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Abstract: The COVID-19 pandemic has put immense pressure on health systems worldwide. Early and accurate 
diagnosis is thus an important modality of management of the disease. RT-PCR tests are the gold standard for 
diagnosis but suffer from a number of limitations such as high processing time and occasional false negatives. 
Diagnostic imaging via chest X rays and CT scans offers a rapid, non-invasive alternative for detecting 
COVID-19-induced lung abnormalities. This study evaluates the performance of various configurations of 
DenseNet (121, 169, 201) and ResNet-152 for automated COVID-19 detection using chest X-rays and CT 
scans. More in particular, DenseNet-201 yielded a good result of approximately 96% accuracy for CT scans 
and 99% for X-rays when trained with the Adam optimizer using a batch size of 32. It highlights that the 
choice of optimizer and batch size has paramount importance. DenseNet-201’s efficient gradient flow, feature 
reuse, and parameter utilization make it especially suitable for medical imaging applications with limited 
annotated datasets. Its robust feature extraction capabilities position it as a reliable diagnostic tool, potentially 
enhancing clinical workflows and accelerating COVID-19 diagnosis. This study underscores DenseNet-201’s 
potential to improve patient outcomes and pandemic management through accurate, automated medical image 
analysis.

1 INTRODUCTION 

COVID-19 is a disease that appeared suddenly at the 
end of 2019, caused by the virus SARS-CoV-2, and 
has since caused huge destruction to the health, 
economies, and daily life of the world. It is transmitted 
by aerosols, droplets, contaminated surfaces, and air. 
The symptoms range from very mild to the most 
severe and can involve fever, cough, difficulty 
breathing, severe problems in the lungs, organ failure, 
and, in extreme cases, death. For example, the Delta 
and Omicron variants spread so quickly because of 
their high contagion rate, sometimes for evading 
immunity. This is not mentioning the vaccine 
coverage that was reached or the lingering effects that 
many people were still battling against COVID-19 in 
mid-2024.Conventional medical imaging represents 
another field where CNNs revolutionized the way it 
presents unparalleled capabilities for the detection, 
segmentation, and classification of different image 
classes.  

It is of great help in diagnosing diseases of the 
lungs, such as lung cancer, tuberculosis, and 
pneumonia, all at once. During the pandemic period of 
COVID-19, CNNs became important for researching 
chest X-ray features along with computed 
tomography. The specialty in architectures of CNN 
comes forth through ResNets and VGG, and then 
further Inception, aside from others. Each of them is 
unique and has its particular power, like residual 
connections and skip connections in ResNet networks, 
which enable the training of deeper networks; making 
simpler designs boosts feature learning in VGG, while 
Inception further improves this with its two most 
innovative connectivity ideas: convolutional blocks 
on several parallel branches with concatenated feature 
maps. It allows every layer to directly feed into all 
previous ones, encourages feature reuse, and makes 
the flow of gradients better. This architecture will 
learn both low-level and high-level features for 
finding subtle abnormalities in a medical image.The 
efficiency and resistance to overfitting make 

506
Chowdri, S., Shanthi, S., Dhanaeswaran, R., Giridar Prasad, P., Devi, K. N. and Kavidha, A.
Enhancing COVID-19 Diagnosis with Deep Learning Models DenseNet and ResNet on Medical Imaging Data.
DOI: 10.5220/0013595700004664
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 3rd International Conference on Futuristic Technology (INCOFT 2025) - Volume 2, pages 506-513
ISBN: 978-989-758-763-4
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.



DenseNet very relevant to high-dimensional data 
associated with medical applications. Most of the 
recent works on COVID-19 diagnostics, tumor 
segmentation, skin lesion detection, and diabetic 
retinopathy classification have been based on this 
approach. Compared to ResNet and VGG models, 
DenseNet is more parameter-efficient with high 
accuracy and fewer parameters, hence having less risk 
of overfitting. This is of extreme value in providing 
accurate diagnoses in resource-poor settings. This 
would, in turn, enable the radiologists to provide 
accurate and reproducible results on well-
preprocessed and well-annotated datasets with 
significantly less workload. Its performance can be 
improved by performing hyperparameter tuning, with 
evaluation metrics such as accuracy and AUC-ROC. 
DenseNet bridges advanced AI technology with 
practical healthcare applications; thus, it holds 
tremendous potential to revolutionize diagnostics and 
support clinicians worldwide in combating COVID-
19 and other diseases. 

