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Abstract: Painting is not just a visual art, but also a human creation. Researchers have been hard at work developing AI 
systems that can mimic human intellect and carry out tasks previously thought impossible, such as facial 
recognition, text production, and even artistic creation. Meanwhile, deep convolutional generative adversarial 
networks (GANs) have started producing visually arresting pictures in select categories. To achieve these 
goals, we present a Deep Fusion Generative Adversarial Networks that is both easier to implement and more 
successful in its applications (DF-GAN). To be more precise, we propose (i) exotic fusion block of Deep 
Text-Image, which make possible understand the fusion process to make a full fusion between text and 
images, (ii) a exotic Target-aware discriminator   combination of One-Way Output and matching aware 
penalty gradient, that improves the semantic consistency for text-image not either introducing additional 
networks, and (iii) exotic one-stage text-image We find that the proposed DF-GAN performs the state-of-the-
art algorithms on popular datasets, while being more straightforward and efficient in its ability to generate 
natural-looking and text-matching synthetic pictures. 

1 INTRODUCTION 

Impressive advancements have been achieved in 
converting text to photo-realistic images with the use 
of deep neural networks recently (Brock, Donahue, et 
al. , 2019). Generative adversarial networks (GANs) 
demonstrate superiority in creating high-quality 
pictures when compared to other state-of-the-art 
networks for text-to-image synthesis. Multiple 
methods have been suggested to enhance GAN's 
training process stability and picture resolution 
(Vries, Strub, et al. , 2017). None of these methods, 
however, guarantees that all of the information from 
the input text is fully reflected in the produced 
picture, making it more difficult to deduce the 
original text from the image. Their primary emphasis 
is on better resolution and photo-realism. Rather than 
concentrating primarily on increasing resolution, it is 
more important to ensure that all relevant information 
is extracted from the input text. Let's provide an 
information theoretic description of this issue. The 
most crucial part of the text to image synthesis 
pipeline is the generator, which is used to produce a 
false picture given a phrase containing words 

describing certain photographs. We want to 
Maximize the mutual information of the input 
sentence and the false picture to motivate the fake 
image to communicate the information of the input 
phrase as much as feasible. To get better results from 
the text, however, producing images with to make 
high-quality photos, therefore we present a novel 
neural network to approximate the mutual 
information and optimize with it. 

2 RELATED WORK 

In recent years, deep neural networks have seen a lot 
of success, especially in the natural language 
processing (NLP) and computer vision (CV) fields. 
Recent fashionable methods in language modelling 
and deep generative models provide the backbone of 
much existing work in text to picture synthesis. For 
the first time, Variational Autoencoders (VAE) 
(Cheng, Song, et al. , 2021) used a probabilistic 
graphical model and continuous latent variables to 
solve this challenge, with the objective being to 
optimise the lower limit of data likelihood. The Deep 
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Recurrent Attention Writer (DRAW) (Ding, Yang, et 
al. , 2021) was developed using a later method that 
also featured a unique differentiable attention 
mechanism 

But the created photos are very low quality and 
seem cartoonish compared to real life. Since then, 
several tweaks and extensions to Generative 
Adversarial Networks (GAN) (Brown, Mann, et al. , 
2020) have been suggested to better optimise its 
ability to generate crisper images. Several methods 
(Cheng, Wu, et al. , 2020) have been offered to 
stabilise the training process and provide convincing 
results in light of GAN's unsteady training dynamics. 
Image creation from text has shown some 
encouraging results using conditional GANs 
(cGANs), which leverage conditional information for 
both the discriminator and generator (Cheng, Song, et 
al. , 2021). An impressive use of GAN, (Cheng, Song, 
et al. , 2021) may produce pictures that are almost 
photographic in quality. They also presented other 
alternatives by using various goal functions to impose 
smoothness on the language manifold and lessen the 
likelihood of overfitting. The StackGAN architecture 
was used as the foundation for our design. To 
optimise the information expressed, we don't only 
produce high-resolution, photo-realistic pictures; we 
also maximize the mutual information between the 
input text and the output image. 

