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Abstract:  Epileptic seizures can result in substantial harm to the brain, which can lead to cognitive decline and memory 
loss. Reducing the severity of seizures is largely dependent on early identification. Currently, the doctors 
visually inspect EEG signals in order to diagnose seizure activity, which can be time-consuming and difficult. 
In order to automatically monitor and detect seizures through the brain's bio-signals, we propose a new 
method: simplistic convolutional neural network-long short-term memory model (1DCNN-LSTM). First, the 
unprocessed EEG dataset is pre-treatment and normalized, and we extract the sequence of features by a 1D 
CNN, and pass them to the LSTM layer. The temporal features are supplied to a few fully connected layers 
for final seizure recognition. Using data from UCI epileptic seizure detection dataset, the suggested model 
was assessed. In terms of recognition accuracy, the results are excellent: 82.00% for five-class seizure 
recognition and 99.39% for binary seizure recognition. The attribution of accuracy is considerably above that 
of classical machine learning methods and outshines other deep learning models widely recognized as 
competitors. 

1 INTRODUCTION 

Millions of individuals worldwide suffer from the 
neurological condition known as epilepsy. It develops 
as a result of a confluence of acquired and inherited 
elements, with the body undergoing abnormal brain 
activity that results in disorientation, 
unconsciousness, uncontrollable movements, etc. 5 
crore individuals throughout the globe to be troubled 
by seizure disorder; most of whom are adults, with the 
rest being children. Abnormal birth oxygen levels, 
brain injuries that occur in pregnancy, intracranial 
tumor, and unfamiliar blood sugar are some of the 
possible causes, however these are mostly 
unexplained. There were two kinds of seizure: focal 
seizures and generalized Tonic-Clonic seizures. A 
generalized seizure attacks the brain as a whole 
whereas a focal seizure attacks only certain regions of 
the brain. There are various classes into which 
generalized seizures have been divided. These 
include myoclonic, Tonic-Clonic, Atonic, Tonic-
Clonic seizures, Absence, and Clonic, among others, 
that end in convulsive seizures. The rests differentiate 

epilepsy from a significant condition that may have a 
devastating impact on the patient's physical as well as 
mental well-being-even causing death. These people 
would be much better off if they received adequate 
and appropriate care at the right time. 
Electroencephalography can be used to study the 
brain non-invasively. This technique can yield all the 
epilepsy-related information that cannot be gathered 
through other physiological procedures. EEG signals 
are mostly covered on the scalp but may also be 
recorded intracranially. EEG signals can be broadly 
classified into 4 states; these are Interictal, Postictal, 
Ictal, and Preictal. The Preictal stage has further 
significance because, minutes before the seizure 
occurs, it serves as an information source upon when 
the seizure onset is going to happen. By using the 
classification of interictal and preictal stages to 
predict the ictal state, seizures may be avoided and 
their harmful effects mitigated by taking medication 
on time. In the past, the primary method used by 
medical professionals to diagnose epilepsy or 
determine the origin of seizures was the visual 
interpretation of EEG signal data. However, new 
developments in deep learning techniques have made 
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it possible to create automated algorithms for 
identifying seizure activity associated with epilepsy. 
Deep learning has grown significantly in the last few 
years and is now applied in many domains, most 
notably image and natural language processing. 
CNNs basically use two characteristics in a different 
way to outperform other neural networks in different 
tasks. These characteristics include different filters 
which are applied over a variety of layers-for 
example: Convolution, pooling, normalization, and 
fully connected layers. However, the process of 
learning relevant and representational features active 
from EEG bio-signals presented as a time series is 
inherently difficult for CNNs. Hence, CNNs were 
unable to apply an accurate modeling upscaling of 
raw EEG signals onto seizure detection outcomes. 

