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Abstract: Live cell imaging has transformed biological research, offering real-time insight into dynamic cellular 
processes. This project focuses on using deep learning techniques to automate the detection and 
classification of live cell stages, specifically distinguishing between the interphase and mitosis phases. 
Traditional methods, such as fluorescence microscopy and flow cytometry, are highly dependent on manual 
or semiautomated, time-intensive and error-prone approaches. Our proposed solution employs advanced 
deep learning architectures, including Sequential Convolutional Neural Network (SCNN), ResNet50, and 
EfficientNetB0, to overcome these limitations. The data set used comprises high-resolution images of 
nematode cells, preprocessed using resizing, normalization, and data augmentation techniques to ensure 
robust model training. The performance of each model is evaluated on the basis of metrics such as accuracy, 
positive predictive value (PPV), sensitivity, and the F1 score. In particular, EfficientNetB0 emerges as the 
model with the best performance, achieving a test accuracy of 98%, showcasing its superior ability to 
generalize in diverse data. 

1 INTRODUCTION 

Live cell imaging has transformed biological 
research by enabling real-time observation of 
cellular processes such as mitosis and signal 
transduction. Despite its advantages, manual 
analysis of live cell imaging data is time-consuming 
and error-prone, especially in distinguishing phases 
such as Interphase and Mitosis. This project 
addresses these challenges using deep learning 
methods, specifically a Sequential Convolutional 
Neural Network (SCNN) and pretrained models like 
ResNet50 and EfficientNetB0. These models 
leverage compound scaling and transfer learning 
from ImageNet to achieve high accuracy in binary 
classification tasks. By automating live cell stage 
classification, this project accelerates cellular 
analysis, offering a scalable and efficient solution 
for research and medical diagnostics, with 
significant implications for cancer studies and drug 
discovery.  
 

1.1 Objective 
The primary objective of this project is to develop an 
automated system for live cell stage classification, 
specifically distinguishing between Interphase and 
Mitosis phases, to reduce reliance on manual 
methods. State-of-the-art deep learning 
architectures, including SCNN, ResNet50, and 
EfficientNetB0, are utilized to ensure high accuracy 
and efficiency. Data preprocessing techniques such 
as resizing, normalization, and augmentation (e.g., 
rotations, flips, and brightness adjustments) are 
implemented to enhance model robustness and 
generalization. Model performance is evaluated 
using metrics like accuracy, positive predictive value 
(PPV), sensitivity, and F1-score, and ROC to ensure 
consistent and reliable results. The system aims to 
support biomedical research by enabling scalable 
applications such as cellular behavior analysis, 
cancer stage identification, and drug testing. 
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1.2 Literature Survey 

The classification of cell cycle stages using deep 
learning has been an active area of research. Several 
studies have explored various methods and datasets 
to enhance accuracy. Below is a summary of key 
related works: 

Robust Classification of Cell Cycle Phase and 
Biological Feature Extraction by Image-Based Deep 
Learning: Okada et al. (2020) proposed a method 
using convolutional neural network (CNN) to 
classify fluorescence images of cells into G1/S and 
G2 phases without relying on specific cell cycle 
markers. The study achieved an accuracy of 
approximately 90%. Using Grad-CAM analysis, the 
authors identified critical subcellular features that 
contributed to the classification decisions. (Nagao, 
Sakamoto, et al. , 2020).  

Cell Cycle Stage Classification Using Phase 
Imaging with Computational Specificity (PICS): 
Nguyen et al. (2022) introduced a label-free deep 
learning method for classifying cell cycle stages 
based on single-shot quantitative Live Cell Stage 
Classification Using Deep Learning phase imaging. 
Their model achieved comparable accuracy to 
traditional techniques, with atleast one stage in 
interphase classification below 95% accuracy. (He, 
Kandel, et al. , 2022). 

Predicting Cell Cycle Stage from 3D Single-Cell 
Nuclear-Stained Images: Li et al. (2024) applied a 
CNN-based model to classify cell cycle stages using 
3D nuclear-stained single-cell images. Their model 
achieved an accuracy of 93%, showcasing the 
potential of combining 3D imaging and deep 
learning. (Li, Nichols, et al. , 2024). 

