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Abstract: Modern workflows are very complex, containing interdependencies and shared tasks that cause inefficiencies
in the execution of tasks, utilization of resources, and dependency management. The structure of Directed
Acyclic Graphs(DAGs) is very robust for modeling workflows but managing overlapping tasks across mul-
tiple DAGs results in redundancy, inconsistent dependencies, and long execution times. This work helps
address the above issues with the development of a systematic way to merge multiple task-based DAGs into
a single workflow that optimizes workflow execution. It verifies weak connectivity, cyclic properties, and
consistency in dependencies between DAGs with algorithms such as Depth First Search(DFS)/Breadth First
Search(BFS), Floyd-Warshall, Union-Find, In-Degree Similarity Check and Signature Hashing. Using the
the merged DAG, Apache Airflow optimizes it for parallel execution, reducing the time taken to execute and
maximizing resource usage. Each algorithm is assessed based on its time complexity, space complexity, and
practical performance in order to determine the best solution for each stage. The final solution proves robust
and scalable by deploying the integrated workflow in Apache Airflow, improving efficiency, removing redun-
dancy, and optimizing the execution of tasks.

1 INTRODUCTION

Workflows become the backbones of modern data
processing and task management systems, wherein
efficient orchestration of tasks directly influences
performance and resource utilization. DAGs are
crucial in modeling workflows as nodes, which rep-
resent tasks, and edges, for which the dependencies
between them are modeled. Shared tasks among
multiple independent DAGs often make the workflow
complex. If the workflows overlap with each other,
how to actually handle those workflows becomes
important to avoid redundancy for consistency and
optimal resource usage-like energy, memory, or pro-
cessing time. High-performance algorithms are used
to solve the most important computational challenges
in the work, including checking weak connectivity,
acyclicity, and consistency of dependencies in the
DAGs. The algorithms are then bench marked
based on metrics like time complexity and space
complexity to select the best methods in each step of
the workflow merging procedure.

Workflows in the majority of actual usage are

not separated silos, but interconnected systems,
sharing common procedures. For example, pipelines
in data engineering may contain common pre-
processing steps shared across multiple workflows,
or in bioinformatics, there may be several analyses
that depend on the same preprocessing of the initial
data. When such workflows are modeled as DAGs,
common tasks become a source of redundancy,
inefficient use of resources, and longer execution
times. The motivation for this work comes from
the need to improve the management of workflows
by integrating various task-based DAGs into one
optimized workflow. Such consolidation would
remove redundancy, ensure that dependencies are
handled consistently between shared tasks, optimize
energy, memory, and time requirements.

Though modern workflows are commonly mod-
eled as DAGs, representing workflows efficiently
in terms of tasks along with their dependencies,
challenges appear when multiple independent work-
flows share overlapping tasks or files, involving
inefficiencies due to redundant task executions,
inconsistencies in dependency resolution, and high
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usage of resources. This must be overcome using a
systematic approach to collapse multiple DAGs into
a single, optimized workflow retaining the acyclic
structure essential for dependency resolution. Given
a set of DAGs representing individual workflows,
where nodes are tasks and edges are dependencies,
the problem is to merge those DAGs into one. The
name of the nodes in different DAGs must be consis-
tent with consistent dependencies; the merged DAG
should avoid redundancy by removing duplicate
computations, optimize resource usage in terms of
energy, memory, and processing time, and support
efficient parallelism in Apache Airflow. To address
this problem, the work uses a multistage approach.
First, it runs a Weak Connectivity Check to ensure
that, when ignoring edge direction, each input DAG is
structurally connected. Then, Acyclicity Verification
verifies that all input graphs are valid DAGs. Finally,
Dependency Consistency Check verifies that there
is a class of consistent dependencies maintained by
every set of common nodes over various DAGs. Once
verified, DAG Merging will merge all the nodes and
dependencies together in one coherent structure.
This work contributes to the following:

• An efficient method for merging DAGs with over-
lapping tasks is presented, such that consistency,
acyclic properties, and redundancy elimination
are ensured.

• Algorithms for merging are benchmarked for time
and space complexities.

• The merged DAGs are implemented in Apache
Airflow, which executes tasks in parallel.

• It shows optimization in the execution time and
resource usage in general domains like healthcare
and finance.

