages 203–208.

Kakarla, T., Mairaj, A., and Javaid, A. Y. (2018). A real-
world password cracking demonstration using open
source tools for instructional use. In 2018 IEEE
International Conference on Electro/Information
Technology (EIT), pages 0387–0391. IEEE.

Miessler, D. (2012). Common-credentials. https://github.
com/danielmiessler/SecLists/tree/master/Passwords/C
ommon-Credentials. (last accessed on 20/12/22).

openwall (2011a). Johntheripper.
https://github.com/openwall/ john. (last accessed on
22/11/22).

openwall (2011b). ssh2john.
https://github.com/openwall/john/ blob/bleeding-
jumbo/run/ssh2john.py. (last accessed on 05/12/22).

openwall (2011c). zip2john.
https://github.com/openwall/john/ blob/bleeding-
jumbo/src/zip2john.c. (last accessed on 03/12/22).

Pahuja, D. and Sidana, P. (2021). Implementing and
comparing different password cracking tools.
International Research Journal of Engineering and
Technology.

Pervan, B., Knezovi´c, J., and Guberovi´c, E. (2022).
Energy-efficient dis- tributed password hash
computation on heterogeneous embedded system.
Automatika, 63(3):399–417.

Pervan, B., Knezovic, J., and Pericin, K. (2019). Distributed
password hash computation on commodity
heterogeneous programmable platforms. In 13th
USENIX Workshop on Offensive Technologies
(WOOT 19).

Python-Software-Foundation (2012a). Multiprocessing.
https://
docs.python.org/3/library/multiprocessing.html. (last
accessed on 10/12/22).

Python-Software-Foundation (2012b). Threading.
https://docs. python.org/3/library/threading.html. (last
accessed on 10/12/22).

Rudy, J. and Rodwald, P. (2020). Job scheduling with
machine speeds for password cracking using
hashtopolis. In International Conference on
Dependability and Complex Systems, pages 523–533.
Springer.

Shah, K. and Patel, D. (2020). Exploring the access control
policies of web-based social network. In ICDSMLA
2019: Proceedings of the 1st International Conference
on Data Science, Machine Learning and Appli- cations,
pages 1614–1622. Springer.

Shah, K. A. and Jinwala, D. C. (2019). Novel approach of
key predistri- bution for grid based sensor networks.
Wireless Personal Communications, 108:939–955.

Siponen, M., Puhakainen, P., and Vance, A. (2020). Can
individuals’ neutralization techniques be overcome? a
field experiment on password policy. Computers &
Security, 88:101617.

vanhauser thc (2014). Thc-hydra.
 https://github.com/ vanhauser-thc/thc-hydra. (last
accessed on 22/11/22).

Yisa, V., Baba, M., and Olaniyi, E. (2016). A review of top
open source password cracking tools. International
Conference on Information and Communication
Technology and Its Applications.

Yu, F. and Yin, H. (2021). Password cracking of pdf 2.0
documents on gpu. In 2021 IEEE 6th International
Conference on Computer and Communication Systems
(ICCCS), pages 721–725. IEEE.

Zion3R (2018). hash-identifier.
https://github.com/blackploit/ hash-identifier. (last
accessed on 05/12/22).

A Novel Approach for Distributed Password Cracking Based on Command Line

587