Cell Cycle Classification Using Imaging Flow 
Cytometry and Deep Learning: Zhang et al. (2022) 
developed deep learning models, including a 2-layer 
fully connected neural network, to classify cell cycle 
stages from imaging flow cytometry data. Despite 
exploring various architectures, the best-balanced 
accuracy achieved was below 95%. This study 
indicated room for improvement in both model 
design and preprocessing techniques when using 
imaging flow cytometry data for cell stage 
classification (Rade, Zhang, et al. , 2022). 

Deep Learning-Based Reconstruction of 
Embryonic Cell-Division Cycle in Nematodes: 
Wang et al. (2024) focused on the classification of 
cell division stages in nematode embryos using 
multiple CNN architectures. The models achieved 
accuracies below 95%, highlighting the difficulties 
associated with embryonic cell cycle stage 
classification. This research pointed out the 

challenges of dealing with complex and dynamic 
datasets, particularly in embryonic imaging (Wang 
et al. , 2024). 
Each of these studies contributes valuable insights to 
the field of cell cycle classification using deep 
learning. However, the reported accuracies below 
95% indicate significant opportunities for 
improvement. The current project aims to build upon 
these works by leveraging advanced architectures, 
robust preprocessing techniques, and optimized 
training methods to achieve higher accuracy and 
scalability. 

2 DESIGN AND PRINCIPLE OF 
OPERATION 

2.1 Proposed System 

2.1.1 Data Preprocessing 

The system begins with data preprocessing to en- 
sure high-quality inputs for the models. The dataset 
comprises high-resolution images of nematode cells 
labeled as Interphase or Mitosis. Each image is 
resized to 224 × 224 pixels and normalized to the 
range [0, 1]. To enhance model robustness and 
prevent over-fitting, data augmentation techniques 
such as random rotations, flips, and brightness 
adjustments are applied, ensuring the models 
generalize effectively to unseen data. 

2.1.2 Model Architectures  

The proposed system employs three deep learning 
models: SCNN, ResNet50, and EfficientNetB0. The 
SCNN is a custom-built architecture that uses 
convolutional layers for feature extraction, max-
pooling layers for dimensionality reduction, and 
fully connected dense layers with dropout to 
mitigate overfitting. ResNet50, pretrained on the 
ImageNet dataset, is fine-tuned for binary 
classification by replacing the final layers with task-
specific dense layers, leveraging residual learning to 
address the vanishing gradient problem. 
EfficientNetB0, known for its compound scaling, 
balances network depth, width, and resolution, 
making it both accurate and computationally 
efficient. This model is fine-tuned for the current 
application and achieves the best performance 
among the three. 
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2.1.3 Training and Optimization   

The models are trained using the Adam optimizer 
with a dynamic learning rate scheduler, which 
adjusts the learning rate during training for better 
convergence. Binary cross-entropy loss is employed 
as it is well-suited for binary classification tasks. 
Throughout the training process, metrics such as 
accuracy, loss, positive predictive value (PPV), 
sensitivity, and F1-score are monitored to ensure 
convergence and prevent overfitting. 

2.1.4 Evaluation Metrics   

The system’s performance is evaluated using a 
variety of metrics. Accuracy measures the overall 
correctness of the model, while positive predictive 
value (PPV) and sensitivity quantify its ability to 
correctly classify positive cases and retrieve all 
relevant instances. The F1-score provides a balance 
between positive predictive value (PPV) and 
sensitivity. A confusion matrix visualizes 
classification performance across the two classes, 
and a Receiver Operating Characteristic (ROC) 
analyzes the trade-off between sensitivity and 
specificity, further validating the model’s reliability. 

2.1.5 System Workflow 

The system workflow begins with preprocessing the 
input dataset, followed by training and fine-tuning 
the three models. During the evaluation phase, the 
models’ performance metrics are analyzed, and the 
best-performing model, EfficientNetB0, is selected 
for deployment. The system outputs the classified 
cell stage (Interphase or Mitosis) with high 
confidence. 

2.2 Flow Chart of the Proposed System 

 

Figure 1: Flow Chart of Proposed System 

2.3 Methodology 

The methodology for this project involves a systematic 
approach to classify live cell stages, focusing on 
Interphase and Mitosis phases. The process is divided into 
several key steps: dataset preparation, preprocessing, 
model architecture, training, and evaluation. 
 