The work is structured as follows. Section II com-
prises the review of literature on the topic of DAG
scheduling and optimization of workflow. Section III
includes methodology for DAG merging and valida-
tion. Section IV comprises algorithmic framework
of the approach along with time complexity analy-
sis. Section V presents the results and benchmark-
ing on the proposed algorithms. Finally, Section VI
concludes the work undertaken along with the future
research plan.

2 LITERATURE SURVEY

Efficient workflow management finds its application
in many domains ranging from data analytics to
scientific computing to cloud computing. DAGs
are a basic graph model for representing complex

workflows such that nodes represent tasks, and
edges represent dependencies among them. Merging
various DAGs into a workflow can be beneficial in
terms of avoiding redundancy, ensuring constant
dependency management, and exploiting resources.
This literature review covers the key research efforts
on DAG merging, workflow optimization, and task
scheduling.

Shi and Lu (Shi and Lu, 2023) proposed perfor-
mance models for large-scale data analytics DAG
workflows, which can be executed in parallel across
data. Their work deals with the resource allocation
variability during execution and develops a Bottle-
neck Oriented Estimation (BOE) model to predict
task execution time accurately. The model will help
optimize the workflow’s performance by detecting
system bottlenecks. Sukhoroslov and Gorokhovskii
(Sukhoroslov and Gorokhovskii, 2023) benchmarked
DAG scheduling algorithms on scientific workflow
instances. They have used a set of 150 real-world
workflow instances for the evaluation of 16 schedul-
ing algorithms with respect to performance in
different cases. Their results help one to select proper
scheduling strategy for complex workflows. Hua
et al. (Hua et al., 2021) proposed a reinforcement
learning-based approach to scheduling DAG tasks.
Their algorithm iteratively adds directed edges to the
DAG to enforce execution priorities, simplifying the
problem of scheduling and improving performance.
This method shows promise for the application of
machine learning in workflow optimization. Zhang
et al. have proposed a multi-objective optimization
algorithm for DAG task scheduling in edge com-
puting environments. This work takes into account
parameters like the delay in completing tasks and
energy consumption. Thus, the approach presents
a balanced solution for constrained resources. It
also explains the significance of multi-objective
optimization in workflow management.

Kulagina et al. (Kulagina et al., 2024) tackled
the challenge of executing large, memory-intensive
workflows on heterogeneous platforms. The au-
thors presented a four-step heuristic for partitioning
and mapping DAGs with an objective to optimize
makespan while respecting memory constraints.
Their work improves the scalability and efficiency of
workflow execution. Zhao et al. (Zhao et al., 2021)
improved on DAG-aware scheduling algorithms by
bringing efficient caching mechanisms onto the table,
thus working through such a policy referred to as
LSF, an improvement upon scheduling times for
completed jobs to incorporate strategies optimized in
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cache management. Li et al. explored DAG-based
task scheduling optimization in heterogeneous com-
puting environments. They developed an improved
algorithm based on the firefly algorithm, achieving
better load balancing and resource utilization. This
study underscores the need for tailored scheduling
strategies in diverse computational settings.

Lin et al. (Lin et al., 2022) proposed AGORA,
a scheduler that optimizes data pipelines in heteroge-
neous cloud environments. AGORA considers task-
level resource allocation and execution holistically,
achieving significant performance improvements and
cost reductions. This work points out the benefits of
global optimization in cloud-based workflows. Wang
et al. studied DAG task scheduling using an ant
colony optimization approach. Their model improves
task migration and load balancing, enhancing the effi-
ciency of heterogeneous multi-core processors. This
research illustrates the application of bio-inspired
algorithms in workflow scheduling. Zhou et al.
presented a method of deep reinforcement learning
for scheduling real-time DAG tasks. Their approach
evolves scheduling policies that adapt the dynamic
conditions of the systems, improving schedulability
and performance. This shows the potential of deep
learning in real-time workflow management. Kumar
et al. proposed a deterministic model for predicting
the execution time of Spark applications presented as
DAGs. Their model enables resource provisioning
and performance tuning, ensuring efficient workflow
execution in big data platforms.

