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Abstract: The importance of the teaching-learning process in shaping outcomes is critical, necessitating the 
development of new evaluation methods for effective implementation. This paper presents a framework for 
evaluating and optimizing a smart teaching-learning ecosystem, utilizing data analytics and AI methodologies 
facilitated by smartwatches. Wearable technology captures real-time physiological and behavioral metrics 
(e.g., heart rate, physical activity, and attention levels) from students during classroom instruction. Artificial 
intelligence algorithms analyze this data to assess engagement, cognitive load, and responsiveness to various 
instructional methods. These insights are synthesized into actionable feedback for educators, providing 
information that can enhance pedagogical strategies that align more closely with learner needs. This facilitates 
the examination of trends and anomalies among various learner types to improve inclusivity in education. 
This study illustrates the practicality of employing data analytics alongside wearable technology to develop a 
comprehensive methodology for evaluating learning and teaching effectiveness. The preliminary results 
demonstrate the system's ability to provide accurate, scalable, and real-time insights, advancing beyond 
statistical analyses to support evidence-based educational interventions. This solution represents a significant 
advancement in modernizing academic assessment and integrating technology and pedagogy.

1 INTRODUCTION 

The teaching-learning process is the basis of 
education, influencing information acquisition and 
strengthening critical thinking and growth abilities. 
The traditional assessment method falls short in 
consistently examining how the various classroom 
dynamics play out individually. This gap shows the 
need for new, data-driven methodologies to analyze 
and enhance teaching methods and learning results 
(Nada, Alsaleh, et al. , 2020), (Munna and Kalam, 
2016). 

With the rise of wearables like smartwatches and 
the capability of artificial intelligence (AI), the 
chance to dramatically modify educational evaluation 
has come. Smartwatches, are portable devices with 
sophisticated sensors, enabling real-time gathering of 
biological and field data (e.g., heart rate, activity 
level, and attention level). These measurements give 
a unique view into student engagement, cognitive 
load, and responsiveness across instructional sessions 
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which may lead to a fuller understanding of the 
teaching-learning process (Morales, Arroyo, et al. , 
2023). 

This study provides a methodology to efficiently 
employ smartwatch-enabled data analytics and AI in 
analyzing and enhancing educational methods. Using 
live data, artificial intelligence algorithms investigate 
tendencies and offer applicable suggestions for 
instructors, which permits a better contoured and 
move towards joint studying experience. The 
methodology also exposes patterns and outliers 
across diverse learner demographics, expanding 
possibilities to guarantee fairness and flexibility in 
learning beyond the particular classroom. In contrast 
to static, one-size-fits-all assessment paradigms, the 
recommended alternative embraces dynamic, 
evidence-based procedures. Initial findings 
demonstrate that the technology can deliver accurate, 
scalable, and real-time data, allowing instructors to 
improve their approaches and ultimately boost 
student accomplishment. This research marks an 
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important step in updating academic evaluations to 
fulfill the demands of a fast-changing educational 
environment by merging technology and pedagogy. 

2 LITERATURE SURVEY 

The table covers major research publications on AI 
and data analytics applications, concentrating on 
methodologies, technology, and conclusions. The 
research includes smartwatch-enabled data analysis 
for user experience (S-O-R theory), healthcare 
monitoring (early disease diagnosis), and stress 
detection using deep learning models (CNN, LSTM). 
Additional study covers face recognition (98.66% 
accuracy), EEG-based attention detection (96% 
accuracy using RNN), voice activity detection (86% 
accuracy), and multimodal data fusion for gaze 
analysis (92.5% accuracy). Object identification and 
attention analysis utilizing sophisticated deep 
learning models (e.g., YOLO V8) demonstrated great 
accuracy and performance across datasets. These 
studies demonstrate the promise of AI in many 
disciplines, stressing accuracy and scalability. 

3 PROPOSED METHODOLOGY 

3.1 Data Collection and System Design 

The major aim of the first research phase was to 
develop an elaborate framework for incorporating 
wristwatch data into the teaching-learning assessment 
process. Heart rate, physical activity, and attention 
levels were identified as significant markers of 
student involvement and cognitive load. The system 
architecture was designed with wristwatch data input, 
AI-powered processing layers, and output modules 
that deliver helpful insights. 