2.3.1 Dataset and Preprocessing 

The dataset consists of high-resolution images of 
nematode cells, labeled as either Interphase or 
Mitosis. To ensure consistency, all images are 
resized to 224 × 224 pixels and normalized to a 
range of [0, 1]. This preprocessing step standardizes 
the input for all models, enabling efficient training 
and reducing computational overhead. Data 
augmentation techniques are applied to improve 
generalization and prevent overfitting. These 
techniques include: 
 

1. Random rotations to simulate various 
orientations of cells. 

2. Horizontal and vertical flips to account for 
variability in image orientation. 

3. Brightness adjustments to simulate 
different imaging conditions. 

 

2.3.2 Model Architectures 

Three deep learning models are employed for 
this task: Sequential Convolutional Neural Network 
(SCNN), ResNet50, and EfficientNetB0. Each 
model architecture is optimized to achieve high 
accuracy and efficiency. 
 

1) Sequential Convolutional Neural 
Network (SCNN): The SCNN is a custom-
built model tailored for this application. It 
consists of: 

 
• Multiple convolutional layers for 

feature extraction. 
• Max-pooling layers to reduce spatial 

dimensions and computational 
complexity. 

• Fully connected dense layers for 
classification. 

• Dropout layers to prevent overfitting 
during training. 

 

INCOFT 2025 - International Conference on Futuristic Technology

416



 
Figure 2: Architecture of Sequential CNN 

2) ResNet50: ResNet50, a well-established 
model pretrained on ImageNet, is utilized 
for its residual learning capabilities. The 
key features include: 
• Residual blocks that mitigate the 

vanishing gradient problem. 
• Pretrained weights from ImageNet, 

fine-tuned for binary classification. 
• A final dense layer customized for the 

classification of Interphase and 
Mitosis. 

 
Figure 3: Architecture of ResNet50 model used in the 
proposed system. 

3) EfficientNetB0: EfficientNetB0 is chosen 
for its compound scaling capabilities, 
optimizing depth, width, and resolution for 
maximum accuracy and computational 
efficiency. Its key features include: 
• Balanced architecture using compound 

scaling for resource optimization. 
• Pretrained on ImageNet and fine-tuned 

for this application. 
• Superior generalization capabilities, 

making it the best-performing model in 
this study. 

 
Figure 4: Architecture of EfficientNetB0 model. 

2.3.3 Training and Optimization 

The models are trained using the following settings: 
• Optimizer: Adam optimizer with an initial 

learning rate of 0.001. 
• Loss Function: Binary cross-entropy loss, 

suitable for binary classification tasks. 
• Batch Size: 32 images per batch for 

balanced training. 
• Epochs: Models are trained for up to 50 

epochs, with early stopping based on 
validation accuracy. 

• Learning Rate Scheduler: Dynamically 
adjusts the learning rate to optimize 
convergence. 

2.3.4 Evaluation Metrics 

The performance of the models is evaluated 
using the following metrics: 
• Accuracy: Measures the overall 

correctness of predictions. 
• Positive Predictive Value (PPV): 

Calculates the ratio of label true positive 
(TP) predictions to total predicted positives. 

• Sensitivity: Measures the model’s ability to 
identify all relevant instances (true 
positives (TP)). 

• F1-Score: Provides a balance between 
positive predictive value (PPV) and 
sensitivity. 

• Confusion Matrix: Visualizes the 
classification performance for each class. 

• Receiver Operating Characteristic 
(ROC): Evaluates the trade-off between 
sensitivity and specificity.  

2.3.5 System Workflow 

The workflow of the proposed methodology is out- 
lined as follows: 

1) Preprocess the dataset by resizing, 
normalizing, and augmenting the images. 

2) Train the three models (SCNN, ResNet50, 
and EfficientNetB0) using the prepared 
dataset. 

3) Evaluate model performance on test data 
using the defined metrics. 

4) Select the best-performing model, 
Efficient-NetB0, for deployment based on 
accuracy, positive predictive value (PPV), 
sensitivity, and F1-score. 
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2.3.6 Model Architectures 

• Sequential CNN: Features are extracted 
using multiple Conv2D and MaxPooling2D 
layers, followed by fully connected Dense 
layers. 