2 RELATED WORKS 

110 features were then created for each seizure in the 
time, frequency, and time-frequency domains after 
preprocessing of the signals by the traditional 
pipeline. The features were ranked added in order to 
find the important ones using the method of extreme 
Gradient Boosting with statistical tests, Abirami S et 
al, (Abirami, Tikaram, et al. , 2024). With the 
introduction of machine learning algorithms, 
automated diagnosis systems can help doctors make 
rapid and accurate diagnoses, inform the patients, and 
speed up the classification procedure. It is the 
presentation of a new multi-path deep learning 
network for seizure-type classification, H. Albaqami 
et al, (Albaqami, Hassan, et al. , 2023) 

There is a new feature extraction method because 
of specific bands common spatial pattern, MSBCSP, 
for multi-class. It applies the joint approximation 
diagonalization, JAD, to the original CSP algorithm 
in the case of a multi-classification problem. Energy 
of Intrinsic Mode Functions is extracted through 
Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise, D. Wu et al, (Wu, Li, et al. , 
2023). Whereas self-regulating primitive discovery of 
seizures from a average EEG has been obtainable, 
classification of seizure types has not been attempted. 
Thus, P. Swarubini's and et al, study caters to classify 
seven types of seizures using non-seizure EEG 
(Abirami, Swarubini, et al., 2023). From every 
preictal data segment in 17 EEG channels and 1 ECG 
channel, the time-domain characteristics were 
extracted. Various classifiers like k-nearest 
neighbour, decision tree, random forest, naive Bayes, 
support vector machines were utilized to access the 
classification accuracy. Wenjuan Xiong's and et al, 

research by using random forest on 15-0 min preictal 
period of EEG and ECG data achieved the best 
classification accuracy results at 87.83% (Xiong, 
Nurse, et al. , 2023). 

In the case of epileptic patients, accurate 
identification of the seizure type is of great 
importance to help design a treatment plan and 
administer medications. Diagnosis of epileptic 
seizures is most commonly carried out using the 
electroencephalography technique, commonly 
abbreviated as EEG. Signals from the EEG are most 
often used in epilepsy research, and the signals carry 
vital information regarding electrical activity in the 
brain. Among the various deep network architectures 
that have been broadly applied in learning 
representations for EEG signals in epilepsy research, 
CNNs are just one of them. M. Hussain et al, 
(Alshaya, and, Hussain, 2023). A Nicolet EEG 
machine samples the EEG data set at 125 Hz. It has 
been feasible to obtain IEDs, for example spikes, 
sharps, slow waves, and spike-wave discharges 
(SWD), by robust preprocessing, feature extraction, 
and optimal classifiers. Results The results of the 
developed classifier are tested against clinical 
impressions provided by experienced epileptologists. 
R. K. Joshi et al, (Joshi, Kumar, et al. , 2022). Hence, 
development procedures automatically would support 
medical professionals with the early identification 
and diagnosis of epileptic seizures as well as 
classification. Intelligent diagnostic techniques 
depend on development that needs for the physiology 
and pathophysiology of seizure, by using machine 
learning in classification and identification of 
symptoms. Adetunji C. O et al, (Adetunji, Olaniyan, 
et al. , 2023). Design, procedure and strategy Multiple 
illness patients encounter many problems especially 
in situations where they have been diagnosed with 
more than one dysfunction, especially when they use 
wheelchairs and are sighted. Neelappa R. U. N et al, 
(Neelappa, and, Harish, 2023). 

About thirty percent of epilepsy patients remain 
unmedicated or unaspirantedly operated upon.The 
preictal area is the area of the brain showing abnormal 
activity just before a seizure occurs, often sometime 
in the minutes leading up to it. Poorani S et al, 
(Poorani, and, Balasubramanie, 2023).In this respect, 
this research work presented a novel deep learning 
methodology for the prediction of successful seizure 
in iEEG accurately. It used channel increment 
strategy in conjunction with 1D-CNN. As an initial 
step, we segmented the iEEG signals using 4-sec 
sliding windows non-overlap. Wang X et al, (Wang, 
Zhang, et al. , 2023). 
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This paper introduces an epilepsy detection 
algorithm which could reduce the memory 
requirements of the system by using few 
characteristics only. This study also introduces a new 
entropy estimation technique for features extraction 
so that computation requirement of the algorithm will 
be reduced using bitwise operations instead of 
logarithmic ones. Yan X et al, (Yan, Yang, et al. , 
2022).This has led to aggressive application of 
algorithms of machine learning to classify seizure 
diseases from big data, and thus present neurologists 
with shortlisted results. According to P. 
Boonyakitanont et al, (Boonyakitanont, Lek-Uthai, et 
al. , 2020) many features, data transformations, and 
classifiers have been researched in order to classify 
and assess seizures using EEG signals. Raw EEG 
signals, directly obtained without any preprocessing 
as input into the system, reduce the amount of 
computation. Secondly, BNLSTM and CASA 
retained the time and spatial information of the raw 
EEG data respectively, M. Ma et al, (Ma, Cheng, et 
al. , 2021).  