3 THE PROPOSED DF-GAN 

In this study, we present a shallow convolutional 
neural network (CNN) model for text-to-image 
synthesis (DF-GAN). In order to generate visuals that 
are both realistic and compatible with the surrounding 
text, we propose: I a cutting-edge method for 
immediately synthesising high-resolution pictures 
without visual feature entanglements by using a text-
to-image backbone. (ii) a unique Target-Aware 
Discriminator that improves text-image semantic 
consistency without adding additional networks, 
made up of Gradient Penalty Matching Aware(GP-
MA) and output w.r.t One Way. (iii) an innovative 
Deep Fusion text-image Block (DF-Block) that 
integrates textual and visual characteristics to a 
greater extent. 

Through the employment of several Deep text-
image Fusion Blocks (DFBlock) in UPBlocks, 
DFGAN creates high resolution pictures directly 
from a single discriminator and generator.  
 

 

Figure 1: DF-GAN for text-to-image synthesis. 

3.1 Model Overview 

As can be seen in Figure 1, the proposed DF-GAN 
consists of three main parts: Generator, 
Discriminator, and a Pre-Trained Text Encoder. 
Generator takes two different inputs 1) a phrase 
encoded vector by a text encoder and from Gaussian 
Distribution a sampled noise vector —to guarantee 
that the resulting pictures are diverse. The first step 
involves reshaping the noise vector by feeding it into 
a fully linked layer. The discriminator encourages the 
generator to synthesise pictures with improved 
quality and text-image semantic coherence by 
discriminating created images from genuine samples. 
In order to derive semantic vectors from the provided 
text description, a Text Encoder is a bidirectional 
Long Short-Term Memory (LSTM). The AttnGAN  
pre-trained model is used directly. 

3.2 One-Stage Text-to-Image Backbone 

Previous text-to-image converters have failed 
because to the GAN model's inconsistency. As a 
standard practice, GANs produce high-resolution 
pictures from low-resolution inputs using a layered 
architecture [56,57We proposed a single-stage text-
image framework that may immediately synthesis 
highly resolute pictures via a single pair of generator 
and discriminator, drawing inspiration from previous 
works on unconditional image production. To 
maintain consistency during adversarial training, we 
make use of the hinge loss. It sidesteps potential 
tangles caused by several generators by having only 
one in the single-stage backbone Our one-step 
technique with hinge loss is formulated as follows 
(Lim and Chul, 2017): 
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Figure 2:  (a) The impact of the gradient penalty on the loss 
landscape is compared. The gradient penalty helps 
generator convergence by flattening the discriminator loss 
surface. A MA-GP schematic (b). We need to use the 
information we have (actual, compatible). MA-GP. 

LD = −𝐸𝑥~Pr [min൫0, −1 + 𝐷(𝑥, 𝑒)൯] 
             − ቀଵଶቁ 𝐸𝐺(𝑧)~𝑝𝑔ൣmin൫0, −1 −𝐷(𝐺(𝑧), 𝑒)൯൧ 
-(1/2) 𝐸𝑥(𝑧)~𝑝𝑚𝑖𝑠ൣmin൫0, −1 − 𝐷(𝑥, 𝑒)൯൧ 
LG = −𝐸𝐺(𝑧)~ Pg[𝐷(𝐺(𝑧), 𝑒)]                             

[1] 
where z is the vector of Gaussian random noise 

and e is the vector of sentences. Synthetic data 
distribution is denoted by Pg, actual data distribution 
by Pr, and mismatched data distribution by Pmis. 

3.3 Target-Aware Discriminator 

The proposed Target-Aware Discriminator is 
described in full below; it consists of the Gradient 
Penalty Matching Aware(GP-MA) and the output of 
single way. The Target Aware discriminator 
encourages the generator to produce more natural and 
semantically consistent across text and picture 
representations. 

3.4 Matching-Aware Gradient Penalty 

To improve text-image semantic consistency, we 
developed a novel method called the Matching-
Aware zero-centered Gradient Penalty (MAGP). 
Here, we apply the unconditional gradient penalty 
(Mescheder et al., 2018) to our MA-GP for the text-
to-image creation problem after first demonstrating it 
from a fresh and understandable angle. Figure 2(a) 
demonstrates how the target data (actual pictures) in 
unconditional image synthesis have a minimal 
discriminator loss with incorporating the perspective 
inside the process of creating images from text. In 
case of text to image generation, the aspect of 

discriminator takes in 4 different types of input, as 
shown in Figure 2(b): fake images with matching 
Text (match, fake), fake image with the mismatched 
text (mismatch, fake), real images with matching text 
(match, real), and real images with mismatched text 
(mismatch, real). Our whole model formulation using 
MA-GP reads as follows: 