Gorlatch et al. proposed formalism to describe
DAG-based jobs in parallel environments using
process algebra. Their work represents a theoret-
ical foundation for modeling complex workflows,
enabling optimization efforts. Kumar et al. studied
parallel scheduling strategies for data-intensive tasks
represented as DAGs. Their algorithms consider
locality of data and task dependencies in order to
improve the execution efficiency within distributed
systems. Zhang et al. proposed a multi-objective
optimization algorithm for DAG-based task schedul-
ing within edge computing environments. They
balance between the delay for completing the tasks
and the energy consumption within the system to
provide an all-inclusive solution for such resource-
constrained settings. Kulagina et al. (Kulagina et
al., 2024) tackled the problem of executing big,
memory-intensive workflows on heterogeneous plat-
forms. They proposed a four-step heuristic for DAG
partitioning and mapping: optimizing for makespan
and respecting memory constraints. The approach

improves the scalability and efficiency of workflow
execution. The investigation of Hyperledger Fabric
goes along the lines of focus of the uploaded paper:
dependency consistency and redundancy elimination
in DAGs. The Fablo-based implementation and
IOTA Tangle’s DAG technology is reflecting the
use of DFS and BFS for real-time dependency and
acyclicity checks.Optimized scheduling of tasks
in cloud-based environments mirrors the paper on
parallelism in Apache Airflow, which also improves
on resource utilization. The Bayesian dual-route
model is thus consistent with DAG merging for
eliminating redundancy and ensuring that results are
consistent, allowing for systematic benchmarking
of improvements. Studies on DCN (dorsal cochlear
nucleus) parallelize DAG optimization in Apache
Airflow as both ensure resource efficiency and
accuracy through structured frameworks—DCN for
detecting features and DAGs for the execution of
workflows.

The structure and dependency in Directed Acyclic
Graphs (DAGs) can be used for the graph-based
approach for effective anomaly identification and
predicting the spread of attacks based on modeling
workflows for resource optimization and strategies of
execution. Optimized algorithms assure proper con-
tainment with respect to dependency and redundancy,
providing scalability across diverse applications.
Centrality-based adversarial perturbations exploit
crucial nodes or edges to undermine graph neural
networks (GCNs) with significant impact on the
node classification. Countermeasures such as robust
algorithmic designs and dependency validation
checks enhance the resilience of the system without
compromising efficacy in real-world deployments to
perform the task orchestration efficiently.

Despite the progress in DAG scheduling, opti-
mization, and orchestration, there are still many
research gaps. Most of the existing works focus on
specific aspects, such as scheduling efficiency or
resource utilization, without integrating these with
practical deployment. Approaches like reinforce-
ment learning (Hua et al., 2021) and ant colony
optimization are good at theoretical optimization
but not scalable and adaptable in real time for
dynamic environments. Moreover, the problem of
DAG merging with overlapping tasks is not well
explored, which leads to inefficiencies and waste of
resources. Scalability solutions for memory-intensive
workflows in distributed environments are also not
plentiful. Though works such as (Kulagina et al.,
2024) and have solutions to heterogeneous platforms,
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they depend heavily on particular architectural as-
sumptions that diminish their adaptability. Moreover,
optimization techniques in workflow within the
framework of Apache Airflow are also underutilized,
and very few studies bridge theoretical advancements
in DAG optimization with practical implementation.
This work introduces a novel, integrated approach
to DAG merging and optimization within Apache
Airflow.

It contrasts with most of the previous work in
this area, which deals with isolated tasks or resource
allocation. This one integrates multiple DAGs into a
single optimized workflow. It removes shared task
dependencies, eliminates redundancy, and allows
for parallel execution. The algorithms on weak
connectivity, acyclicity, and dependency consistency
benchmark to ensure the most efficient approaches
are being used and tailored for deployment in practice
within Airflow. This work depicts distinctive, scal-
able task orchestration in Apache Airflow through
the direct applicability of merged DAGs into the
real-world environment. It systematically compares
the algorithmic complexities to augment the depth of
rigor and reproducibility, hence yielding actionable
information to optimize workflows for future use.

3 METHODOLOGY

The methodology of the work, Enhancing Workflow
Efficiency through DAG Merging and Parallel Execu-
tion in Apache Airflow, is to design a structured ap-
proach that will merge multiple DAGs into an opti-
mized single workflow. It helps in ensuring efficient
execution and eliminates redundancy and supports
parallel processing in Apache Airflow. The methodol-
ogy involves several stages, each aimed at addressing
specific aspects of the merging and optimization pro-
cess.

