Real-Time Arabic Sign Language Recognition Using YOLOv5

Zainab Abualhassan, Haidar Ramadhan, Mohammed Faisal Naji and Hajar Alsulaili Computer Science and Engineering Department, Kuwait College of Science and Technology (KCST), Doha, Kuwait

Keywords: Sign Recognition, YOLOv5, Machine Learning, Object Detection.

Abstract:

Sign language is a vital means of communication for the deaf and hard-of-hearing community, yet automatic recognition still faces many challenges. While several sign languages have seen major advances in recognition systems, Arabic sign language (ArSL) remains underdeveloped and requires much more research. Object detection models like YOLOv5 (You Only Look Once, Version 5) have revolutionized computer vision with their high speed, accuracy, and ability to process data in real time. This paper introduces a recognition system leveraging YOLOv5, a leading object detection model, to classify the 28 letters of the Arabic alphabet. The model was trained on a comprehensive dataset containing thousands of images representing each letter, achieving strong classification results with certain classes reaching perfect accuracy of 100%. To assess the model's performance, evaluation metrics such as precision, recall, and mean Average Precision (mAP) were employed, demonstrating its practicality for real-world applications. Results indicate that YOLOv5's architecture, with its efficient feature extraction and real-time processing, reliably handles the complex hand gesture variations in Arabic sign language. Its capability to distinguish subtle differences in hand positions makes it a valuable tool for educational applications, accessibility solutions for the deaf and hard-of-hearing, and future advancements in sign language translation systems. This study contributes a robust Arabic sign language recognition model, addressing an essential need for improved accessibility and communication for Arabic-speaking users.

1 INTRODUCTION

Effective communication is essential for fostering connection and understanding, yet it poses unique challenges for the deaf community, particularly in Arabic-speaking countries where Arabic Sign Language (ArSL) plays a vital role. ArSL is not just a means of communication; it is a cultural and linguistic system that reflects the Arabic language and traditions. Unlike standardized languages like American Sign Language (ASL), ArSL is heavily influenced by regional dialects. This influence leads to significant variability, where the same word or phrase can have different signs depending on the country or even specific areas within a country (Al-Shamayleh et al., 2020). This regional diversity complicates efforts to create a unified recognition system, requiring models to adapt to specific dialectal differences and address the lack of a standardized form of ArSL (Abdel-Fattah, 2005).

The limited availability of high-quality ArSL datasets has left research in this field relatively sparse compared to studies on other sign languages. Most existing datasets consist of static signs, often restricted to the Arabic alphabet, lacking the continuity

needed for sentence-level or contextual gesture recognition (Al-Qurishi et al., 2021). This scarcity of annotated data hinders the development of robust machine learning models capable of generalizing across diverse gestures and limits their practical application in real-world settings. Additionally, the absence of a comprehensive recorded ArSL literature and inconsistent formal education for the Deaf in Arab countries increase these challenges (Abdel-Fattah, 2005).

To address these limitations, numerous efforts have been made to automate sign language recognition, employing both classical machine learning techniques, such as Support Vector Machines (SVM) (Almasre and Al-Nuaim, 2016), and advanced deep learning methods like Convolutional Neural Networks (CNNs) (Suliman et al., 2021). Transfer learning has further improved detection accuracy by leveraging pre-trained models to adapt to the unique features of ArSL (Alharthi and Alzahrani, 2023). Moreover, modern object detection models like YOLO have achieved exceptional performance in real-time recognition, offering precise detection of hand gestures with high speed and accuracy.

ArSL recognition remains a challenging task due

to the limited availability of large-scale datasets, variability in hand gestures, and the need for real-time processing capabilities. The contributions of this paper are as follows:

- Utilizing YOLOv5 for Arabic Sign Language (ArSL) Recognition: This study explores the application of the YOLOv5 model for detecting and classifying 28 Arabic sign language alphabet gestures, addressing the challenge of recognizing gestures within a small dataset.
- Real-Time Model Implementation: The proposed approach emphasizes real-time detection and classification capabilities, making it suitable for practical applications requiring instant recognition.