LD = −𝐸𝑥~Pr [min൫0, −1 + 𝐷(𝑥, 𝑒)൯]  − ൬12൰ 𝐸𝐺(𝑧)~𝑝𝑔ൣmin൫0, −1 − 𝐷(𝐺(𝑧), 𝑒)൯൧ 
           -(1/2) 𝐸𝑥(𝑧)~𝑝𝑚𝑖𝑠ൣmin൫0, −1 −𝐷(𝑥, 𝑒)൯൧ 
                +𝑘𝐸𝑥~𝑝𝑟[║∆𝑥𝐷(𝑥, 𝑒)║ +

║∆𝑒𝐷(𝑥, 𝑒))║ 
 LG = −𝐸𝐺(𝑧)~Pg [D(G(z), e)] 
                                                                          [2] 
where k and p = Hyper parameters to balance the 

effectiveness of penalty gradient. 
Our model is able to more closely approximate the 

text matching actual data via the use of the MA-GP 
loss as a regularization on the discriminator, allowing 
for the generation of more text matching pictures.  

 
Figure 3: Our One-Way Output compared to the Two-way 
Output. The ultimate adversarial loss is predicted by adding 
the predicted conditional loss to the predicted unconditional 
loss in the Two-Way Output. To further elaborate on (b), 
our One-Way Output accurately estimates the total 
adversarial loss. 

3.5 One-Way Output 

Previously Text to Image GAN’s typically employ 
images features retrieved by the  discriminators in the 
two ways (Figure 2(a)): one assesses if the picture is 
genuine or false, and the other concatenates the image 
features and phrase vectors to evaluated the text to 
image semantic coherence. the other concatenates the 
image feature and phrase vector to evaluate text-
image semantic coherence Specifically, as seen in 
Figure 2(b), following back propagation the 
conditional loss produces a point gradient the 
conditional loss produces a gradient pointing to both 
the matched and real inputs, whereas the 
unconditional loss produces a pointing gradient 
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exclusively to the actual images.. As a result, we 
advocate adopting the One-Way Output for use in 
text-to-image translation. Figure 3(b) depicts how our 
discriminator combines the image feature and phrase 
vector into a single input before passing it through 
two convolution layers that generate a single 
adversarial loss.  

3.6 Efficient Text-Image Fusion 

We present a new Deep text-image Fusion Block that 
can effectively combine text and picture data (DF 
Block). Our DF Block takes the text-image fusion 
process farther than any prior modules, resulting in a 
complete text-image fusion. Our DF-GAN uses a 7-
UPBlock generator, as illustrated in Figure 1. It is 
possible to find two Text-Image Fusion blocks inside 
of a UP Block. In order to forecast the language-
conditioned channel-wise scaling parameters and 
shifting parameters from sentence vector e, we use 
two MLPs (Multilayer Perceptron), as illustrated in 
Figure 6(c): 

         γ = MLP1(e),      θ = MLP2(e)                [3]                                                          
For a given input feature map 𝑋 ∈ ℝ୆×େ×ୌ×୛ , 

we first conduct the channel-wise scaling operation 
on X with the scaling parameter γ, then apply the 
channel-wise shifting operation with the shifting 
parameter θ. Such a process can be expressed as 
follows: 

where AF F denotes the Affine Transformation; xi 
is the i th channel of visual feature maps; e is the 
sentence vector; γi and θi are scaling parameter and 
shifting parameter for the i th channel of visual 
feature maps. 

 
Figure 4: (a) An ordinary UPBlock on the power grid. The 
UPBlock employs two Fusion Blocks to combine text and 
picture information, and then upsamples the combined 
result. Our DFBlock generator (d.2) is compared to (d.1) 
the generator that uses cross-modal attention. 

Portray a variety of graphical elements based on a 
variety of written explanations This is because most 
current text-to-picture GANs rely on the cross modal 

attention mechanism, which experiences 
exponentially rising computing costs as image sizes 
expand. 

4 EXPERIMENTS 

We provide the datasets, training details, and metrics 
we utilized to evaluate our trials below, and we 
conclude with quantitative and qualitative 
assessments of DF-GAN and its derivatives. 