 
This paper introduces a new CNN algorithm along 

with the common spatial pattern (CSP) algorithm for 
seizure prediction. According to real signals, Y. 
Zhang et al, (Zhang, , et al. , 2020)first divide the pre-
ictal signals and combine them together to form 
artificial preictal EEG signals as an approach to the 
trial imbalance situation between two states. 

 

3 PROPOSED SYSTEM 

It includes real-time monitoring, feature extraction, 
preprocessing, classification, and data acquisition. 
This research describes a novel method for 1D CNN-
LSTM-based epileptic seizure identification . 

 
First, the raw EEG signal data was preprocessed. 

Next the LSTM and 1D CNN were used in turn. Then 
1D CNN combined with the LSTM model identifies 
epileptic seizures for data processing and getting an 
accurate outcome as shown below as the result graph. 

 
Now let us see discuss the Dataset Description, 

1D CNN, LSTM Structure, and CNN Combined with 
LSTM Model in 1D which has to be implemented to 
detect the Seizure after the multichannel signals have 
been gathered to provide a key improvement in 
accuracy.  

 
Figure 1 : Block Diagram 

3.1 Dataset Description :  

This study uses the publicly accessible 500-subject 
UCI Epileptic Seizure Recognition Data Set. Each of 
five folders included in the dataset had 100 recordings 
in total, and every recording sample held 4097 data 
points that were gathered over a period of 23.5 
seconds. UCI preprocesses that dataset and then splits 
each sample into 23 1-second segments, randomly 
shuffles the data, and produces 11,500 timeseries 
EEG’s signal datas and samples. There are 5 types of  

 
Figure 2: Quartet normal circumstances and the EEG raw 
signa which is in undulation of one tonic seizure state 
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medical conditions in the UCI dataset. These include 
four normal conditions where no seizure takes place 
and one associated with epileptic seizures. Such 
conditions include records in which patients undergo 
seizures, records in which patients are open-eyed 
during an EEG, records of patients who are closed-
eyed during an EEG, healthy brain regions of 
subjects, and the brain tumor region of the subjects. 
Despite the fact that the raw EEG signal waveform 
for the epileptic seizure condition is significantly 
different compared with normal conditions, many 
normal situations cannot be differentiated. Hence, 
both tasks of binary and five-class epileptic seizure 
recognition are dealt with in this model to estimate 
the efficiency of the advanced approach 
appropriately. The dataset is openly accessible to all 
users. 

 

3.2 1D CNN :  

To extract relevant and comprehensive features from 
1D time-series data, 1D convolution operations along 
with multiple filters are applied within the 1D CNN. 
For this experiment, one dimensional feature maps 
and convolution filters are utilized that suit the raw 
EEG properties. The more layers added to the CNN 
through the incorporation of more convolutional 
layers, the more progressive the disclosing of 
sophisticated traits that are reliable and unique in 
diagnosing epileptic seizures. 

 
Figure 3: One-dimensional Filtering Process 

3.3 LSTM Structure 

The LST block consists of four gates: an InputGate-
zi controls the information that flows into the cell; a 
ForgetGate-zf controls the amount of information 
retained within the cell, the cell state gate z that saves 
information over time, and the output gate zo, which 
chooses how much information from the cell will be 
used for output computation.   