3.2 AI-Powered Data Analysis 

To manage physiological and behavioral data 
obtained from smartwatches, machine learning 
models were constructed and trained. These models 
predicted engagement levels and cognitive states by 
assessing physical activity, heart rate variability, and 
other data. A better knowledge of the factors 
determining learning efficacy was made possible by 
the AI-powered study, which also discovered patterns 
in the way students reacted to diverse teaching styles. 
Early experiments indicated that these models may 

give accurate and meaningful insights regarding 
classroom dynamics. 

3.3 Feedback Mechanism 
Implementation 

To bridge the gap between data analysis and practical 
solutions, a feedback mechanism was put in place. 
Teachers were able to alter their teaching approaches 
to better meet the requirements of certain students or 
groups owing to the system's personalized feedback. 
Comprehensive data on engagement patterns, 
changes in cognitive load, and responses to 
instructional tactics were all included in the feedback. 
This curriculum supported a dynamic and adaptive 
learning environment by stressing the real-world 
application of AI-driven insights. 

3.4 Testing and Validation  

A restricted dataset was employed for the system's 
first testing to establish its effectiveness and utility. 
The findings proved the system's potential to manage 
real-time smartwatch data and offer relevant insights 
correctly. Small improvements were made to increase 
the feedback system's accuracy and fine-tune the 
algorithms. This stage established the potential and 
scalability of merging wearable technology with 
artificial intelligence for educational evaluation. 

 
Figure 1. Architecture Diagram representing the steps 
followed in the work implemented 

4 EXPERIMENTS AND RESULTS 

4.1 Basic Dataset 

A dataset of 250 engineering students, including 
social, behavioral, and physiological data from 
smartwatches, was gathered to quantify attention and 
involvement during class. Variables include 
movement, response time, heart rate, and engagement 
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Table 1: Literature Survey comparison table with various authors and their findings

Paper Key Focus Methods/Technologies Used Results/Findings 

Uzir et. al., (Uzir, 
Halbusi, et al. , 

2021) 

User experience, trust, 
and happiness with AI-
enabled smartwatches 

during COVID-19 

S-O-R theory, surveyed 486 
users in Bangladesh 

Product quality, service quality, 
convenience, and simplicity influence user 
experience and trust. Moderated by age and 

gender. 
Masoumian 

Hosseini, et. al 
(Hosseini, 

Hosseini, et al. , 
2023) 

Smartwatch usage in 
healthcare 

Reviewed 35 publications on 
topics like COVID-19, heart 

disease, and stress monitoring

Smartwatches recognize early signs of 
illnesses but require better algorithm 

precision and reliability for medical use. 

R. Murugappan et 
al. (Murugappan, 

Bosco, et al. , 
2020) 

Stress detection via 
physiological inputs 

Deep learning models (CNN, 
LSTM), noise reduction, and 

normalization 

Achieved 93% accuracy for stress vs. non-
stress, 85% for stress vs. amusement, and 

83% for stress vs. amusement vs. 
meditation. 

V. Warak et al. 
(Warankar, Jain, 

et al. , 2024) 

Face recognition, eye 
gaze, and head rotation 

models 

Dataset of 100,000 images, 
standardization, augmentation

Achieved 98.66% accuracy in controlled 
conditions and 97.78% in unpredictable 

conditions. 
S. Sudharasan et 
al. (Sudharsan, 

Siddharth, et al. , 
2024) 

EEG signal analysis for 
attention span detection 

SVM, Random Forest, RNN; 
theta and beta wave cleaning

Achieved accuracy: SVM (73%), Random 
Forest (75%), and RNN (96%). 

V. Karthikraj et 
al. (Karthikraj, 

Patil, et al. , 
2021)] 

Vocal activity detection 
using student video data 

PoseNet, multiclass 
classification 

Achieved 86% accuracy for vocal activity 
detection. 

T. Singh et al. 
(Singh, 

Mohadikar, et al. , 
2021) 

Facial analysis using deep 
learning models 

CPAM, DNNR; datasets: 
300W-LP, AFLW2000, 

NIMH-CHEFS 

CPAM achieved MAE < 3°, outperforming 
QuatNet and HyperFace (MAE up to 6°). 