4.1 Datasets 

We next follow the footsteps of prior work and test 
the proposed model on two difficult datasets, namely 
CUB bird and COCO (Lin, Maire, et al. , 2014).  The 
200 bird species included in the CUB dataset's 11,788 
photos. For every picture of a bird, there are 10 words 
for it in several languages. Eighty thousand pictures 
are available for training purposes and forty thousand 
are available for testing purposes in the COCO 
dataset. There are five language explanations for each 
picture in this series. 

 

4.2 Training Details 

Adam (Kingma, Adam, et al. , 2015) is used to 
achieve optimal performance for our network, with 
parameters 1=0.0 and 2=0.9. Two Timescale Update 
Rule (TTUR) (Heusel, Ramsauer, et al. , 2017) 
specifies a learning rate of 0.0001 for the generator 
and 0.0004 for the discriminator. 

4.3 Evaluation Details 

Our network's efficacy is measured using the 
Inception Score (IS) and the Frechet Inception 
Distance (FID) (Heusel, Ramsauer, et al. , 2017), both 
of which have been used in earlier publications. More 
specifically, IS calculates the Kullback-Leibler (KL) 
divergence between a conditional distribution and a 
marginal distribution. Each produced picture clearly 
corresponds to a given class, and a higher IS indicates 
a greater quality of the created photos. In order to 
compare synthetic and real-world pictures in the 
feature space of a pre-trained Inception v3 network, 
FID (Heusel, Ramsauer, et al. , 2017) calculates the 
Frechet distance between the distributions of the two 
types of images. As opposed to IS, FID is lower in 
photographs that seem more natural. Each model 
creates 30,000 pictures (256256 resolution) using 
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randomly chosen text descriptions from the test 
dataset in order to calculate IS and FID.. 

4.4 Quantitative Evaluation 

We evaluate the proposed technique against various 
state-of-the-art algorithms that have also used stacked 
structures to achieve exceptional performance in text-
to-image synthesis, such as StackGAN , 
StackGAN++, AttnGAN, MirrorGAN, SD-GAN, 
and DM-GAN. Newer models were also used for 
comparison. It's important to note that modern models 
always include outside information or oversight. 
XMC-GAN  employs the additional pretrained VGG-
19  and Bert; DAEGAN  employs the extra NLTK 
POS tagging and manually constructs rules for 
various datasets; and TIME employs the extra 2-D 
positional encoding. 

 
Figure 5: Using the test set of COCO and CUB datasets, we 
show examples of the pictures generated using AttnGAN, 
DM-GAN, and our new DF-GAN conditioned on text 
descriptions. 

Table 1: Based on CUB and COCO datasets the results of 
FID,IS and NoP. 

Model 
  

COCO CUB

FID↓ NoP↓ IS↑ FID↓ 

CPGAN - - 52.48 289M 

TIME  3.91 13.3 29.14 111M 
MirrorGAN  3.56 17.34 23.71 - 
DAE-GAN  3.42 13.21 26.12 93M 
AttnGAN 3.36 18.71 25.49 240M 
SD-GAN  3.67 -   

XMC-GAN  - - 8.3 156M 
StackGAN  4.7 - - - 

StackGAN++  4.84 - -   
DM-GAN 3.75 14.19 21.64 36M 
DF-GAN 

(Ours) 5.1 14.81 19.32 19M  

 

As can be shown in Table 1, when compared to 
other state-of-the-art models, our DF-GAN has a 
much lower NoP while still producing respectable 
results. On the CUB dataset, our DF-GAN improves 
upon the IS metric (4.36 to 5.10) and reduces the FID 
metric (23.98 to 14.81) compared to AttnGAN  which 
uses cross-modal attention to fuse text and image 
characteristics. FID is reduced from 35.49 to 19.32 
using our DF-GAN on the COCO dataset.  

4.5 Qualitative Evaluation 

We additionally evaluate AttnGAN, DM-GAN, and 
our own suggested DF-GAN with regards to their 
respective visualisation outputs. Figure 6 
demonstrates how AttnGAN and DM-GAN  
produced pictures are only a mixture of fuzzy shapes 
and a few visual elements (1st, 3rd , 5 th, 7th, and 8th 
columns). Both AttnGAN and DM-GAN provide 
incorrect bird forms, as seen in the fifth, seventh, and 
eighth columns, respectively. Our DF-GAN also 
produces synthetic pictures with more accurate item 
forms and fine-grained features (e.g., 1st, 3rd, 7th, 
and 8th columns). Our DF-GAN product also has a 
more realistic avian stance (e.g., 7th and 8th 
columns). We discover that our DF-GAN can capture 
more nuanced features in text descriptions compared 
to previous models by analysing the text-image 
semantic consistency. Figure 5 shows that the 
proposed DF-GAN is able to synthesis images that 
better match the textual descriptions. 