• ResNet50: Pretrained on ImageNet, it 
utilizes residual learning for feature 
extraction. The final layers are customized 
for binary classification. 

• EfficientNetB0: With compound scaling, 
this model optimizes accuracy and 
computational efficiency.  

2.4 Implementation 

The implementation of this project involves de-
signing and training deep learning models to classify 
live cell stages. The following steps outline the com-
plete implementation process, from data preparation 
to model evaluation: 

2.4.1 Data Preparation 

The dataset consists of labeled high-resolution 
images of nematode cells categorized as Interphase 
or Mitosis. The preprocessing pipeline includes: 

• Resizing: All images are resized to 224 × 
224 pixels to maintain uniformity across 
the dataset. 

• Normalization: Pixel values are scaled to a 
range of [0, 1] to ensure faster and more 
stable convergence during training. 

• Data Augmentation: Techniques such as 
random rotations, horizontal and vertical 
flips, and bright- ness adjustments are 
applied to enhance dataset variability and 
prevent overfitting. 

2.4.2 Model Training 

Three deep learning models—Sequential 
Convolutional Neural Network (SCNN), ResNet50, 
and EfficientNetB0—were implemented and trained 
using TensorFlow for the binary classification of 
Interphase and Mitosis stages. The SCNN was 
custom-built with convolutional, max-pooling, 
dense, and dropout layers to extract features and 
prevent overfitting. ResNet50 and EfficientNetB0, 
pretrained on ImageNet, were finetuned for the task 
with their final layers replaced by task-specific 
dense layers. Training utilized the Adam optimizer 

with an initial learning rate of 0.001, binary cross-
entropy loss, and a batch size of 32 for upto 50 
epochs, with early stopping based on validation loss 
to avoid overfitting. A learning rate scheduler was 
employed to ensure optimal convergence. 

2.4.3 Evaluation Pipeline 

The trained models were evaluated using a test 
set. Various metrics were calculated to assess the 
performance of each model: 

Accuracy: The ratio of correctly predicted 
instances to the total number of instances. 

Positive predictive value (PPV): The 
proportion of label true positive (TP) predictions 
among all positive predictions. 

Sensitivity: The proportion of label true positive 
(TP) correctly identified out of all actual positives. 

F1-Score: The harmonic mean of positive 
predictive value (PPV) and sensitivity, providing a 
balanced evaluation metric. 

Confusion Matrix: A detailed breakdown of 
label true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). 

Receiver Operating Characteristic (ROC): A 
graphical representation of the trade-off between 
sensitivity and specificity. 

2.4.4 Implementation Workflow:  

The complete workflow of the implementation is as 
follows: 

• Dataset Preparation: Preprocessing and 
augmenting the dataset to create a robust 
input pipeline. 

• Model Training: Training the SCNN, 
ResNet50, and EfficientNetB0 models on 
the preprocessed dataset. 

• Performance Evaluation: Using the 
evaluation pipeline to compute metrics for 
each model. 

• Model Selection: Selecting EfficientNetB0 
as the best-performing model based on its 
superior accuracy of 98%. 

• Deployment: Preparing the final trained 
EfficientNetB0 model for integration into 
biomedical research workflows. 

2.4.5 Implementation Tools and 
Environment 

The following tools and libraries were used for 
implementation: 

• Programming Language: Python 3.8. 
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• Deep Learning Framework: TensorFlow 
and Keras for model design, training, and 
evaluation. 

• Hardware: NVIDIA GPU for accelerated 
training. 

• Development Environment: Google 
Colab and Jupyter Notebook for coding and 
experimentation. 

This implementation pipeline ensures a robust and 
scalable system for automating live cell stage 
classification while maintaining high accuracy and 
computational efficiency. 

3 SIMULATION RESULTS AND 
ANALYSIS 

This section presents the outcomes of the imple- 
mented deep learning models for classifying live 
cell stages into Interphase and Mitosis. The results 
are evaluated using various metrics and 
visualizations to demonstrate the performance of the 
models and compare their effectiveness. 

3.1 EfficientNetB0 

The EfficientNetB0 model outperformed other 
models with consistent performance across training, 
validation, and test datasets: 

• Training Accuracy: The model achieved 
a high training accuracy of 98%. 