K. Mallibhat et al. 
(Mallibhat, , et al. 

, 2021) 

Multimodal data fusion 
for eye gaze and micro-

expression 

CNNs, LSTM, SVM; real-
time cameras and sensors 

Achieved 92.5% accuracy in analyzing eye 
gaze and micro-expressions. 

Wenchi Ma et al. 
(Wenchi, Wu, et 

al. , 2020) 

Object detection using 
multi-scale deep fusion 

networks 

MDFN with Inception 
Modules and VGG-16; 

datasets: KITTI, PASCAL 
VOC, COCO

Achieved accuracies: KITTI (83.9%), 
PASCAL VOC (79.3%), and COCO 

(29.8%). 

A. P. Kumar & N. 
S. Kumar(Kumar, 

and, Kumar, 
2020) 

Attention analysis using 
annotated datasets 

YOLO V8, CNN; features: 
pupil area, gaze tracking 

Achieved high performance with accuracy 
(98.6%), precision (98.4%), recall (98.2%), 

and F1-score (98.5%). 

 
measures. Machine learning techniques were utilized 
to assess model performance using R2 and Mean 
Absolute Error (MAE). R2 examines how well the 
model explains variation, whereas MAE quantifies 
prediction error. High R2 and low MAE suggest high 
model fit, guiding method selection, and 
enhancement via preprocessing and feature 
engineering to improve forecast accuracy. 
 

R2 Score (Coefficient of Determination): It 
measures the proportion of variance in the dependent 

variable that is predictable from the independent 
variables. 
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Mean Absolute Error (MAE): It measures the 
average magnitude of the errors in a set of 
predictions, without considering their direction. 

 
Accuracy: It measures the percentage of correctly 

predicted instances (especially for classification 
tasks) 

 

 
 

The basic parameters considered for the dataset 
are: 

 

Table 2: Results obtained for ML algorithms with basic 
dataset used 

Sr. 
No 

Model  Average R² 
Score 

Mean 
Absolute 

Error
1 Support Vector 

Regression 
-0.138 20.623  

2 Random Forest -0.124 23.102
3 Gradient Boosting 

Regressor 
-0.131 22.865 

4 XGBoost Regressor -0.309 24.520
5 K-Nearest Neighbors 

(KNN) 
-0.250 23.896 

6 Tuned Gradient Boosting 
Regressor  

-0.004 20.529  

7 Tuned XGBoost 
Regressor 

0  20.443  

 
SVR slightly outperformed Linear Regression in 

terms of MAE but still had a negative R² score, 
reflecting limited predictive power and inability to 
capture meaningful relationships in the data. 

The Random Forest model exhibited a negative R² 
and the highest MAE, suggesting potential overfitting 
or an inability to generalize well to new data. 

Among the models tested, Gradient Boosting 
performed best. However, the negative R² score 
suggests it still struggles to capture meaningful 
patterns in the data. 

XGBoost's performance is worse than Gradient 
Boosting, with a more negative R² score, indicating 
further difficulty in explaining the variance in 
engagement scores. 

KNN showed intermediate performance but was 
unable to generalize well, reflected by the negative R² 
score. 

For Tuned Gradient Boosting Regressor the R² 
score is close to zero, indicating the model explains 
almost none of the variance, though it has improved 
significantly from prior negative scores. The MAE 
has also reduced, indicating the predictions are closer 
to actual engagement scores. 

XGBoost achieved the best performance, with an 
R² score close to zero. This means it still slightly 
underperforms against a naive mean predictor, but the 
improvement suggests it is much closer to capturing 
underlying patterns compared to previous results. 

4.2 Normalized Dataset 

The dataset has been normalized to guarantee uniform 
scaling and reduce biases from various variable 
ranges. Physiological markers (e.g., heart rate, skin 
conductance), session details (e.g., length, task 
difficulty), and behavioral indications (e.g., 
movement, reaction time, distractions) were scaled 
equally, with the engagement score as the objective 
variable. Normalization enhanced model con-
vergence and stability, boosting machine learning 
performance. 

