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Abstract: This study explores the use of Large Language Models in automating the process of generating use case

diagrams from software requirements written in natural language, ensuring both syntactic correctness and

semantic accuracy. The proposed methodology involves selecting a few prominent LLMs, preparing standard-

ized inputs, and assessing outputs based on their syntactic and semantic correctness, and relationship mapping.

Models were compared using a rigorous error analysis framework to identify strengths and limitations of the

models. Among the tested models, gemma2 achieved the best average performance. This research contributes

to advancing automated requirements processing, offering a scalable solution for software engineering work-

flows.

1 INTRODUCTION

Requirements engineering is the very first step in soft-

ware development which defines both the functional

and non-functional specifications of a software sys-

tem. These specifications are usually documented in

a Software Requirements Specifications (SRS) docu-

ment. This document helps to translate stakeholder

expectations into the technical implementation of the

software and guides the development, testing, and val-

idation processes. In the requirements, use case dia-

grams play an important role. It visually represents

the interaction between users (actors) and the system

(use cases), making the requirements clear to both

technical and non-technical stakeholders and convey-

ing the software system’s expected behavior across

development teams.

Manually creating these use case diagrams is a

time-consuming task, particularly for complex soft-

ware systems with multiple actors and use cases

(Elallaoui et al., 2018). This often leads to inconsis-

tency issues, as high skill and attention to detail are re-

quired to maintain uniformity in notations and struc-

tures in all the diagrams (Nair and Thushara, 2024a).

In addition, manually created diagrams are prone to

human errors, such as neglected relationships or mis-
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interpreted use cases, which will affect the quality of

the SRS document (Nair and Thushara, 2024b). Up-

dating the diagrams to add any new change in require-

ment is a labor-intensive task and can introduce fur-

ther inconsistencies leading to scalability issues. Due

to these drawbacks with the manual creation of dia-

grams, automating the process is gaining significant

attention, to streamline development and reduce error

(Elallaoui et al., 2018).

Large Language Models (LLMs) are a good

tool for automating the generation of use case

diagrams from natural language specifications

(Alessio et al., 2024) (Jeong, 2024). PlantUML

compiler allows for the generation of UML diagrams

from PlantUML code. But writing PlantUML code

manually is a time-consuming and error-prone

process (Alessio et al., 2024). LLMs when trained

on specific datasets containing both text and code,

become capable of generating PlantUML syntnax

from functional requirements (Soudani et al., 2024).

However, current LLMs, especially general-purpose

ones, often produce output with syntactic or semantic

errors, necessitating manual corrections for precise

executable code (Xie et al., 2023).

This study is motivated by the need for an auto-

mated and accurate generation of use case diagrams

from functional requirements, with minimal manual

intervention. By evaluating multiple base LLMs, this

research aims to identify which models perform best
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in generating error-free PlantUML code for use case

diagrams. This analysis will focus on error classi-

fication, particularly syntactic and semantic errors,

and determine the suitability of each model for fur-

ther fine-tuning. Identifying an optimal base model

with fewer initial errors will reduce the effort required

in post-generation correction and enhance the viabil-

ity of automated UML generation in both educational

and software development contexts.

The paper is structured as follows: Section II re-

views related work in requirements engineering and

automated UML generation, focusing on advances in

LLM-driven code generation. Section III details the

methodology, including environment setup, model se-

lection, input data preparation, and evaluation met-

rics. Section IV presents the results, analyzing model

performance based on error rates and code quality.

Section V explains how the models were evaluated

and the criteria that led to determining the best LLM

model. Finally, Section VI concludes with insights

from this evaluation and discusses potential directions

for future research, including model fine-tuning for

improved accuracy in UML generation.

2 RELATED WORKS

2.1 Automated Requirements

Processing

The process of automating the generation of

UML diagrams and other structural formats

(Vemuri et al., 2017) from software requirements

has been explored before. Previous works uti-

lized rule-based and NLP-based methods to

interpret the requirements (Veena et al., 2018)

(Veena et al., 2019). These approaches relied on

syntactic and semantic parsing to identify the

actors and use cases in the functional require-

ments. But the results generated often require

manual corrections (Nair and Thushara, 2024b)

(Nair and Thushara, 2024a). More recent approaches

leverage machine learning models, but this requires

substantial domain-specific training data to gen-

erate results with accuracy (Ahmed et al., 2022).

Transforming UML diagrams from one type to

another has also been investigated, such as the work

on deriving activity diagrams from Java execution

traces (Devi Sree and Swaminathan, 2018) and trans-

forming sequence diagrams into activity diagrams

(Kulkarni and Srinivasa, 2021).