 
Figure 4 : Layout of the LSTM cell 

Every gate consists of an activation function along 
with a fully connected layer. In addition to this, the 
LSTM block also contains three outputs: the Current 
CellState (ct), the Current HiddenState (ht), and the 
Current Output (yt), whereas there are also three 
inputs involved, including the PreviousCellState (ct-
1), the PreviousHidden State (ht-1), and the 
CurrentInput (xt). It is the hidden state which 
produces the current output. The statistical expression 
is given by 𝑧௙ =  𝜎൫𝑊௙ൣ𝑥௧, ℎ{௧ିଵ}൧൯  𝑧^𝑖 = \𝑠𝑖𝑔𝑚𝑎(𝑊^𝑖 [𝑥_𝑡, ℎ_{𝑡 − 1}])   𝑧 = \𝑡𝑎𝑛ℎ(𝑊[𝑥_𝑡, ℎ_{𝑡 − 1}])   𝑧଴ =  𝜎൫𝑊଴ൣ𝑥௧, ℎ{௧ିଵ}൧൯  𝑐^𝑡 =  𝑧^𝑓 \𝑡𝑖𝑚𝑒𝑠 𝑐^{𝑡 − 1} +  𝑧^𝑖 \𝑡𝑖𝑚𝑒𝑠 𝑧   ℎ^𝑡 =  𝑧^0 \𝑡𝑖𝑚𝑒𝑠 \𝑡𝑎𝑛ℎ(𝑐^𝑡)   𝑦^𝑡 = \𝑠𝑖𝑔𝑚𝑎(𝑊^ℎ ℎ_𝑡)   
3.4 CNN Combined with LSTM Model 

in 1D 

The advanced approach toward CNN combined with 
LSTM 1-Dimensional model architecture consists of 
an InputLayer, followed by four convolutional layers, 
a PoolingLayer, two LSTM layers, four fully 
connected layers, and a Softmax OutputLayer. Since 
1-Dimensional EEG’s indication is in the form of 
178x1, it can be supplied directly as the input data to 
the model. The first convolutional layer, responsible 
for extraction of features from the raw data, applies 
64 1D convolutional kernels sized at 3x1 and strides 
at 1Convolutional layer followed by a ReLU 
ActivationLayer helps to begin the Non-Linearity 
within the reprensentation. Definitions: numerical 
precision of 1-Dimensional convolution and 
mathematical definition of ReLU activation: 
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𝑦௝௟ = 𝜎 ቌ ෍ 𝑐𝑜𝑛𝑣ே೗షభ
௜ୀଵ 1𝐷൫𝑤௜,௝௟ , 𝑥௜௟ିଵ൯ + 𝑏௝௟ቍ 

As a result of the 1-Dimensional convolution and 
ReLU Activation, 64 176 x 1 feature maps are 
generated. Then the output is passed to a layer called 
1D max-pooling. This represents the whole 
mathematical formula of the process of 1D max-
pooling. 

 

4 EXPERIMENTAL RESULTS 

Ninety percent of the data available in this experiment 
was used to train the 1D convolutional LSTM, 1D 
CNN, and DNN models. Ten percent remained as test 
data. Dropout prevented overfitting during training 
for 100 epochs. At random, scrambling happened 
before feeding these models the data. The accuracy 
for the final training and test data sets of every epoch 
was calculated while evaluating the model's 
generalization capacity and looking out for 
overfitting. Finally, after 10 training cycles, if 
generalization no longer increased, checkpoints were 
created and the learning rate was changed. Major 
Tasks for the Study This paper considered the 
development of tasks concerning recognition of 
seizure, first, in binary and then, as 5-class. While 
five-class task required the identification of seizures 
and normal situations, such as both opened eyes and 
closed eyes, EEG activity from wholesome mental 
state areas, and EEG’s motion from the malignancy 
affected region, the binary work just required the 
identification of seizures and normal conditions. 
 

 
Figure 5 : Assessing each of these output of the models on 
the Binary Recognition test 

 

4.1 Binary Recognition Task:  

Figure 5 of this chapter depicts the 1-Dimensional 
CNN combined LSTM model's performance on the 
task of Binary Recognition. This compared the results 
produced by the proposed model to the yields of two 
other deep learning models applied in the space of 
utilization of epileptic seizure, namely DNN and 
standard CNN. The figure clearly states that though 
the DNN model converged the fastest, loss 
parameters for training and testing the suggested 
model were found to be less, hence increasing the 
accuracy. The typical CNN performed similarly in 
training compared with the proposed model, however 
it performed much worse in testing. Since this model 
achieved the best accuracy while testing to be done 
across most of the training period, Figure 6 further 
shows that the advanced 1-Dimensional CNN 
combined LSTM Model outperforms the CNN and 
then DNN Models. However, all three models are 
compared in Table 1 and it is shown how the 
suggested model is better in terms of seizure activity 
validation. 