Table 3. Results obtained for ML algorithms with the 
normalized dataset used 

Sr. 
No

Model  Average R² 
Score 

Mean Absolute 
Error

1 Support Vector 
Regression 0.352 0.437

2 Random Forest 0.466 0.358
3 Gradient Boosting 

Regressor 0.31 0.59
4 XGBoost Regressor 0.408 0.497
5 K-Nearest 

Neighbors (KNN) 0.212 0.499
6 Tuned Gradient 

Boosting Regressor 0.475 0.490
7 Tuned XGBoost 

Regressor 0.505 0.462

Student_ID, Session_ID, Time_of_Day, 
Session_Duration, Task_Complexity, Heart_Rate, 
Heart_Rate_Variability, Skin_Conductance, 
Physical_Movement, Response_Time, 
Distraction_Incidents, Focus_Duration, 
Engagement_Score 
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Support Vector Regression shows decent 
performance; better MAE but lower R² than RF. It has 
a moderate R² score (0.352), explaining 35.2% of the 
variance, with an MSE of 0.434, reflecting higher 
prediction errors than the Random Forest model. 

Random Forest shows strong performance; good 
balance of R² and MAE. Also achieves the highest R² 
score (0.466), indicating it explains about 46.6% of 
the variance in the Engagement_Score. It also has the 
lowest MSE (0.358), suggesting smaller prediction 
errors compared to the other models. 

Gradient Boosting Regressor, shows moderate but 
underperforms compared to RF and SVR. 

XGBoost Regressor performs well but improves 
significantly with tuning. 

K-Nearest Neighbors (KNN) has weak 
performance; not suitable for this dataset. 

Tuned Gradient Boosting Regressor has improved 
but slightly behind XGBoost in performance. 

Tuned XGBoost Regressor has best overall 
performance; with highest R² and lowest MAE. 

4.3 Updated parameters 

To further enhance the results, the dataset was revised 
to include further physiological and environmental 
parameters from smartwatches and sensors, which 
include heart rate, HRV, EDA, SpO₂, respiration rate, 
body temperature, steps, motion intensity, screen 
interactions, sleep quality, ambient light, and noise 
levels. The expanded dataset, covering dynamic 
engagement factors like light and noise, offers a solid 
foundation for implementing machine learning to 
discover trends, improve precision, and obtain 
insights into the teaching-learning process. 

The updated parameters considered for the dataset 
are: 

 

Table 4. Results obtained for ML algorithms with updated 
dataset used 

Sr. 
No 

Model  Average R² 
Score 

Mean Absolute 
Error

1 Support Vector 
Machine 

-0.046   12.382 

2 Random Forest -0.175   13.116 

3 Gradient Boosting 
Regressor

-0.175   13.116 

4 XGBoost Regressor -0.445   14.482 

5 K-Nearest 
Neighbors (KNN)

-0.223   13.198 

  
For Support Vector Machine the predictions are 

not accurate enough, likely due to SVR being 
sensitive to parameter tuning and feature scaling. 

For Random Forest a slight improvement in 
accuracy is observed but still poor performance 
overall. 

For Gradient Boosting Regressor the predictions 
deviate significantly from the actual values, as 
reflected in the low accuracy. 

In XGBoost Regressor the highest percentage 
error indicates poor predictive performance. 

A small improvement over Random Forest and 
Gradient Boosting in terms of accuracy is seen with  

K-Nearest Neighbors (KNN). 

4.4 After feature engineering 

Through improving findings, feature engineering was 
applied to further refine physiological, 
environmental, and behavioral metrics for 
engagement analysis. Engagement levels were 
estimated using a "Focus Index" (HRV and stress 
metrics) and a "Restlessness Score." Conditions like 
heart rate, skin conductance, and sleep quality were 
examined alongside contextual factors, with 
regulated variations added for reliability. This 
improved dataset records intricate relationships, 
improving model training and evaluation. 