3.1 System Overview

The system optimizes workflow execution by merg-
ing multiple DAGs into a single, unified workflow for
efficient parallel execution in Apache Airflow. It be-
gins with loading and preprocessing the input work-
flows, represented as DAGs, into a standard format as
shown in Fig. 1. Each of the DAGs is subject to weak
connectivity checks in order to ensure structural co-
hesion, as well as acyclicity verification to ensure that
there are no cycles. After such validation, which is
guaranteed by in-degree mapping and adjacency ma-
trix comparisons, merged DAGs, maintaining prop-

Figure 1: System Architecture

erties of acyclicity with removal of redundancy, be-
come a unified structure. Merging all the above pro-
cedures, one now converts the obtained merged DAG
into the appropriate format required to be Apache Air-
flow compatible. Here nodes become tasks, and edges
represent their dependencies. The workflow will be
deployed in Airflow to orchestrate parallel tasks and
have performance analysis for execution time, re-
source utilization, and reduction of redundancy, lead-
ing to scalability, efficiency, and smooth execution of
complex workflows.

3.2 Preprocessing and Input
Representation

To start with, the input workflows are represented as
DAGs. Each DAG is defined by its tasks, which are
nodes, and their dependencies, which are edges. The
workflows are then converted into a standard format
by using adjacency lists, where each task, or node, is
mapped to its immediate dependencies. A directed
graph representation, such as networkx. DiGraph, is
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used to ensure consistency and ease of manipulation
throughout the methodology. This is also where the
merge assumptions are made. The nodes with the
same name across distinct DAGs are assumed to be
the same task, and they have consistent sets of depen-
dencies. Any inconsistency in the assumption is taken
care of during the dependency consistency check.

3.3 Weak Connectivity Check

Verifies that each DAG has weak connectivity, mean-
ing that in a single DAG, all the tasks are structurally
connected if the directions of the edges are ignored.
Thus, this check ensures that there are no isolated
components in the individual workflows. This is ac-
complished by reducing each digraph into a nondig
and executing DFS or BFS in order to determine
whether the nodes can be reached from any of them.
If any such DAG is strongly disconnected, the merg-
ing stops, and adjustments must be made so that the
original workflows will have the structures corrected.

3.4 Acyclicity Verification

To verify the validity of the input workflows, each
DAG should be checked for the nonexistence of cy-
cles. A valid DAG should not have any directed cycles
because they show cyclic dependencies that cannot be
solved. It follows two approaches: DFS by recursion
stack and Floyd-Warshall algorithm. The method for
the DFS approach checks a back edge during traver-
sal, that means a cycle, and Floyd-Warshall makes a
reachability matrix where it checks for diagonal en-
try that means cycle. For this purpose, these two ap-
proaches are compared in time and space complex-
ity for large workflow for the selection of appropriate
method.

3.5 Dependency Consistency Check

The next step ensures that the DAGs agree on shared
work items by comparing dependencies. For every
node in two or more DAGs, the set of dependencies
of each node is extracted and then compared across all
DAGs. All of these conflicts must be resolved before
the merge process continues. This consistency check
employs in-degree maps, whereby for each node, the
mapping to its predecessor nodes is employed as a
representation of the set of dependencies. The in-
degree maps were hashed using efficient hashing al-
gorithms to allow for fast comparisons. This step
was fundamental to maintaining the correctness of the
merged DAG and avoiding faults at execution time.

3.6 DAG Merging

Once the input DAGs are validated for having con-
sistent dependencies, merging can begin. The resul-
tant workflow of all the input DAGs is merged so that
nodes and their dependencies appear together in a uni-
fied, acyclic graph. In iterative processing of each in-
putting DAG, the algorithm addes its nodes and edges
within it to a global dependency. Shared nodes are
taken into accounts by merging their dependencies
into respective results without duplication. Network
is then used to represent these dependencies in a direct
graph form. This resultant merging Dag represents
the whole workflow together in a coherent structure
of execution.

3.7 Conversion to Apache Airflow DAG

Translated to an Apache Airflow-compatible format,
such that the DAG’s final merged and optimized form.
Each node of the graph is represented by an Airflow
task, while the edges correspond to the task depen-
dencies between the nodes of the graph. The Air-
flow DAG is a Python module, with proper obser-
vance to the Airflow’s API. The automated script, that
will generate the Airflow DAG file, has been provided
for integration with the system. This ensures that the
workflow is directly deployable and executable in the
task orchestration environment of Airflow.