2 LITERATURE REVIEW 

A study designed a CAD system that classified chest 
X- rays into COVID-19 pneumonia, other pneumonia, 
and normal cases using transfer learning -based CNN 
following the use of preprocessing techniques like 
removal of the diaphragm region and histogram 
equalization(A. T, S. S, N. K, A. K, D. R. B and N. 
Rajkumar, Sentiment Analysis on Covid-19 Data 
Using BERT Model, 2024 International Conference 
on Advances in Modern Age Technologies for Healt, 
n.d.) (Nirmala Devi, K., Shanthi, S., Hemanandhini, 
K., Haritha, S., Aarthy, S. (2022). Analysis of 
COVID-19 Epidemic Disease Dynamics Using Deep 
Learning. In Kim, J.H., Deep, K., Geem, Z.W., 
Sadollah, A., Yadav, A. (Eds) Proceed, n.d.).The 
model achieved an accuracy of 94. 5% on a dataset of 
8,474 images and reported that the performance was 
enhanced significantly with the use of preprocessing 
techniques and revealed how significant image 
enhancement is towards the achievement of better 
performance in COVID-19 detection (Heidari et al., 
2020). The analysis of deep learning models to 
identify COVID- 19 from chest X-rays on a dataset of 
5,000 images showed the four CNNs that were part of 
the experiment, including ResNet18, ResNet50, 
SqueezeNet, and DenseNet-121, achieving a 98% 
sensitivity rate and a 90% specificity rate after transfer 
learning training. Precision in high lighting the 
infected lung regions of COVID-19 was observed in 
the heatmaps generated by the models while matching 