The paper is organized as follows: Section 2 presents a literature review of advances in ArSL recognition, Section 3 details methodology and implementation, Section 4 discusses results and comparisons with state-of-the-art methods, and Section 5 concludes with future research directions.

2 LITERATURE REVIEW

Early efforts in ArSL recognition primarily relied on classical machine learning techniques, emphasizing image processing and feature extraction for gesture classification. (Aly and Mohammed, 2014) developed an ArSL recognition system in 2014 using Local Binary Patterns on Three Orthogonal Planes (LBP-TOP) and SVM, which involved preprocessing steps such as segmenting the hand and face through RGB-to-color-space conversion. Similarly, (Tharwat et al., 2021) proposed a system in 2021 focusing on 28 Quranic dashed letters, employing classifiers such as K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), C4.5, and Naïve Bayes. Their approach utilized a dataset of 9240 images captured under varying conditions and achieved a recognition accuracy of 99.5% for 14 letters using KNN. While these methods demonstrated reasonable accuracy, they were constrained by limited scalability and the lack of realtime implementation capabilities.

Researchers have increasingly adopted advanced deep learning techniques for sign language recognition across various languages. For instance, (Tao et al., 2018) utilized CNNs to address ASL recognition, highlighting CNNs' ability to effectively capture sign gestures. Similarly, (Suliman et al., 2021) proposed a method for ArSL recognition, combining CNNs for feature extraction and Long Short-Term Memory (LSTM) networks for classification. Their

approach employed the AlexNet architecture to extract deep features from input images and utilized LSTMs to maintain the temporal structure of video frames. The system achieved an overall recognition accuracy of 95.9% in signer-dependent scenarios and 43.62% in signer-independent scenarios.

Pretrained models are widely used in sign language recognition for leveraging knowledge from large datasets. (Duwairi and Halloush, 2022) employed VGGNet, achieving 97% accuracy on the ArSL2018 dataset, demonstrating the efficacy of pretrained architectures. (Zakariah et al., 2022) explored the use of EfficientNetB4 on the ArSL2018 dataset, achieving a training accuracy of 98% and a testing accuracy of 95%. Their work incorporated extensive preprocessing and data augmentation to enhance consistency and balance within the dataset.

In addition, pre-trained YOLO-based approaches have achieved remarkable results. (Ningsih et al., 2024) applied YOLOv5-NAS-S to BISINDO sign language, achieving a mAP of 97.2% and Recall of 99.6%. (Al Ahmadi et al., 2024) introduced attention mechanisms within YOLO for ArSL detection, achieving a mAP@0.5 of 0.9909. Similarly, (Alaftekin et al., 2024) utilized an optimized YOLOv4-CSP algorithm for real-time recognition of Turkish Sign Language, achieving over 98% precision and recall, further demonstrating YOLO's efficacy in high-speed and accurate sign language detection tasks.

A significant limitation in ArSL research remains the lack of standardized datasets (refer Table 1). Most studies rely on custom datasets with isolated signs, such as ArSL2018, which is insufficient for comprehensive, continuous sign recognition (Al-Shamayleh et al., 2020).

3 METHODOLOGY AND IMPLEMENTATION

This section outlines the workflow of training and evaluating the YOLOv5 model for ArSL recognition, as illustrated in Figure 1. The dataset, is divided into training, validation, and test sets. The training and validation sets are utilized to train the YOLOv5 model over 400 epochs, during which hyperparameters are fine-tuned to achieve optimal performance. Following the completion of the training process, the trained model is evaluated using the test set based on evaluation metrics such as Accuracy, Precision, Recall, F1 Score, Mean Average Precision (mAP), mAP@50, mAP@50-95, Intersection over Union (IoU), Logarithmic Loss, Confusion Matrix,

Table 1: Overview of Recent Advances in Sign Lan	guage
Recognition Techniques and Methodologies.	