3.8 Algorithm Comparison and
Benchmarking

The methodology makes use of several algorithms
for every task, comparing their time and space com-
plexities to identify the best approaches to fulfill the
needs of the work. Algorithms such as DFS/BFS and
Union-Find for the Weak Connectivity Check will be
compared in their trade-offs regarding computational
and resource efficiency. Acyclicity Verification can be
benchmarked against a DFS using a recursion stack
for Floyd-Warshall for detecting cycles. For Depen-
dency Consistency Check, various techniques such as
signature hashing and direct comparison are investi-
gated in order to determine which of them is the best
technique to check consistency in the nodes. Bench-
marking results provide an in-depth view of computa-
tional efficiency and resource utilization, guiding the
choice of optimal algorithms for each task.
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4 WORKFLOW INTEGRATION
AND OPTIMIZATION
FRAMEWORK

In this work, it uses the following complete algorithm
toolkit for each step of the DAG merging and execu-
tion process. Each algorithm has been chosen to com-
plete a given computational task with efficiency but
guaranteed correctness. The algorithms are outlined
as follows in detail with functionality and methodol-
ogy :

4.1 Weak Connectivity Check

The following provides three algorithms for testing if
a graph is weakly connected, namely DFS/BFS and
Floyd-Warshall with Union-Find that detect whether
each of the graph is a connected directed graphs when
their direction arrows are ignored. The DFS/BFS Al-
gorithm first converts the given directed graph into an
undirected graph. That is, it simply ignores the di-
rection of edges. From any given node, it performs a
traversal that marks all reachable nodes. If the count
of visited nodes is equal to the total count of nodes in
the graph, then the DAG is weakly connected. This
technique uses recursive or iterative traversal to ex-
plore the graph appropriately. The Floyd-Warshall
Algorithm constructs an adjacency matrix for the
undirected version of the graph and iteratively updates
the matrix to figure out all-pair reachability. If no pair
of nodes is reachable to one another, then graph iden-
tifies as weakly disconnected. More time and mem-
ory resources is utilized by this algorithm than re-
quired in DFS/BFS. The Union-Find algorithm uses
the disjoint-set data structure to perform group node
operations into connected components. Each node is
its own parent initially and process edges to union
nodes into the same component. At the end, when all
nodes share the same root, the graph is weakly con-
nected. This method is extremely efficient for large
graphs with many edges.

4.2 Acyclicity Verification

To check that the input graphs are valid DAGs, there
are two algorithms that are implemented: DFS with
Recursion Stack and Floyd-Warshall. Both assume
the strategy of detecting cycles because a DAG can-
not have cycles. The DFS with Recursion Stack Algo-
rithm uses a depth-first search along the graph, keep-
ing a recursion stack of nodes currently visited. If
a back edge shows up (i.e., a node within the recur-
sion stack is visited again), then there must be a cy-
cle, so the graph isn’t a DAG. The algorithm follows

the entire graph in order that the nodes are all cycle-
free, and thus it is at the same time correct and effi-
cient. Floyd-Warshall algorithm is another algorithm
that uses the reachability matrix to identify the cy-
cles. The matrix starts recording all the direct edges
between nodes and then iteratively updates itself to in-
clude indirect paths through other nodes. A cycle ex-
ists if a diagonal entry of the matrix equals 1 because
a node can reach itself. It is more computationally
intensive but has a mathematical guarantee of being
acyclic.

4.3 Dependency Consistency Check

To ensure that shared nodes across multiple DAGs
have consistent dependencies, three algorithms
are used: In-Degree Similarity Check, Signature
Hashing, and Adjacency Matrix Comparison. Each
algorithm addresses the task of dependency consis-
tency verification through different methodologies,
ensuring robustness and accuracy across diverse
scenarios. The In-Degree Similarity Check computes
the in-degree map for each graph, mapping every
node to its set of predecessor nodes (dependencies).
This map represents the task dependencies in a struc-
tured format. For shared nodes appearing in multiple
DAGs, the algorithm compares their in-degree sets
across all graphs.

If any discrepancies are found—indicating that
a shared node has different dependencies in different
DAGs—the algorithm flags an inconsistency. This
approach systematically evaluates each shared node,
ensuring correctness by exhaustively checking all
in-degree sets. The computational process involves
iteration over all nodes in each graph, constructing
the in-degree maps, and comparison. Although this
method ensures accuracy, it can become computa-
tionally expensive for large graphs with many shared
nodes. Using this concept of in-degree maps, the
Signature Hashing Algorithm improves efficiency
with the introduction of hash-based comparisons.
In this algorithm, the in-degree sets for every node
are sorted first, and then hashed by the help of a
cryptographic hash function, such as MD5. This
results in hash signatures acting as unique identifiers
for the dependence set of each node.