with the annotations made by the radiologists. The 
results are promising, but the study points out that 
larger datasets need to be created for even more 
reliable accuracy assessments (Minaee et al., 2020). 
ACoS is an abbreviation for Automatic COVID 
Screening system in this study which is the 
classification of patients into normal, suspected, and 
infected with COVID 19 using radiomic texture 
descriptors from chest X-rays. The ensemble uses a 
majority 3 voting of five supervised classifiers in a 
two- phase classification approach. The validation 
was performed using 258 images with an accuracy of 
98. 06% in the first phase (normal vs. abnormal) and 
91. 33% in the second phase (pneumonia vs. COVID-
19). The obtained results manifested a statistical 
difference and even surpassed some of the techniques 
currently used for COVID-19 detection (Chandra et 
al., 2021). A recent study presents a Deep 
Convolutional Neural Network (CNN)-based 
approach for the detection of COVID-19 from chest 
X-ray images. Models used in this solution are 
DenseNet201, ResNet50V2, and Inceptionv3, which 
are specifically trained and then combined using a 
weighted average ensembling. With 538 images 
positive for COVID-19 and 468 negative images for 
COVID-19, the model was able to achieve a 
classification accuracy of 91.62%. In addition, the 
study created an intuitive graphical user interface 
application to make medical practitioners quickly 
detect the existence of COVID-19 in the chest X-ray 
images (Das et al., 2021). A study proved that AI can 
be used to automate and improve the detection 
accuracy for COVID-19 using Chest X-ray (CXR) and 
CT images. Besides, AI can be also utilized in DL 
techniques such as Convolutional Neural Networks 
(CNN). This paper dis cusses research works on this 
topic, challenges, and recent breakthroughs on the DL 
based classification of COVID-19. The review also 
suggests further research that should further improve 
the performance and reliability of automated systems 
for COVID-19 image classification (Aggarwal et al., 
2022). An article classifies COVID-19 patient 
individuals using chest X-ray scans and com pares 
various CNN models that base their work on deep 
learning. In this, a dataset consisting of 6432 samples 
from the Kaggle repository was tested using data 
augmentation with Xception, ResNeXt, and Inception 
V3. It was seen that among these, Xception is having 
the highest accuracy as 97. 97%. The findings of the 
analysis are not medical but show that automated deep 
learning techniques might be useful for the screening 
of COVID-19 patients (Jain et al., 2021). To overcome 
the deficiencies of previous networks, a paper 
proposed a dual path way, 11-layer deep 3D 
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Convolutional Neural Network for the segmentation 
of brain lesions. It fused an efficient dense training 
scheme with a dual pathway architecture that 
computes multi-scale input. The proposed approach 
demonstrated superior performance on benchmarking 
BRATS 2015 and ISLES 2015 experiments in multi-
channel MRI data of ischemic stroke, brain tumors, 
and traumatic brain injuries. The method is found to 
be effective and computationally efficient and thus 
suitable for research as well as clinical applications 
(Kamnitsas et al., 2017). It performed an experiment 
using Transfer Learning to evaluate the state-of-the-
art convolutional neural networks on X-ray images 
from patients infected with COVID 19, bacterial 
pneumonia, and normal conditions. Based on the 
study, the Deep Learning models were shown to detect 
COVID-19 with as high as 96. 78% accuracy, 98. 66% 
4 sensitivity, and 96. 46% specificity. Results indicate 
that X- ray imaging could be an important step toward 
the diagnosis of COVID-19; thus, more research needs 
to be done in the medical field (Apostolopoulos & 
Mpesiana, 2020). A research introduced COVID-
CAPS, a model of capsule network for the substitution 
of CNN diagnosis in COVID-19 using X-ray images. 
Compared to the previously designed CNN model, 
COVID-CAPS reported to have an accuracy of 95. 
7%, sensitivity of 90%, and specificity of 95. 8%, 
which solved most drawbacks. These included small 
amounts of sample data and loss of spatial information 
in CNNs. It is promising as a diagnostic tool for 
COVID-19, as further improvement to 98.3% 
accuracy and 98.6% specificity was achieved by pre-
training with an X-ray image dataset (Afshar et al., 
2020). A study designed clinical predictive models for 
the identification of COVID-19 cases based on 
laboratory data and deep learning. It tested these 
models on data from 600 patients, with an impressive 
accuracy of 86. 66%, F1-score of 91. 89%, and a recall 
of 99. 42%. The implications are that these clinical 
predictive models may help the medical professional 
validate the reliability of results from laboratories and 
efficiently use resources during the pandemic (Alakus 
& Turkoglu, 2020) 

3 EXPERIMENTAL SETUP 

3.1 Dataset 

3.1.1 CT Scan 

This dataset was downloaded from Kaggle, "COVID-
19 CT Scan Dataset" by Dr. Surabhi Thorat, and it 
consists of COVID and Non-COVID images, which 

are well-labeled, hence perfect for training diagnostic 
machine learning models. Images were then split into 
two categories: COVID-19 and Non-COVID 
combined into a single DataFrame for easy 
manipulation, then stratified into an 80:20 training-
validation split of 6095 training and 1525 validation. 
Stratification has ensured that both categories are well 
represented, hence the integrity of the data is 
maintained without bias during model training and 
validation. 

3.1.2 X Ray 

The dataset used in this research has been curated by 
Prashant from Kaggle and is titled "Chest X-ray 
(COVID-19 & Pneumonia)". The dataset comprises a 
collection of X-ray images of cases related to 
COVID-19, pneumonia, and healthy ones. In this 
work, cases of pneumonia are not taken into 
consideration, hence, the classes considered for 
analysis are COVID-19 and Non- COVID. In all, the 
dataset holds 2,159 images. It is split into an 80:20 
stratified split for 1,726 training samples and 433 
validation samples that maintain a balanced class 
representation. Label them, categorize the images as 
COVID-19 and Non-COVID, and merge them into 
one DataFrame to accelerate the processing that can 
later be easily split with the assurance that this would 
maintain the integrity of the data and representativity 
of the sets for a proper training and validation 
process. 

3.2 Data Augmentation 

To enhance the generalization ability of our models 
and compensate for the relatively limited size of the 
dataset, various data augmentation techniques were 
employed. These included: 

Table 1:  Data Augmentation Techniques. 