Ref.	Model(s)	Dataset	Evaluation	Evaluation	
	Used		Metrics	Method	
(Aly	LBP-TOP	ArSL	Accuracy	-	
and Mo-	+ SVM	database			
hammed,		(23 words, 3			
2014)		signers)			
(Tharwat	KNN	9240 images	Accuracy,	10-fold	
et al.,		of Arabic sign RMSE,		cross-	
2021)		language ges-	Kappa	validation	
		tures for 28	Statistic		
		letters			
(Suliman	CNN-	150 signs (50	Accuracy	Train-test	
et al.,	LSTM	repetitions		split (70-	
2021)		each)		30)	
(Duwairi	VGGNet,	ArSL2018	Accuracy	10-fold	
and Hal-	AlexNet,	dataset	(97% for	cross-	
loush,	GoogleNet		VGGNet)	validation	
2022)					
(Zakariah	EfficientNetE	4 ArSL2018	Accuracy	Train-test	
et al.,		(54,049 im-	(95%)	split (80-	
2022)		ages, 32		20)	
		classes)			
(Ningsih	YOLOv5-	BISINDO (47	mAP	Not speci-	
et al.,	NAS-S	classes)	(97.2%),	fied	
2024)			Recall		
			(99.6%)		
(Al Ah-	YOLOv5	ArSL21L	mAP@0.5	Not speci-	
madi	with At-	(14,202 im-	(0.9909)	fied	
et al.,	tention	ages)			
2024)					
(Alaftekin	YOLOv4-	Turkish Sign	Precision	Not speci-	
et al.,	CSP	Language	(>98%),	fied	
2024)		(numbers)	Recall		
50		E AN	(>98%),	ECHN	
			F1 Score		

and Area Under Curve (AUC-ROC). Subsequently, the trained model is deployed within a user interface framework, enabling real-time prediction capabilities. Upon providing an input image, the model generates the corresponding predicted class labels and bounding boxes, effectively demonstrating its proficiency in object recognition and localization.

3.1 Dataset

The Arabic Sign Language Dataset, hosted on Kaggle, consists of 5832 images representing 28 Arabic letters (Arabic Sign Language ArSL dataset, 2022). These images are divided into 4651 images for training, 891 for validation, and 290 for testing. Each image has a resolution of 416 × 416 pixels, providing sufficient detail for machine learning applications. The images were captured in various environments using a cell phone camera, featuring diverse backgrounds and varying hand angles, which adds natural variation to the dataset.

As shown in Figure 2, the dataset exhibits an im-

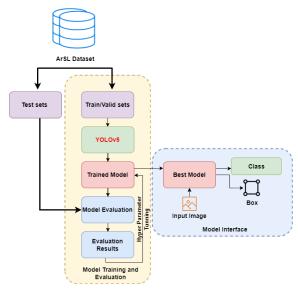


Figure 1: Workflow for Training, Evaluation, and Deployment of YOLOv5 for Arabic Sign Language Recognition.

balance across the 28 classes, with certain classes, such as "fa" and "ain," containing significantly more samples. This class imbalance poses challenges during model training, emphasizing the importance of preprocessing strategies like data augmentation or class weighting to ensure fair and effective training. Despite these challenges, the dataset is a valuable resource for advancing sign language recognition models, promoting accessibility and improved communication for the deaf and hard-of-hearing community.

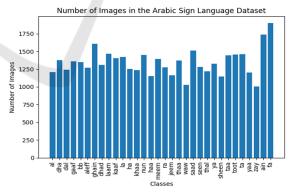


Figure 2: Image count per class for the Arabic Sign Language Unaugmented Dataset.

3.2 Proposed Model: YOLO Framework

YOLO, introduced in 2015 (Redmon et al., 2015), revolutionized object detection by providing a single-stage system that processes an image in a single forward pass for simultaneous bounding box and class

prediction. YOLO processes an entire image in a single forward pass of the network, dividing it into a grid and predicting bounding boxes and class probabilities simultaneously. Its architecture, as illustrated in Figure 3, includes convolutional layers for feature extraction, upsampling for multi-scale detection, and anchor boxes to capture objects of different sizes. This efficiency and adaptability make YOLO suitable for a wide range of applications, from real-time surveil-lance to medical imaging and autonomous systems.