For shared nodes, the algorithm compares hash
signatures of each node across all DAGs. The
presence of more than one hash signature of a node
signifies inconsistent dependencies. It reduces the
size of in-degree sets to a concise hash value that
reduces the overall computational overhead for
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comparisons and hence is ideal for large graphs
with complex dependencies. The Adjacency Matrix
Comparison Algorithm represents a global view of
dependency consistency by using adjacency matrices.

The algorithm first generates an adjacency ma-
trix for every DAG, which presents a tabular view
of the graph structure, where rows and columns are
the nodes, and cell values indicate the existence of
edges. This algorithm compares column vectors cor-
responding to shared nodes in all adjacency matrices
to ensure consistency. If the columns do not match
then inconsistent dependencies for the shared node
exist. The approach is computationally expensive
due to a matrix generation and comparison process
but gives a complete view of the graph structure.
Adjacency matrix approach is very effective for small
to medium-sized graphs where the computational
cost is easy to handle, and the whole structural
comparison is envisioned.

4.4 DAG Merging

Used for the aggregation of multiple DAGs into one
combined workflow. The Dependency Aggregation
Algorithm iterates all input DAGs, which then aggre-
gate their nodes and edges into a global dependency
list. Nodes with identical names are merged and de-
pendencies are aggregated into a set. The resulting
dependency list is translated to a directed graph us-
ing the networkx. The DiGraph representation of the
merged workflow to preserve its acyclic structure is
shown in Figs. 2 (a), (b) and (c). Fig 2 (a) and (b)
are the DAG’s which are yet to merge. Fig 2 (c) is the
final merged DAG. The algorithm is designed to ad-
dress the conflicts that may result from merging and
consistencies checks on the shared nodes. It ensures
that the resulting DAG is valid and redundant compu-
tations or tasks exist.

4.5 Conversion to Apache Airflow DAG

The merged DAG is translated into an Airflow format
for enabling execution. It maps every node of the
DAG into an Airflow task and translates all the
dependencies into the Airflow DAG structure. The
output will be Python code utilizing the task and DAG
APIs, so the deployment and execution will go very
smoothly. This algorithm recognizes the independent
tasks and optimizes for parallel execution through
the grouping of tasks with no dependencies. In
this manner, the workflow leverages the parallelism
capability of Airflow to result in minimal execution
time with proper resource utilization.

(a) DAG 1

(b) DAG 2

(c) Merged DAG
Figure 2: Illustration of DAG merging process: (a) Original
DAG 1, (b) Original DAG 2, (c) Merged DAG

Each algorithm used within this work is designed to
resolve specific computational challenges associated
with DAG merging and execution. From checking
weak connectivity and acyclicity to ensuring de-
pendency consistency and merging workflows, each
of these algorithms provides the bedrock for the
methodology that will be followed. Systematic appli-
cation ensures correctness, efficiency, and scalability
in a unified workflow, which easily integrates and
executes in Apache Airflow.

5 RESULTS AND ANALYSIS

Analysis of algorithms for checking weak connec-
tivity, acyclicity verification and dependency consis-
tency check considers both theoretical dimensions:
the time complexity and space complexity, as well
as empirical timing experiments on representative test
inputs. Investigating both aspects together reveals
how each algorithm scales and behaves in real-world
scenarios, in contrast to what complexity analysis pre-
dicts.

5.1 Weak Connectivity Check

Testing on different graph sizes (10 nodes/20 edges,
15 nodes/40 edges, 20 nodes/50 edges, and 50
nodes/200 edges) demonstrated that DFS/BFS and
Union-Find ran consistently in the range of microsec-
onds to a few milliseconds. Even on 50 nodes and
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200 edges, DFS/BFS took about 0.001034 seconds
and Union-Find about 0.001105 seconds. Floyd-
Warshall, though correct, took around 0.023842 sec-
onds on the largest graph tested, showing its relative
inefficiency at scale. From a theoretical point of view,
DFS/BFS is O(n + m), where n is the number of nodes
and m is the number of edges. This fits well with the
observed near-linear growth in runtime. Union-Find’s
almost linear complexity O(m·α(n)) (with α(n) being
very slow-growing) similarly matches the practical
results, showing minimal runtime growth. Contrast-
ingly, Floyd-Warshall’s O(n3) complexity manifested
itself in a tremendous increase in execution time with
increasing problem size – practical evidence that this
method doesn’t scale well for large workflows. Both
theory and practice affirm that DFS/BFS and Union-
Find are best suited for large workflows and maintain
low execution times. Floyd-Warshall, though theoret-
ically perfect for dense, small graphs, is impractical
when the graph grows.