2.2 Use of Large Language Models in

Software Engineering

Studies (Alessio et al., 2024) have shown that LLMs

can translate descriptions in natural language into

code snippets and other meaningful structural rep-

resentations. Current LLMs like GPT and Codex

struggle with syntax accuracy and specific domain

requirements, often generating inconsistent results

(Xie et al., 2023). Research in this domain shows a

need for fine-tuning LLMs to generate reliable re-

sults containing fewer errors (Jeong, 2024). Addi-

tionally, frameworks leveraging retrieval-augmented

generation (RAG)-based approaches have been ap-

plied to teaching UML diagram generation effec-

tively (Ardimento et al., 2024). Recent technical ad-

vancements also highlight efficient LLM models

that are capable of functioning on edge devices

(Abdin et al., 2024).

2.3 Error Analysis in LLM-Generated

Code

Identifying errors and correcting them is a critical

step in evaluating the outputs generated by LLMs

for software engineering applications. Earlier stud-

ies have identified some common error types, such

as inconsistent semantics and misinterpreted require-

ments. Correction after generating results and fine-

tuning in the specific domain are two techniques that

have been proposed to address these issues. Recent

research demonstrates how graph transformation ap-

proaches (Anjali et al., 2019) can model and analyze

UML diagrams effectively (Hachichi, 2022). Further-

more, evaluating the effectiveness of LLMs in gener-

ating UML diagrams has been explored, with notable

efforts in class diagram generation for comparative

analysis (De Bari, 2024).

There is limited research on comparing LLMs

specifically for PlantUML syntax generation. This

gap stresses the need for comprehensive error analysis

to determine the most suitable model for automated

use case diagram generation.

ROUGE and BLUE are two conventional

reference-based metrics for evaluating LLMs. These

metrics are not preferred in this research as they have

relatively low correlation with human judgements,

especially in open-ended generation tasks. While

these metrics are good for evaluating short and

generic outputs, they fail to evaluate coherence and

relevance which are critical for human-like judge-

ments. One solution to overcome these shortcomings

is to use LLM as a judge for evaluation. GEval
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(Liu et al., 2023) is a framework that uses LLMs

with chain-of-thoughts to evaluate the quality of

LLM-generated results. By taking natural language

instruction that defines the evaluation criteria as

prompt, G-Eval uses an LLM to generate a chain-

of-thoughts of detailed evaluation steps. The prompt

along with the generated chain-of-thoughts is used to

evaluate the results.

2.4 Summary and Research Gap

While prior work has explored LLMs in require-

ments processing and code generation, few studies

have focused on systematically comparing models for

use case diagram generation with PlantUML syntax

(Alessio et al., 2024). Our study addresses this gap by

evaluating multiple lightweight LLMs (low parameter

LLMs) installed in local machines to identify those

with the lowest error rates, aiming to reduce the need

for manual corrections and enhance the automation

potential of UML generation tools in future works.

3 METHODOLOGY

This methodology aims to systematically evaluate and

compare the effectiveness of different Large Lan-

guage Models (LLMs) in generating accurate Plan-

tUML syntax directly from natural language require-

ments. Given the increasing use of LLMs in au-

tomating coding and diagramming tasks, understand-

ing their strengths and limitations in this specific con-

text is essential. This analysis seeks to identify which

models produce syntactically correct and semanti-

cally meaningful use case diagrams, with minimal er-

rors, thus reducing the need for manual corrections.

By conducting a comparative analysis, we aim to de-

termine the most suitable LLM for automating use

case diagram generation, particularly in terms of ac-

curacy, efficiency, and reliability.

The methodology is structured into key stages as

shown in figure 1: model selection, data preparation,

input specification, error classification, and evaluation

and analysis. Each stage plays a vital role in ensur-

ing a comprehensive and fair comparison of the mod-

els. This structured approach helps in identifying the

best-performing model and highlights common areas

where improvement is required.

3.1 Model Selection

The very first step in the methodology was to se-

lect a set of Large Language Models for evaluation.

We chose the models based on several factors includ-

ing their capability in generating structured code out-

puts, understanding natural language inputs, and ac-

cessibility. The focus was on selecting models that

were small in size, had smaller parameters, and were

resource-efficient so that the models could be run in

local machines. Each one of the selected models has

varied parameters and architecture, which allows us

to observe the differences in code quality, syntax ac-

curacy, and reliability across diverse configurations.

This selection process aims to ensure a well-rounded

comparison of lightweight base model LLMs, to de-

termine which could best translate natural language

requirements into accurate PlantUML syntax.

3.2 Data Preparation

To assess each model’s performance, a functional

requirements dataset that could efficiently test each

model’s capabilities had to be prepared. We prepared

a set of specifications based on common use case sce-

narios, including data processing, user administration,

and e-commerce. The requirements were annotated

wherever possible to emphasize specific components

such as actors, actions and system interactions. This

gives the models a structured input. We pre-processed

the data before inputting it into the models to make the

wording more uniform and eliminate ambiguities in

requirements caused by any technical jargon present

in the data, which the model could potentially misin-

terpret. Because of this uniform formatting, it became

easier to evaluate each model’s answer correctness.