Augmentation 
Technique

Description 

Rotation Range Rotates images randomly within the 
specified degree range. 

Width Shift 
Range 

Randomly shifts images horizontally by 
a specified fraction. 

Height Shift 
Range

Randomly shifts images vertically by a 
specified fraction. 

Shear Range Applies random shearing 
transformations to the images.

Zoom Range Randomly zooms in or out on images.
Horizontal Flip Randomly flips images horizontally.

Rescale Normalizes pixel values by 
scaling them by specified factor. 
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3.3 Model Architecture 

Traditional CNNs have sequential information flow, 
from one layer to the next. However, in DenseNet 
every layer receives input from all preceding layers 
and passes its own feature maps to all subsequent 
layers. So, the i-th layer receives feature maps of all 
the previous layers, 
 
        𝑥0, 𝑥1, 𝑥2, … 𝑥𝑙 − 1,        𝑎𝑠 𝑖𝑛𝑝𝑢𝑡:                  

 𝑥1 = 𝐻1([𝑥0, 𝑥1, 𝑥2, … . . , 𝑥𝑙 − 1])            (1) 
 
where H1 is a composite function of batch 

normalization, ReLU and convolution. Dense 
connectivity leads to the +following benefits: Direct 
connections between layers would allow gradients to 
flow more easily in the backwards propagation pass 
so as to mitigate the problem of vanishing gradients. 
Layers could read the feature maps of all preceding 
layers, so reuse of features is encouraged and 
redundancy is reduced. This architecture uses fewer 
parameters than its traditional counterparts at the 
same depth due to the fact that it does not have to 
learn redundant feature maps in the first place. 

 
 
A Dense Net consists of several dense blocks. The 

dense block itself comprises multiple convolutional 
layers, which are connected densely. Between the 
dense blocks, transition layers are provided to carry 
out the down sampling operations and decrease the 
spatial dimensions of the feature maps. Dense Block: 
It is a sequence of layers wherein each layer is fed 
forward to every other layer. Each layer feature maps 
are concatenated with all inputs from the following 
layers. Transition Layer: It lies between the dense 
blocks. It utilizes a 1x1 convolution to compress 
features, followed by feature map reducing a 2x2 
average pooling operation along with batch 
normalization. Dense Net exists in many 
configurations that are primarily different in depth, 
concerning the number of layers. Currently, three 
variants are widely used, such as DenseNet121, 
DenseNet169, and DenseNet201.  

 
 
Here, each number corresponds to the total 

quantity of the layers inside the network, counting 
both convolutional, pooling, and fully connected 
layers. 

 
 

Table 2: Comparison between Traditional CNN and 
DenseNet. 

Feature Traditional 
CNN 

DenseNet 

Connectivity Sequential Dense (each 
layer connected 
to all previous 

layers)
Gradient Flow Can be 

hindered by 
depth 

(vanishing 
gradient) 

Improved due 
to direct 

connections 

Feature Reuse Limited Extensive
Parameter 
Efficiency 

Higher due to 
redundant 

feature maps 

Lower, more 
efficient 

 

3.3.1 DenseNet 121 

It has 121 layers. It offers an excellent balance 
between depth and computational efficiency and best 
applicable in places where computation is much 
needed. 

3.3.2 DenseNet 169 

It adds to the architecture through adding more layers, 
therefore giving depth for feature extraction when the 
complexity goes up a notch. This variation is very 
good for tasks which need the recognition of fine 
details and is computationally costly. 

3.3.3 DenseNet 201 

Being one of the deepest variants, with a count of 201 
layers, it provides the finest feature extraction 
capability. In particular, it is well-suited for more 
complex applications but with huge computational 
and memory resource requirement 

3.3.4 ResNet 152 

ResNet-152 deep learning model was designed to 
solve problems with the vanishing gradient in deep 
neural networks. The gradients can flow through 
shortcut connections that bypass layers. It is built 
from residual blocks with two or three convolutional 
layers, with batch normalization and ReLU for 
activation. These shortcut connections add the input 
of the block directly to the output, hence enabling the 
network to learn residual functions. ResNet-152 is a 
152-layer network with about 60.2 million 
parameters. An architecture so deep, trained 
efficiently for very deep networks, improves the 
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accuracy and performance on many tasks like image 
classification and medical image analysis 

 
Figure 1: Differentiation of layers between DenseNet 
Architectures. 