• Validation Accuracy: A validation 
accuracy of 99% demonstrated excellent 
generalization. 

• Test Accuracy: The test accuracy of 98% 
confirmed the robustness of the model on 
unseen data. 

Performance Visualizations:  

 
Figure 5. Loss and accuracy graphs on training and 
validation sets for EfficientNetB0. 

Confusion Matrix: The confusion matrix for 
EfficientNetB0 highlights its strong classification 
performance: 

• True Positives (Mitosis): 361 
• True Negatives (Interphase): 530 
• False Positives: 13 
• False Negatives: 4 

 

 
Figure 6: Confusion Matrix for EfficientNetB0. 

 

3.2 ResNet50 

The ResNet50 model demonstrated competitive 
performance but underperformed compared to 
Efficient-NetB0: 

• Training Accuracy: 90%. 
• Validation Accuracy: 85%. 
• Test Accuracy: 76%. 

 
Performance Visualizations: 

 
Figure 7: Loss and accuracy graphs on training and 
validation sets for ResNet50. 

 

Confusion Matrix: The confusion matrix for 
ResNet50 revealed: 

• True Positives (Mitosis): 534 
• True Negatives (Interphase): 159 
• False Positives: 0 
• False Negatives: 215 
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Figure 8: Confusion Matrix for ResNet50. 

 

3.3 Sequential Convolutional Neural 
Network (SCNN) 

SCNN showed the lowest performance among the 
three models: 

• Training Accuracy: 76%. 
• Validation Accuracy: 80%. 
• Test Accuracy: 85%. 

Performance Visualizations: 
 

 
Figure 9: Loss and accuracy graphs on training and 
validation sets for sequential convolutional neural network 
(SCNN) 

 
Confusion Matrix: The confusion matrix for SCNN 
highlighted: 

• True Positives (Mitosis): 506 
• True Negatives (Interphase): 270 
• False Positives: 28 
• False Negatives: 104 

 
Figure 10: Confusion Matrix for SCNN. 

3.4 Comparison of Models 

The three models were compared based on their 
performance metrics: 

• EfficientNetB0: Achieved the highest 
accuracy and most stable performance 
across all datasets, with minimal 
fluctuations in validation accuracy and loss. 

• ResNet50: Demonstrated moderate 
performance, with occasional spikes in 
validation loss and lower test accuracy. 

• SCNN: Struggled with generalization and 
stability, exhibiting fluctuations in 
validation performance and relatively lower 
test accuracy.  

 
Figure 11: Comparison of Training and Validation Curves 
for SCNN, ResNet50, and EfficientNetB0. 

3.5 Key Findings 

• EfficientNetB0: The best-performing model 
with 98% test accuracy and superior 
generalization, making it ideal for 
deployment. 

• ResNet50: While effective, it was less 
stable and accurate compared to 
EfficientNetB0. 
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• SCNN: Demonstrated limitations in 
learning complex patterns, leading to lower 
accuracy and inconsistent performance. 

• EfficientNetB0 achieved superior accuracy 
of 98%, significantly outperforming 
ResNet50 and Sequential CNN. Table 1 
summarizes the performance metrics. 

Table 1: Performance Metrics of Models. 

Model Accura
cy 

PPV Sensitivit
y 

F1-
Score

SCNN 85% 82% 84% 83%
ResNet50 90% 88% 89% 88.5%
Efficient

Net 
98% 97% 98% 97.5% 

4 CONCLUSIONS 

This project successfully demonstrates the use of 
deep learning models for automating live cell stage 
classification, focusing on Interphase and Mitosis. 
Among the models evaluated, EfficientNetB0 
achieved the highest performance with 98% test 
accuracy, highlighting its superior generalization 
and efficiency. The preprocessing techniques, 
combined with metrics like accuracy, positive 
predictive value (PPV), sensitivity, and confusion 
matrices, ensured robust and reliable evaluations. 
This system reduces manual effort and accelerates 
cellular analysis, with potential applications in 
cancer research, drug discovery, and biomedical 
diagnostics. Future work will aim to extend 
classification to all cell cycle stages and improve 
model integration for real-world applications. 
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