3.3 Input Specification

The LLM models receive a CSV file as input contain-

ing ten software functional requirements, each rep-

resenting a software system. These functional re-

quirements are added as plain text with a standard-

ized prompt designed to guide the model in gener-

ating PlantUML code for use case diagrams. The

prompt contains the desired output format, including

the proper semantics of ”include” and ”extend” rela-

tionships and specifies that the output should contain

PlantUML code with valid syntax, without any addi-

tional explanations or comments that could cause syn-

tax errors. The same prompt is used for every LLM

model and input set to guarantee uniformity in input

interpretation.

3.4 Evaluation Metrics

Answer correctness metric is used for evaluation. It is

a numerical score between 0 and 1, 0 being the least
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Figure 1: Structural Flow of the Proposed Model.

Table 1: Overview of Selected LLM Models for Use Case Diagram Generation.

Model Parameters Description

Qwen 2.5-coder 7B Qwen2.5-Coder (Hui et al., 2024) is an advanced version of the Qwen series of large language
models (formerly CodeQwen), offering notable improvements in code generation, reasoning,
and bug fixing over its predecessor, CodeQwen1.5. Built on the Qwen2.5 foundation, it is
trained on a vast dataset of 5.5 trillion tokens, which includes source code, text-code grounding,
and synthetic data. It also supports long-context inputs of up to 128K tokens.

Gemma 9B Google’s lightweight Gemma2 (Team et al., 2024) models build on Gemini research, with en-
hanced capabilities in language understanding, suitable for tasks like question-answering, sum-
marization, and reasoning.

Llama 3.1 8B Meta’s Llama 3 (Dubey et al., 2024) improves over Llama 2 in coherence and contextual under-
standing, excelling in creative writing, coding, and conversational AI. Llama 3.1 is an upgraded
version that improves reasoning and context size.

Code Llama 7B Code Llama (Roziere et al., 2024) is a code generation model built on Llama 2, designed to
enhance developer workflows and assist in learning programming. It can generate both code
and natural language explanations, supporting popular programming languages like Python,
C++, Java, PHP, Typescript, C#, and Bash.

Mistral NeMo 12B A 12B model by Mistral AI with NVIDIA, NeMo offers a 128k token context window, support-
ing multilingual applications in English, French, German, and more. The model is optimized
for function calling and is similar to Mistral 7B.

Aya Expanse 8B Aya Expanse, developed by Cohere For AI, is a family of multilingual large language mod-
els designed to close language gaps and improve global communication. It supports over 23
languages, including Arabic, Chinese, English, Hindi, and Spanish. The models use advanced
techniques like supervised fine-tuning, multilingual preference training, and model merging to
enhance performance across various linguistic tasks.

correct and 1 being the most correct answer. The cor-

rectness metric involves comparing the LLM’s result

with the expected result based on any custom evalua-

tion criteria defined by the user. The evaluation crite-

ria involves:

• Syntax Correctness: This criteria checks if the

generated PlantUML code has syntax errors and

if it will compile successfully.

• Comments and Descriptions: Any additional

comments or descriptions included with the Plan-

tUML code will cause a syntax error. This criteria

checks if there are any comments or descriptions

in the result.

• Actor Count: To confirm that there are the same

number of actors in the expected and actual out-

puts.

• Use Case Correspondence: This criterion en-

sures that the generated output matches the ex-

pected output.

• Extend and Include Relationships: To confirm

that the relationships are accurately implemented

and positioned in the diagram.

• Hallucination Detection: To look for any extra

created content that does not fit the specified func-

tional requirements.

These metrics provided a balanced assessment

framework, helping to capture both the precision and

usability of each model’s output.
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4 RESULTS

Figure 2: Evaluation results.

The identical set of carefully chosen requirements

was fed into each model for testing, and the output

produced by PlantUML was compared to our pre-

determined metrics. We ensured that every output

complied with PlantUML requirements by using au-

tomated methods to verify syntax accuracy. In or-

der to confirm semantic accuracy, we also carried out

a manual examination in which we evaluated if the

relationships and elements were appropriately repre-

sented by comparing the created diagrams with the

original criteria.

After testing, we ranked the models according to

how well they performed across all measures. The

inputs, actual outputs, expected outputs, correctness

scores and correctness reasons for each LLM can

be viewed here - https://github.com/Mandalorian-

way/Comparative-Analysis-of-Large-Language-

Models-Result. As seen in table 2, models with

frequent errors or ambiguous outputs were scored

worse, whereas those with higher syntax and se-

mantic accuracy and lower error rates were ranked

favorably. We were able to determine each model’s

advantages and disadvantages as well as which

LLMs are best at producing precise UML diagrams

straight from requirements thanks to this comparative

analysis.