5.2 Acyclicity Verification

In the test cases presented, the DFS recursion stack
method correctly identified cycles nearly immedi-
ately, typically finishing in less than 0.0001 seconds.
Floyd-Warshall correctly found cycles as well, but
even for relatively small graphs (50 nodes/200 edges),
it took about 0.010919 seconds—a very fast time,
but clearly slower than DFS. Theoretically, DFS with
recursion stack runs in O(n + m), which is good
for sparse to moderately dense workflows. Floyd-
Warshall’s O(n³) complexity is quite significant. For
small graphs, the difference in time might be insignif-
icant, but as graphs grow, the gap widens, which
matches the experimental observations. The align-
ment between theory and practice is clear. Floyd-
Warshall guarantees a global perspective on reacha-
bility, but its cubic complexity leads to slower practi-
cal runtimes as graphs grow. The DFS recursion stack
approach, in both theory and empirical testing, is the
better choice for verifying acyclicity in larger work-
flows.

5.3 Dependency Consistency Check

In case of multiple lists of dependency, the In-Degree
Similarity Check has been shown to be the fastest
method, consuming approximately 0.000182 sec-
onds for 5 lists and 0.000650 seconds for 20 lists.
Signature Hashing consumed more time, having an
overhead from the hashing operations-approximately
0.000794 seconds (5 lists) and 0.002018 seconds
(20 lists). Adjacency Matrix Comparison was the

slowest (0.005147 seconds for 5 lists and 0.009037
seconds for 20 lists) and showed to be much more
computationally and memory-intensive.

The In-Degree Similarity Check runs at O(k·(n+m)),
which is quite good for sparse graphs and scales
pretty well in practice. Signature Hashing at
O(k·n·log(n)) does introduce hashing overhead but is
still quite efficient. Adjacency Matrix Comparison,
O(k·n²), becomes cumbersome for larger graphs as
the matrix-based approach matches the observed
slowdown in practical tests. Predictions on the
theoretical level closely relate with experiments per-
formed. In-Degree Similarity Check and Signature
Hashing efficiently scale and stay practical while the
number of DAGs and their sizes increase. Adjacency
Matrix Comparison presents quadratic complexity
and high memory requirements, which becomes a
bottlenecks in practical timings.

5.4 DAG Merging

DAG Merging, utilizing a dependency aggregation
approach, comes with a time complexity of O(n + m)
and a space complexity of O(n + m). Although the
test results did not give direct timing results recently,
the complexity analysis indicates that it should scale
linearly. Since the other stages match their theoretical
and practical results, it is also expected that this
step will be efficient and have no overhead. At each
step, empirical results have corroborated theoretical
complexity analysis. Simpler, near-linear algorithms
such as DFS/BFS, DFS stack cycle detection, and
In-Degree Similarity Check proved to be theoretically
guaranteed, being efficient in practice. More complex
algorithms such as Floyd-Warshall and Adjacency
Matrix Comparison, which were theoretically sound
and complete, ran relatively slow in real-time testing,
so the observed runtime behavior was almost entirely
explained by theoretical complexity.

Finally as shown in Table 1, Table 2 and Table
3 this alignment between theoretical complexities
and practical measurements can provide very useful
guidance for choosing the appropriate algorithm.
For large complex workflows, algorithms with lower
theoretical complexity consistently deliver faster
real-world performance, so it is ensured that the
workflow solution integrated and deployed in Apache
Airflow is efficient and scalable.
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Table 1: Algorithm comparison for dag operations.

Table 2: Execution time comparison of dependency consis-
tency check methods.

Method 5 Lists 20 Lists
In-Degree Similar-
ity Check

0.000182 s 0.000650 s

Adjacency Matrix
Comparison

0.005147 s 0.009037 s

Signature Hashing 0.000794 s 0.002018 s

5.5 DAG Merging in Apache Airflow

For testing the proposed methodology as feasible
and efficient, an example workflow orchestration
with Apache Airflow was performed. This synthetic
sales dataset example consists of features such as
product id, product name, quantity, price, category,
rating, and best sales channel that allow one to
calculate revenues, analyze the ratings of the cus-
tomers, and predict the channel through which most
sales occur. Four workflows were designed: three
independent workflows (DAG 1, DAG 2, DAG 3)
and a combined, optimized workflow (DAG 4), as
shown in Figure 3, Figure 4, Figure 5, and Figure 6,
respectively.