Accuracy = ୘୔ା୘୒୘୔ା୘୒ା୊୔ା୊୒ 

Precision = ்௉்௉ାி௉ 

Recall = ்௉்௉ାிே 

F1 Score = 2 ×௉௥௘௖௜௦௜௢௡ × ோ௘௖௔௟௟ ௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟  
Table 1: The DNN, CNN, and the suggested 1-

Dimensional CNN combined with LSTM Model's relative 
efficiency in handling binary classification problems 

Methods Accuracy Precision Recall F1-
score

CNN 94.17% 93.34% 91.25% 0.9319
DNN 97.34% 92.17%  84.70% 0.9227

Proposed 
Model

99.40%  98.40% 98.37% 0.9754 

 

TN and FN state the number of seizures that arose 
accurately classed and inaccurately classified, 
respectively; and non-seizure activities that were not 
classified as seizure activities are indicated by TN. 
The count of any other sort of different kind of a 
seizure task which is mistakenly labeled is given by 
FP. The proposed LSTM and 1D CNN model 
outperforms the normal CNN and DNN models since 
it presents high F1-score, precision, recall, accuracy 
values at 0.9754, 98.40%, 98.37%, and 99.40%, 
respectively. Values outperform the regular CNN and 
DNN models with increases in F1-score as 0.0435 
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and 0.0527; precision: 5.06% and 6.23%; recall: 
7.12% and 13.67%; as well as increases in accuracy: 
5.23% and 2.06%  

Table 2: The Five-Class classification task variation of 
CNN, DNN, and the suggested 1-Dimensional CNN 

combined with LSTM model. 

Methods Accuracy Precision Recall F1-
score

CNN 64.40%  65.74% 66.77% 0.6775
DNN 67.74%  69.43% 67.57% 0.6641

Proposed 
Model 

81.00%  81.77% 82.70% 0.8174 

4.2 FiveClass Recognition Task:  

Figure 7 presents the results of the three models 
applied to the FiveClass Identification operation, and 
it is evident that the 1-Dimensional CNN combined 
LSTM model exhibits the efficient identification of  
variation compared to the DNN and CNN models. 
This conclusion is further supported by Table 2, 
which shows that the advanced approach outshines 
the several two models in Accuracy, Precision, 
Recall, and F1-score. 

5 RESULT  

Capturing the 1D Convolution Operation from the 
raw EEG data tends to identify the seizure and non-
seizure circumstances by considering their temporal 
characteristics. Normal conditions are represented by 
four classes, where the waveform pattern of the EEG 
is smoother and more periodic. The case of the 
epileptic seizure condition is introduced as containing 
strong spikes and anomalies. Long-term 
dependencies in the time series data are followed by 
making use of the LSTM block structure. Models 
such as CNN, LSTM, and CNN-LSTM showed high 
testing accuracies for the binary recognition 
challenge of seizure versus non-seizure. CNN-LSTM 
generally outperforms the others. On the other hand, 
model performances were varied for the five-class 
recognition challenge. In this case, 1D CNN-LSTM 
seems to offer superior cross-class generalization. 
The average accuracies for DT, DNN, CNN, CNN-
LSTM, and SVM, k-NN, and SVM, among others, 
indicated that deep learning models—especially 
CNN and CNN-LSTM—were drastically better than 
a more traditional model such as k-NN and SVM. 

 
Figure 6: The mean precisions of 1-Dimensional CNN 
combined with LSTM, k-NN and DNN approaches 

6 CONCLUSION 

From this, the suggested model made use of an LSTM 
network combined with a CNN for the analysis of 
Epileptic Seizures by using the EEG’s indications. 
The LSTM approach would classify the sequential 
EEG signals that were recognized after the 1D CNN 
had gotten the features out from the EEG data, thus 
completing the whole end-to-end network. So, the 
model was tested on the two different recognition 
tasks, which include binary and five-class recognition 
along with the UCI epileptic seizure recognition 
dataset. It depicted excellent performances for both 
five-class and binary recognition, where the five-class 
recognition was showing an accuracy of 82.00%, 
whereas binary recognition resulted in 99.39%. The 
proposed model showed a key improvement in 
accuracy compared to some other techniques 
including DT, CNN, SVM, DNN and k-NN with the 
help of 3.04%, 2.26%, 7.09%, 5.43%, and 5.35% 
above the accuracy of the binary recognition 
challenge, respectively. 
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