5 EVALUATION

The G-Eval correctness score is calculated by using a

scoring function that combines the prompt, a chain-

of-thought and the input context, along with the gen-

erated plantUML code. The evaluation process in-

volves generating a set of scores based on the evalu-

ation criteria we provide. The LLM evaluates the re-

sults and produces a probability for each score, and

the final score is calculated as a weighted sum of

the probabilities and their corresponding score values.

This approach normalizes the scores and provides a

more continuous, fine-grained score.

The G-Eval correctness score is calculated as:

score =
n

∑
i=1

p(si)× si

Where:

• p(si) is the probability of the score si being as-

signed by the LLM.

• si is one of the possible discrete scores in the pre-

defined set of scores for evaluation criteria.

On examining the evaluation results, it is ob-

served that Gemma2:9b-instruct-q6 K performed

the best with Qwen2.5-coder:7b-instruct-q6 K and

Mistral-Nemo:12b-instruct-2407-q6 K right behind

the model, having comparable scores.

Gemma2:9b-instruct-q6 K performed well in

modeling use cases but some relationships were

mapped incorrectly, missed some functional require-

ments, and had mismatched use case names. Aya-

Expanse:8b-q6 K received its score due to the misuse

of <include> and <extend> relationships, logical in-

consistencies in connecting actors and use cases, and

inclusion of unnecessary text and comments that com-

promises syntax. Llama3:8b-instruct-q6 K correctly

modeled most use cases but had used relationships in-

correctly, added unnecessary comments, and omitted

or misrepresented requirements, with occasional hal-

lucinated content. Mistral-Nemo:12b-instruct-2407-

q6 K followed basic syntax well, but had issues with

<include> and <extend> relationships, missing or

misrepresented requirements, and logical errors in

mapping relationships. Qwen2.5-coder:7b-instruct-

q6 K did well in modeling use cases but faced sim-

ilar issues with incorrect relationship usage, miss-

ing connections, and redundant labels in relation-

ships. Codellama:7b-instruct-q6 K struggled with

similar issues, including incorrect use of relation-

ships, logical errors in actor-to-use case connections,

and extra text before or after the PlantUML code.

6 CONCLUSION AND FUTURE

WORK

Automating the generation of UML diagrams holds a

significant importance in reducing manual effort and

improving the accuracy of the diagrams. Using Large
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Table 2: Answer correctness score.

Functional Requirements Aya expanse :8b codellama:7b gemma2:9b llama3:8b mistral-nemo:12b qwen2.5-coder:7b

Application 1 0.524 0.314 0.864 0.003 0.577 0.722

Application 2 0.379 0.77 0.76 0.617 0.74 0.747

Application 3 0.656 0.647 0.448 0.655 0.732 0.624

Application 4 0.644 0.786 0.627 0.78 0.665 0.699

Application 5 0.387 0.308 0.47 0.517 0.469 0.646

Application 6 0.461 0.136 0.447 0.54 0.665 0.575

Application 7 0.465 0.271 0.406 0.397 0.366 0.625

Application 8 0.436 0.36 0.653 0.373 0.763 0.405

Application 9 0.479 0.382 0.865 0.484 0.532 0.665

Application 10 0.495 0.351 0.889 0.602 0.455 0.475

Language Models for code generation is a growing

area of research in recent times. In this research, we

have explored the capability of LLMs to create these

UML diagrams. The objective of this research was to

compare a few base LLMs to find out which one of

them performed best for generating PlantUML code

for use case diagrams.

From this research, we have identified that on

average, gemma2 outperformed the other models in

generating PlantUML code with least errors. How-

ever, from our observations, we see that even though

gemma2 has the best average score, it did not perform

the best for every input. The results produced still has

a few syntactic and semantic inaccuracies. This is be-

cause base LLMs do not have any understanding of

the domain and will generate inconsistent results.

In order to improve the performance of these mod-

els in this domain, extensive fine-tuning is required.

A set of diverse functional requirements can be used

for fine-tuning to create a robust model capable of

handling complex functional requirements. Retirieval

Augmented Generation can also be used to provide

context on UML syntax to the LLM. Future works

can use human feedback loops to iteratively refine the

results and improve the semantic quality of the gener-

ated results. Using complex inputs for testing, includ-

ing ambiguous and incomplete inputs, can help assess

the model’s adaptability to different patters of inputs.

This refined model can reduce the human effort re-

quired in the generation of UML diagrams. The final

version of this improved model can be integrated into

software development pipelines to save the time and

effort of software analysts and architects.
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