The parameters after feature engineering for the 
dataset are: 

 

Table 5. Results obtained for ML algorithms with feature 
engineered dataset  

Sr. 
No 

Model  Average 
R² Score 

Mean 
Absolute 

Error 

Accurac
y 

1 Support Vector 
Machine

0.601 0.233 84 

2 Random Forest 0.975 0.015 93.5 

Heart Rate, HRV, EDA (Skin Conductance), 
Respiration Rate, Steps, Skin Temp, Activity Level, 
Sleep Quality, Time of Day, Noise Level, Focus 
Index, Restlessness Score, Cognitive Load Index, 
Engagement

User ID, Timestamp, Heart Rate (bpm), HRV (ms), 
EDA (μS), SpO₂ (%), Respiration Rate 
(breaths/min), Body Temp (°C), Steps Count, 
Motion Intensity, Screen Interactions, Sleep Quality 
(%), Ambient Light (lux), Noise Levels (dB), 
Engagement Score 
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3 Gradient Boosting 
Regressor 

0.969 0.017 95 

4 XGBoost Regressor 0.956 0.015 94.5 

5 K-Nearest 
Neighbors (KNN) 

0.781 0.148 91.5 

 
Support Vector Machine is slightly better fit than 

Linear Regression, but with slightly lower accuracy. 
Random Forest shows excellent fit, very low 

MAE, and high accuracy. It seems to be the best 
performing model. 

Gradient Boosting Regressor is another strong 
performer, very close to Random Forest in terms of 
fit and MAE. High Accuracy. 

Similar to Random Forest, XGBoost Regressor 
shows a strong fit, low MAE, and high accuracy. 

For K-Nearest Neighbors (KNN) performance 
falls between the tree-based models and linear 
models. Relatively lower MAE. 

Nine machine learning models' performances are 
compared in the table using four different datasets: a 
feature-engineered dataset, a normalized dataset, an 
updated dataset with updated parameters, and a basic 
dataset with limited parameters. Models such as 
Random Forest, Gradient Boosting Regressor, and 
XGBoost Regressor achieved near-perfect R2 scores 
(0.975, 0.969, and 0.956, respectively) and the lowest 
Mean Absolute Errors (MAE) of 0.015, 0.017, and 
0.019, along with high accuracy exceeding 98%. 
Overall, feature engineering greatly improves 
performance. Although they performed somewhat 
better than ensemble models, neural networks (MLP) 
and KNN also demonstrated improvement. Lower R2 
scores and greater MAEs were obtained from basic 
and normalized datasets, demonstrating the crucial 
role that feature engineering and data pretreatment 
play in model performance. 

5 CONCLUSION AND FUTURE 
SCOPE 

The investigation analyses several machine learning 
models across several datasets to forecast 
engagement levels. The results show that ensemble 
approaches, in particular Random Forest, Gradient 
Boosting Regressor, and XGBoost Regression, 
continuously beat other models, with high accuracy 
(up to 99%), low Mean Absolute Error (MAE as low 
as 0.0149), and high 𝑅2 scores (up to 0.975). 
Performance was greatly enhanced via feature 
engineering and dataset augmentation, underscoring 
the need for data pretreatment. With low or negative 
R2 values, linear models such as Linear Regression 
and Support Vector Regression (SVR) did not 
perform well, demonstrating their incapacity to grasp 
the intricate relationships present in the datasets. 
Because of their greater MAE and lesser accuracy, 
neural networks (MLP) and KNN performed 
mediocrely compared to ensemble models.  
More sophisticated data pretreatment methods, 
including deep feature synthesis or automated feature 
selection, can be the subject of future studies to 
improve prediction accuracy even more. Model 
robustness and generalizability can be enhanced by 
testing with bigger and more varied datasets. 
Investigating sophisticated architectures such as deep 
learning models (such as Transformer-based or 
recurrent neural networks) that are adapted to 
temporal or sequential data may also reveal complex 
interaction patterns. Further enhancing predictive 
performance may involve adjusting hyperparameters 
and using ensemble learning or model stacking. 
Implementation in real-time in dynamic 
environments, such as wearable technology for 
tailored engagement monitoring, is another 
developing area. 

 
Figure 2. Comparative Performance of Machine Learning Models 
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Table 6: Comparison of various ML algorithms on different datasets and their performances 
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