5 COMPARISON WITH  
STATE-OF-THE-ART 
METHODS 

We conduct qualitative comparisons of the 
proposed technique to many state-of-the-art methods 
on the MSCOCO, CUB-200, and Oxford-102 
datasets. These methods include certain GAN-based 
methods, DALL-E, and CogView (Hong, Yang, et al. 
, 2018). In Table 2, we display the results of our FID 
(Liang, Pei, et al. , 2020) analysis between 30,000 
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synthetic and 30,000 real images. As compared to 
other GAN-based models with a similar amount of 
parameters, we find that our compact model, VQ-
Diffusion-S, performs admirably on the CUB-200 
and Oxford102 datasets. VQ-Diffusion-B, our 
starting model, enhances the efficiency even further. 
Further, on the MSCOCO dataset, our VQ-Diffusion-
F model outperforms all other approaches by a wide 
margin, including those with ten times as many 
parameters as ours, such as DALL-E  and CogView 
(Hong, Yang, et al. , 2018). Figure 2 displays some 
visual comparison results using DM-GAN and DF-
GAN. Naturally, the synthetic images we produce are 
more faithful to the source text and have more 
realistic fine-grained features. 

5.1 In the wild text-to-image synthesis 

We train our model on three subsets of the 
LAION400M dataset, including the cartoon, icon, 
and human datasets, to show that it can generate 
images in the wild. Here in Figure 3 we show you the 
outcomes of our study. Despite the fact that our 
starting model is significantly less complex than that 
of DALL-E and CogView, we still managed to get 
impressive results. In contrast to the AR approach, 
which creates images in a sequential fashion (from 
top left to bottom right), our method generates images 
simultaneously from all directions. This means that 
our approach can be used for a wide variety of visual 
tasks, such as mask inpainting with irregular edges. It 
is not necessary to re-train a model for this purpose. 
After labelling the tokens in the out-of-shape area 
with the [MASK] token, we feed them into our model. 
Both unconditional and text-conditioned mask 
inpainting are supported by this method. 

5.2 Ablations 

Number of timesteps. We look into the training and 
inference time periods. In the experiment depicted in 
Table 2, we use the CUB-200 dataset. The results 
seem to plateau at around 200 training steps, but we 
found that increasing the number of steps from 10 to 
100 yields the best results. So, in our tests we used a 
timestep size of 100 instead of the usual of 10. We 
test the generated images from 10, 25, 50, and 100 
inference steps on five models with varying training 
steps to illustrate the quick inference technique. After 
eliminating half of the inference stages, we find the 
performance is still satisfactory. This might save 
another half of the inference time. 

Mask-and-replace diffusion strategy. We 
investigate the performance benefits of the mask-and-

replace technique on the Oxford-102 dataset. To test 
this, we varied the final mask rate (γT). Our mask-
and-replace approach includes the exceptional 
situations of mask-only strategies γ(T = 1) and 
replace-only strategies (γT = 0). In Figure 4 we can 
see that the optimal performance occurs when M = 
0.9. The error accumulation problem may arise when 
M is greater than 0.9, while determining which part 
of the network requires more focus may be 
challenging when M is less than 0.9. 

Table 2: FID comparison of different text-to-image 
synthesis method on MSCOCO, CUB-200, and Oxford-

102 datasets. 

Model MSCOCO CUB-200 Oxford-
102

Cogview  37.1 - -
DALLE] 37.5 46.1 -

DAE-GAN  38.12 16.19 -
EFF-T2I  - 19.17 14.47
SEGAN  28.28 20.17 -
DF-GAN  27.42 18.81 -
AttnGAN  28.49 24.98 -
StackGAN  67.05 54.89 52.28

StackGAN++  78.59 18.3 49.68
DM-GAN 28.64 18.09 -
VQ-D-S 29.17 10.97 16.95
VQ-D-B 18.75 12.94 13.88
VQ-D-F 12.86 11.32 13.14

 

 

Figure 6: The text-to-image synthesis results. 