YOLOv5, introduced in 2020 (Jocher et al., 2020), is an open-source, PyTorch-based object detection model known for its real-time performance and scalability. Unlike earlier versions, YOLOv5 incorporates innovations like mosaic data augmentation, auto-learning bounding box anchors, and enhanced architecture. It offers scalability through variants like YOLOv5s (small) to YOLOv5x (extra-large), catering to different resource and accuracy requirements. The architecture integrates CSP (Cross Stage Partial) layers for efficient feature extraction, PANet (Path Aggregation Network) for feature aggregation, and SPP (Spatial Pyramid Pooling) for expanded receptive fields. These refinements enable YOLOv5 to deliver state-of-the-art performance while maintaining computational efficiency, making it ideal for real-time applications such as Arabic Sign Language gesture detection.



Figure 3: YOLO model architecture (Redmon et al., 2015).

3.3 Evaluation Metrics

Evaluation (Manning metrics and Schütze, 1999)(Shanmugamani, 2018) are critical in assessing the performance of a machine learning model, particularly for classification tasks such as sign language recognition. These metrics provide insights into the model's ability to make accurate predictions and generalize across unseen data. Accuracy is the most straightforward metric, measuring the proportion of correct predictions among all instances, as defined in Equation 1. However, it can be misleading in imbalanced datasets. Precision, defined in Equation 2, evaluates the accuracy of positive predictions, making it important in scenarios where false positives have significant consequences.

Recall, also known as sensitivity and shown in Equation 3, measures the model's ability to identify all relevant instances, which is crucial for minimizing false negatives. The **F1 Score**, defined in Equation 4, provides a balanced measure by combining precision and recall, especially when these metrics are in trade-off.

For object detection tasks, **Mean Average Precision** (**mAP**) quantifies the precision-recall relationship across various confidence thresholds, as described in Equation 5. It provides a comprehensive view of model performance across all classes. Furthermore, **Intersection over Union (IoU)**, defined in Equation 6, assesses the spatial overlap between predicted and actual bounding boxes, making it vital for evaluating localization accuracy. Together, these metrics offer a robust framework for understanding the effectiveness of the model in recognizing and classifying Arabic sign language gestures.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 (1)

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN}$$
 (3)

F1 Score =
$$2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (4)

$$mAP = \frac{1}{n} \sum_{i=1}^{n} AP_i$$
 (5)

$$IoU = \frac{Area \text{ of Overlap}}{Area \text{ of Union}}$$
 (6)

4 RESULTS AND ANALYSIS

This section presents the findings from implementing the YOLOv5 model for classifying Arabic alphabets in sign language.

4.1 Confusion Matrix

The confusion matrix, illustrated in Figure 4, serves as a performance measurement tool for the Arabic Sign Language recognition model. Each row represents the predicted labels, and each column represents the true labels. Diagonal elements display the number of correct predictions for each class, with most classes achieving a perfect score of 1.00, indicating high accuracy. The exception is the letter "KHAA," which shows a minor misclassification rate, yielding an accuracy of 0.97.

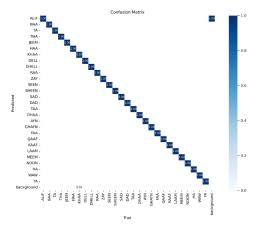


Figure 4: Confusion matrix after training the model for 400 epochs.

4.2 Training and Validation Performance

The training and validation performance metrics for the Arabic Sign Language recognition model exhibit considerable improvements over 400 epochs. The graphs in Figure 5 illustrate decreasing trends in box, object, and classification losses, suggesting effective learning. Both precision and recall approach 1.0, indicating high accuracy and completeness in predictions. Mean average precision (mAP) metrics, calculated at IoU thresholds of 0.5 and 0.5:0.95, indicate excellent precision across a range of IoU values, further confirming the model's reliability in recognizing Arabic sign language gestures.

As shown in Table 2, the evaluation metrics for the Arabic Sign Language Dataset demonstrate the model's robust performance across 28 classes. The dataset contains 891 images per class, with an average precision of 0.981, recall of 0.998, mAP@50 of 0.980, and mAP@50-95 of 0.890. While most classes, such as "ALIF" and "BAA," achieved nearperfect metrics, certain classes, such as "QAAF," showed lower precision (0.596) and mAP@50-95 (0.540), highlighting areas for improvement. These results indicate the model's effectiveness in recognizing Arabic sign language gestures, though some challenges remain for specific classes with lower performance.