3.4 Methodology 

This paper uses the complete dataset of COVID-
19 X-ray and CT-scan images downloaded from 
Kaggle for training and testing machine learning 
models for diagnosis. A variety of DenseNet 
architecture variants, including DenseNet-101, 
DenseNet-121, and DenseNet-201, are considered 
along with ResNet for the analysis using transfer 
learning techniques. Transfer learning was applied by 
initializing the weights of DenseNet pre-trained on 
ImageNet. This ensured that the starting point for our 
models was considerably robust and had leveraged 
some of the rich feature representations learned from 
a diverse set of images. The dataset was well-
structured, split roughly 80-20 between training and 
validation sets; this helps prevent bias and maintains 
integrity in the dataset by ensuring that the 
distribution of COVID-19 and non-COVID-19 
images remains constant across both sets. 
Accordingly, early stopping during training kept a 
constant eye on the model's performance on the 
validation set and stopped it when it saw it did not 
improve anymore. In that way, this technique avoids 
overfitting; by doing so, it keeps the model 
generalizing even to new data fed into it. Each of 
these trained models was then comprehensively 
evaluated against different metrics, namely AUC-
ROC, accuracy, specificity, recall, and precision. 
AUC-ROC expresses the measure of how well the 
model is capable of distinguishing between classes, 
while accuracy is the general correctness of the 
predictions made by the model. Specificity will 
explain how well the model provides the true 
negatives, and recall will provide the performance of 
identifying true positives. Precision provided a view 
into how well that model identified true positives 
among all that were predicted as positive. 

3.5 Training And Optimisation 

In this work, transfer learning is adopted by 
initializing the DenseNet models with pre-trained 
weights from ImageNet. In that way, the DNNs will 
leverage the rich feature representations they have 
learned on such a large and diverse dataset for fast 
convergence and improvement in performance 
toward the COVID-19 diagnosis task. In training, the 
base layers in DenseNet were frozen in order to 
maintain all the valuable pre-trained features while 
training the head for classification, for adapting it to 
our binary classification task. The custom head 
consists of a global average pooling layer followed by 
fully connected layers, culminating in a sigmoid 
activation that outputs class probabilities using the 
loss function as Binary cross-entropy.  

The DenseNet is densely connected; this aids in 
better gradient flow and feature propagation, which 
can be of great help for such complex tasks as medical 
image classification. An optimization of the model 
performance was basically carried out with the Adam 
optimizer because it has an adaptive learning rate and 
it is efficient in handling sparse gradients, which 
helps speed up the convergence. 

However, in order to really assess model 
performance, further exploration of the models with 
different optimizers is intended, including RMSprop, 
SGD, and Adam, along with various batch sizes. Each 
of these optimizers has its merits: Adam is adaptive 
with its learning rates but sometimes converges to 
suboptimal solutions; SGD offers better 
generalization but needs careful tuning and may result 
in slow convergence; and RMSprop acts best on non-
stationary problems, though it can converge more 
slowly than Adam on deeper networks.  

Table 3: Model Architecture. 

Component Description 
Global Average 

Pooling
Reduces spatial dimensions of 

feature maps 
Dense Layer (ReLu) Adds non-linearity and 

enhances learning 
Output Layer 

(Sigmoid)
Binary output for 

classification 
 
Batch size does play an important role while 

training a model. Larger batch size provides smoother 
estimates of gradient, faster convergence, requires a 
lot of memory, though carries the risk of trapping into 
a local minimum; smaller batch size introduces extra 
noise into the gradient estimation. This might help the 
models from escaping local minima with somewhat 
slow convergence. We systematically try these 
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various optimizers and batch sizes in order to see 
what the best combination of the two might be that 
yields better performance for our particular 
classification problem. 

4 RESULT AND DISCUSSION 

Table 4: Accuracy for DenseNet121 for CT SCAN 
Dataset. 