Truncation. We also show the critical role that 
truncation sampling plays in our discrete diffusion-
based approach. There's a chance that this would 
prevent the network from randomly picking tokens 
with low probabilities. The top r tokens of p(x 0|xt, y) 
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are the only ones that will be kept in the inference 
phase. We test the outcomes on the CUB-200 dataset 
using varying truncation rates (r). Figure 4 shows that 
optimal performance is reached when the truncation 
rate is 0.86. 

 

Figure 7: Ablation study on the mask rate. 

 

Figure 8: Ablation study on the truncation rate. 

Table 3: Different Result between VQ-Diffusion and VQ- 
Model w.r.t. steps and FID. 

Model Steps FID throughput 
(imgs/s) 

VQ-AR-B 20 18.79 0.03 
VQ-AR-S 35 17.32 0.08 
VQ-D-S 25 16.56 1.25 
VQ-D-S 50 14.82 0.67 
VQ-D-S 100 13.67 0.37 
VQ-D-B 25 15.13 0.47 
VQ-D-B 50 13.75 0.24 
VQ-D-B 100 12.84 0.13 
Contrasting VQ-Diffusion and VQ-AR. To 

provide a level playing field, we swap out the 

diffusion image decoder for an autoregressive 
decoder using the same network architecture while 
leaving all other parameters, such as the image and 
text encoders, same. At the same time, we measure 
the efficiency of both strategies on a V100 GPU using 
a batch size of 32 samples. Fast inference technique 
VQ Diffusion is 15 times faster than the best FID-
scoring VQ-AR model. 

5.3 Unified generation model 

Since our method is generic, it can be used for a 
variety of image synthesis tasks, including both 
unconditional and labelled synthesis. After stripping 
out the text encoder network and cross attention 
section from transformer blocks, we inject the class 
label via the AdaLN operator to produce images 
based on the label. In total, there are 24 512-by-512-
pixel blocks of transformers across our network. The 
ImageNet dataset is used to train our model. 
Specifically, we use the VQ-GAN (Karras, Laine, et 
al. , 2019) model downsampled from 256 256 to 16 
16 that has been publically published and trained on 
the ImageNet dataset to perform VQ-VAE. Table 4 
displays our quantitative findings. In contrast to the 
higher FID scores reported by some task-specific 
GAN models, our method delivers a unified model 
that performs admirably on a wide variety of tasks. 

Table 4: ImageNet and FFHQ based FID score 
comparison. 

Model ImageNet FFHQ

StyleGAN2  - 3.9 

BigGAN  6.59 11.9 

BigGAN-deep  7.91 - 

IDDPM  11.8 - 

ADM-G  11.91 - 

VQGAN  14.68 9.7 

ImageBART  20.29 9.67 

ADM-G (1.0guid)  05.00 - 

VQGAN (acc0.05) 06.01 - 

ImageBART (acc0.05)  8.04 - 

Ours 11.89 6.33 
The central idea is to create a model of the VQ-

VAE latent space that is not autoregressive. To 
prevent the AR model's flaws from piling up, the 
authors propose a mask-and-replace diffusion 
technique. When compared to earlier GAN-based 
text-to-image approaches, our model's scene 
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generation capability is superior. Both unconditional 
and conditioned image formation benefit greatly from 
our approach, and our results are quite promising. 

6 LIMITATIONS 

For future research, it is important to keep in mind the 
limits of DF-GAN, notwithstanding its advantage in 
text-to-image synthesis. It's important to note that our 
model's capacity to synthesize fine-grained visual 
features is constrained since we only provide 
sentence-level text information. Second, using pre-
trained, big language models to provide more 
information may further enhance performance. In our 
further efforts, we hope to overcome these 
restrictions. 

7 CONCLUSION AND FUTURE 
SCOPE 

In this research work, we present a new deep 
feedforward (DF) GAN for text-to-image job. Here 
we provide a single-stage text-to-image Backbone 
capable of immediately synthesizing high-resolution 
pictures without intermediate stages or inter-
generator dependencies. Furthermore, we provide a 
unique Target-Aware Discriminator that combines 
Matching-Aware Gradient Penalty (MAGP) with 
One-Way Output. The text-image semantic 
consistency may be improved further without the 
need for additional networks. Along with this, we 
provide a unique Deep text-image Fusion Block (DF 
Block) that completely fuses text and picture 
information more efficiently and profoundly. 
Extensive experiments show that our proposed DF-
GAN far outperforms the state-of-the-art models on 
the CUB dataset and the even more difficult COCO 
dataset. 
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