4.3 Evaluation Curves

The model's classification performance is detailed through several evaluation curves, as depicted in Figure 6:

• (a) Recall-Confidence Curve: Recall remains high across all confidence levels, suggesting

Table 2: Performance Metrics for Arabic Sign Language Classes.

Class	Images	Instan-	Preci-	Recall	mAP@	mAP@
		ces	sion		50	50-95
all	891	870	0.981	0.998	0.980	0.890
ALIF	891	29	1.000	0.964	0.995	0.802
BAA	891	28	0.997	1.000	0.995	0.882
TA	891	30	0.996	1.000	0.995	0.896
THA	891	30	0.995	1.000	0.995	0.924
JEEM	891	30	0.996	1.000	0.995	0.872
HAA	891	30	0.997	1.000	0.995	0.869
KHAA	891	30	0.965	0.967	0.948	0.812
DELL	891	30	0.996	1.000	0.995	0.897
DHELL	891	32	0.996	1.000	0.995	0.910
RAA	891	32	0.999	1.000	0.995	0.915
ZAY	891	31	0.997	1.000	0.995	0.914
SEEN	891	33	0.995	1.000	0.995	0.935
SHEEN	891	34	0.998	1.000	0.995	0.931
SAD	891	35	0.998	1.000	0.995	0.862
DAD	891	35	0.997	1.000	0.995	0.942
TAA	891	33	0.997	1.000	0.995	0.951
DHAA	891	31	0.997	1.000	0.995	0.954
AYN	891	30	1.000	1.000	0.995	0.900
GHAYN	891	31	0.997	1.000	0.995	0.936
FAA	891	31	0.996	1.000	0.995	0.916
QAAF	891	31	0.596	1.000	0.613	0.540
KAAF	891	31	0.996	1.000	0.995	0.917
LAAM	891	31	0.995	1.000	0.995	0.936
MEEM	891	31	0.995	1.000	0.995	0.922
NOON	891	30	0.998	1.000	0.995	0.903
HA	891	30	0.996	1.000	0.995	0.874
WAW	891	31	0.996	1.000	0.995	0.918
YA	891	30	0.997	1.000	0.995	0.900
Avg.	891	60	0.981	0.998	0.980	0.890

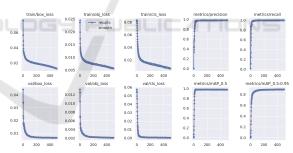


Figure 5: Training and validation metrics over 400 epochs.

that the model consistently identifies relevant instances.

- (b) F1-Confidence Curve: The high F1 score indicates a balanced performance between precision and recall across various confidence thresholds.
- (c) Precision-Confidence Curve: Precision is maintained at high levels for most confidence values, indicating that the model's predictions are highly accurate.
- (d) Precision-Recall Curve: A strong relationship between precision and recall is observed, with an mAP of 0.980 at IoU=0.5, demonstrating the model's effectiveness in accurately detecting

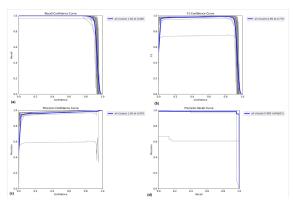


Figure 6: Evaluation curves for the Arabic Sign Language recognition model, showing (a) Recall-Confidence, (b) F1-Confidence, (c) Precision-Confidence, and (d) Precision-Recall.

and classifying Arabic sign language gestures.

4.4 Model Interface

The Arabic Sign Language recognition model, trained using Python programming, is designed to detect and classify gestures from both hands simultaneously, as illustrated in Figure 7. The interface of the model emphasizes the need for adequate lighting and high-quality camera resolution to ensure precise detection and classification of hand gestures. These factors are crucial for capturing clear and detailed images, which significantly enhance the model's accuracy, as reflected in the confusion matrix and other evaluation metrics.

Figure 7: Model Interface.

5 CONCLUSION

This study developed an Arabic Sign Language recognition model using the YOLOv5 architecture, made for real-time classification of Arabic alphabets through hand gestures. The model achieved high accuracy, by achieving nearly 100% on precision, recall, and mAP metrics, particularly at an IoU threshold of 0.5. The evaluation curves, confusion matrix, and training metrics further support the model's robustness and reliability in recognizing Arabic sign language.