Table 5: Accuracy for DenseNet169 for CT SCAN Dataset 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 95. 20 94. 50 92. 80

RMSprop 94. 00 93. 50 91. 50

SGD 89. 80 88. 50 86. 70

Table 6: Accuracy for DenseNet201 for CT SCAN 
Dataset. 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 94. 00 96. 90 95. 70

RMSprop 94. 50 96. 10 95. 10

SGD 93. 30 95. 20 94. 30

Table 7: Accuracy for ResNet152 for CT SCAN Dataset. 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 94. 50 95. 70 94. 00

RMSprop 92. 80 93. 50 92. 10 

SGD 91. 80 92. 20 90. 50 

 
Comparing all different models, namely 

DenseNet-121, DenseNet-169, DenseNet-201, and 
ResNet-152, with a set of different optimizers and 
batch sizes, it can be found that the best results come 
out to be from DenseNet-201. With the Adam 
optimizer and batch size of 32, this has achieved an 
accuracy of 96.9%. Relatively, one more working 
combination for the DenseNet-201 model was with 
RMSprop as the optimizer and a batch size of 32, 
which yielded the same result of 96.1% accuracy. The 
best after that is DenseNet-121, which reaches a peak 
of 95.5% with the Adam optimizer and batch size 32. 
Next comes DenseNet-169, which, compared to its 
other variants, reached a peak of 95.2% with the 
Adam optimizer and batch size of 16. ResNet-152 
was competitive but reached a peak of 95.7% only at 
the Adam optimizer with a batch size of 32. 
Therefore, in all models, the best performance was 
obtained when, for the Adam optimizer, the batch size 
was set to 32. Thus, it is the best configuration. On 
the other hand, DenseNet-201 yielded the best 
performance on the Covid-19 CT-scan dataset when 
using Adam with a batch size of 32. 

 
Figure 2: Comparison of various DenseNet and ResNet 
Architectures for      CT scan Dataset. 

Table 8: Accuracy for DenseNet121 for X Ray Dataset. 

Optimizer Batch 
Size(16)

Batch 
Size(32) 

Batch 
Size(64)

Adam 97. 85 98. 50 98. 20 

RMSprop 97. 70 98. 00 97. 85 

SGD 96. 50 97. 00 96. 70 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 94. 75 95. 50 94. 20

RMSprop 93. 85 94. 30 93. 10

SGD 92. 60 93. 50 92. 00
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Table 9: Accuracy for DenseNet169 for X Ray Dataset. 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 96. 70 98. 20 97. 30 

RMSprop 95. 90 97. 50 96. 50 

SGD 94. 50 96. 20 95. 00 

Table 10: Accuracy for DenseNet201 for X Ray Dataset. 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 98. 90 99. 30 98. 95 

RMSprop 98. 30 98. 85 98. 50 

SGD 97. 50 98. 20 97. 80 

Table 11: Accuracy for ResNet152 for X Ray Dataset. 

Optimizer Batch 
Size(16) 

Batch 
Size(32) 

Batch 
Size(64)

Adam 94. 50 95. 20 94. 00 

RMSprop 93. 70 94. 50 93. 20 

SGD 92. 50 93. 00 91. 80 

 

 
Figure 3: Comparison of various DenseNet and ResNet 
Architectures for      X-ray Dataset. 

A comparison of the accuracies attained for the 
various models using the X-ray dataset shows that the 
highest, from DenseNet-201 with the Adam 
optimizer and batch size of 32, was 99.30%. This is 
closely followed by DenseNet-121, which had 
attained an accuracy of 98.50% under the same 
conditions and consistently showed quite good 
performance under other batch sizes and optimizers. 
Among these, DenseNet-169 had the highest 
accuracy of 98.20% with the Adam optimizer and 
batch size 32, ranking slightly after the top two. 
ResNet-152 is a little lagging and achieved a 
maximum of 95.70% accuracy under similar settings. 
Hence, DenseNet-201 and DenseNet-121 are the best 
models for this dataset, especially with the Adam 
optimizer and batch size 32, predestining these 
models for X-ray image classification tasks. 
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