The independent workflows have duplicated
tasks. For instance, both DAG 1 and DAG 2
share some common initial tasks (load data and
transform data) but take different paths as down-
stream tasks in that DAG 1 performs revenue
related calculations (calculate product revenue and
calculate total revenue) while DAG 2 is doing
rating model training for ratings using the following
train ml model on rating, predict and save rating,
and test model accuracy on rating. Likewise, chan-
nel specific machine learning tasks are carried out
by DAG 3 using train ml model on channel,
predict and save channel, and
test model accuracy on channel. This redundancy in
shared tasks leads to inefficiencies in resource usage
and execution time when workflows are executed
independently.

Figure 3: DAG 1

Figure 4: DAG 2

The merged workflow, DAG 4 (Figure 6), com-
bines shared tasks into a single execution, removing
redundancy and increasing efficiency. Common
preprocessing tasks like load data and transform data
are performed only once, and all downstream
domain-specific tasks are built upon this. Then,
there are separate branches for revenue calculation,
ratings analysis, and channel-based predictions that
run independently and in parallel. The DAG merged
ensures consistent resolution of dependencies and
leverages the parallelism of Apache Airflow for bet-
ter scalability and performance. This methodology,
it is obvious, is sound for streamlining complex
workflows in large-scale data processing.

6 CONCLUSION

Develop and implement a structured method to
combine several DAGs with common tasks into one
optimized workflow that can be run in parallel using
Apache Airflow. The method addresses some of
the most critical computational problems: checking
weak connectivity, ensuring acyclic structures, and
preserving consistent dependencies on shared tasks.
Advanced algorithms are developed and bench-
marked, and the work discovers optimal solutions
with respect to the structural properties of the input
DAGs. The unified workflow resulting from this
merger eliminates redundancy, ensures accuracy, and
optimizes the use of resources in terms of energy,
memory, and execution time. This is well demon-
strated in the deployment using Apache Airflow,
where the merged DAG is proven to be practical
in the management of complex workflows in the

Task Algorithm Space Complexity

Weak Connectivity Check DFS/BFS O(n+m) O(n+m)

Floyd-Warshall O(n³) O(n²)

Union-Find O(m·(n)) O(n)

Acyclicity Verification DFS with Recursion Stack O(n+m) O(n)

Floyd-Warshall O(n³) O(n²)

Dependency Consistency Check In-Degree Similarity Check O(k·(n+m)) O(k·n)

Signature Hashing O(k·nlog(n)) O(k·n)

Adjacency Matrix Comparison O(k·n²) O(k·n²)

DAG Merging Dependency Aggregation O(n+m) O(n+m)
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Table 3: Performance comparison of graph algorithms.

Graph DFS (s) Floyd-Warshall (s) Union-Find (s) DFS Cycle (s) Floyd Cycle (s)
10 nodes, 20 edges 0.000299 0.004817 0.000315 0.000024 0.000229
15 nodes, 40 edges 0.000248 0.001250 0.000263 0.000011 0.000360
20 nodes, 50 edges 0.000289 0.002329 0.000328 0.000013 0.000830
50 nodes, 200 edges 0.001034 0.023842 0.001105 0.000013 0.010919

Figure 5: DAG 3

Figure 6: DAG 4

finance, healthcare, and data engineering domains.

This work forms a basis for considerable work-
flow optimization and task orchestration progress,
opening up to dynamic and adaptive methodologies.
Future research directions would involve developing
a dynamic adaptation feature within workflows where
the merged DAG would be updated in real time de-
pending on the changing dependencies, the evolution
of priorities among tasks, or new requirements placed
on workflows. This would enhance flexibility and
responsiveness of workflow management systems
in the optimum allocation of resources and its
subsequent execution in changing environments.
Even, machine learning techniques may come into
use; for instance, reinforcement learning that can
predict a change in conditions of the workflow to
avoid more and more interruptions with the purpose
of maximum efficiency. This would further open
up the space of applicability by integrating with
other workflow management systems, for example,
Prefect or Luigi; extension into domains such as IoT
and health care would open up the opportunity to
dynamically coordinate tasks in sensor networks or
pipelines of patient data.
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