The developed system holds potential for applications in sign language translation, educational tools, and accessibility technologies for the deaf and hard-of-hearing community. Future improvements may involve augmenting the dataset with more diverse hand shapes and backgrounds to further enhance the model's generalizability. Additionally, exploring advanced versions of YOLO or other deep learning architectures could further optimize performance for real-world applications. This work marks a significant step in developing accessible tools for Arabic sign language communication, enhancing understanding and fostering better connections within the community.

REFERENCES

Abdel-Fattah, M. A. (2005). Arabic sign language: A perspective. *The Journal of Deaf Studies and Deaf Education*, 10(2):212–221.

Al Ahmadi, S., Mohammad, F., and Al Dawsari, H. (2024). Efficient yolo based deep learning model for arabic sign language recognition. *Unpublished Manuscript or Add Specific Journal*.

Al-Qurishi, M., Khalid, T., and Souissi, R. (2021). Deep learning for sign language recognition: Current techniques, benchmarks, and open issues. *IEEE Access*, 9:126917–126951.

Al-Shamayleh, A. S., Ahmad, R., Jomhari, N., and Abushariah, M. A. M. (2020). Automatic arabic sign language recognition: A review, taxonomy, open challenges, research roadmap and future directions. *Malaysian Journal of Computer Science*, 33(4):306–343

Alaftekin, M., Pacal, I., and Cicek, K. (2024). Real-time sign language recognition based on yolo algorithm. *Neural Computing and Applications*, 36:7609–7624.

Alharthi, N. M. and Alzahrani, S. M. (2023). Vision transformers and transfer learning approaches for arabic sign language recognition. *Applied Sciences*, 13(21):11625.

Almasre, M. A. and Al-Nuaim, H. (2016). Recognizing arabic sign language gestures using depth sensors and

- a ksvm classifier. In 2016 8th Computer Science and Electronic Engineering (CEEC), pages 146–151.
- Aly, S. and Mohammed, S. (2014). Arabic sign language recognition using spatio-temporal local binary patterns and support vector machine. In Hassanien, A. E., Tolba, M. F., and Azar, A. T., editors, *Advanced Machine Learning Technologies and Applications*, volume 488 of *Communications in Computer and Information Science*, pages 95–102. Springer, Cham.
- Arabic Sign Language ArSL dataset (2022). Arabic sign language arsl dataset. Kaggle.
- Duwairi, R. M. and Halloush, Z. A. (2022). Automatic recognition of arabic alphabets sign language using deep learning. *International Journal of Electrical & Computer Engineering*, 12(3).
- Jocher, G. et al. (2020). Yolov5 by ultralytics. https://github.com/ultralytics/yolov5.
- Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press.
- Ningsih, M. R., Nurriski, Y. J., Sanjani, F. A. Z., Al Hakim, M. F., Unjung, J., and Muslim, M. A. (2024). Sign language detection system using yolov5 algorithm to promote communication equality people with disabilities. Scientific Journal of Informatics, 11(2):549–558.
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015). You only look once: Unified, real-time object detection.
- Shanmugamani, R. (2018). Deep Learning for Computer Vision. Packt Publishing.
- Suliman, W., Deriche, M., Luqman, H., and Mohandes, M. (2021). Arabic sign language recognition using deep machine learning. In 2021 4th International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pages 1–4.
- Tao, W., Leu, M. C., and Yin, Z. (2018). American sign language alphabet recognition using convolutional neural networks with multiview augmentation and inference fusion. *Engineering Applications of Artificial Intelligence*, 76:202–213.
- Tharwat, G., Ahmed, A. M., and Bouallegue, B. (2021). Arabic sign language recognition system for alphabets using machine learning techniques. *Journal of Electrical and Computer Engineering*, 2021(1):2995851.
- Zakariah, M., Alotaibi, Y. A., Koundal, D., Guo, Y., and Elahi, M. M. (2022). Sign language recognition for arabic alphabets using transfer learning technique. *Computational Intelligence and Neuroscience*, 2022(1):4567989.