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Abstract: The rapid advancements in communication systems and the proliferation of digital technologies have 
underscored the critical need for robust and adaptive encryption methods to safeguard data integrity, 
confidentiality, and authenticity. Traditional cryptographic techniques, while effective, face challenges in the 
wake of evolving cyber threats and emerging technologies such as quantum computing. This paper explores 
the transformative potential of Generative Adversarial Networks (GANs) in secure data encryption and 
communication systems. By leveraging the dynamic architecture of GANs, which consists of a generator and 
a discriminator operating in an adversarial framework, novel encryption methodologies are developed. These 
methodologies address limitations in traditional encryption by introducing non-linear, adaptive encryption 
schemes resistant to reverse engineering and capable of generating dynamic encryption keys. The paper 
further investigates the integration of GANs into modern communication paradigms, including quantum 
communication, blockchain networks, and IoT systems. Additionally, it highlights the challenges in adopting 
GAN-based encryption, including training instability, scalability, and adversarial vulnerabilities, while 
proposing solutions to overcome these issues. Through experimental validation, the study demonstrates the 
superior security and efficiency of GAN-based encryption systems, offering a scalable and intelligent 
approach to securing data in an increasingly complex digital landscape. 

1 INTRODUCTION 

The rapid advancement of communication systems 
and the proliferation of digital technologies have 
fundamentally reshaped the way data is exchanged, 
stored, and processed (Goodfellow, 2014). From 
personal communications to global financial systems, 
the reliance on secure data transmission has become 
an indispensable requirement in ensuring the 
integrity, confidentiality, and authenticity of 
information (Cao, 2020). However, the ever-
increasing sophistication of cyberattacks and data 
breaches has exposed the vulnerabilities in existing 
encryption methodologies, demanding more robust 
and adaptive solutions for securing communication 
systems. Traditional cryptographic techniques such 
as symmetric and asymmetric encryption methods 
have been the cornerstone of secure communication 
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for decades. While these methods are effective 
against many contemporary threats, the rise of 
quantum computing and other disruptive 
technologies presents significant challenges to their 
long-term viability (Wang, 2018). As attackers 
develop more advanced techniques, it becomes 
imperative to explore innovative and intelligent 
approaches to encryption that can not only resist these 
threats but also adapt to evolving attack vectors in real 
time. This has led researchers to investigate the 
potential of emerging technologies, such as artificial 
intelligence (AI) and machine learning (ML), to 
revolutionize secure communication (Singh, 2023). 

Generative Adversarial Networks (GANs) 
represent a significant advancement in artificial 
intelligence and machine learning, functioning as an 
effective mechanism for the generation of realistic 
synthetic data, including images, videos, and text. 
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Since their introduction by Ian Goodfellow and 
colleagues in 2014, Generative Adversarial Networks 
(GANs) have been extensively utilized in various 
applications, such as image synthesis, data 
augmentation, and anomaly detection, among others 
(Li, 2020). Generative Adversarial Networks (GANs) 
fundamentally comprise two neural networks: a 
generator and a discriminator. These networks engage 
in a competitive process characterized as a zero-sum 
game, as illustrated in Fig. 1. The adversarial dynamic 
enables GANs to learn intricate data distributions and 
produce outputs that cannot be differentiated from 
real data (Zahmoul, 2016). 
 

 
Figure 1: A typical GAN architecture. 

The training set consists of the set of real images 
illustrated in the figure, while random noise is 
provided to the Generator to initiate the training 
process. Both the neural networks are trained further 
and updated as per the loss function available through 
the back propagation. In the context of secure data 
encryption, GANs offer an intriguing paradigm shift 
(Li and Li, 2019). Unlike traditional encryption 
methods that rely on deterministic algorithms, GANs 
can generate highly complex and adaptive encryption 
schemes that are inherently resistant to reverse 
engineering. By leveraging their ability to learn and 
adapt, GANs can create non-linear, dynamic 
encryption keys that are extremely difficult for 
adversaries to decipher, even with access to advanced 
computational resources. Additionally, GANs can be 
utilized to detect and counteract security threats in 
real time, further enhancing the resilience of 
communication systems (Bhat and Nanjundegowda, 
2025). 

This paper explores the potential of GANs in 
transforming secure data encryption and 
communication systems. We propose a novel 
framework for leveraging GANs to develop adaptive 
encryption algorithms that can address the limitations 
of traditional methods while offering enhanced 
protection against emerging threats. Furthermore, we 
investigate the integration of GANs into futuristic 
communication paradigms, such as quantum 

communication systems, blockchain-based networks, 
and the Internet of Things (IoT), where the need for 
innovative security solutions is paramount (Zhang, 
2020). 

In addition to discussing the strengths and 
potential of GAN-based encryption, we also examine 
the challenges and limitations associated with their 
adoption. Issues such as computational complexity, 
scalability, and the risk of adversarial attacks on 
GANs themselves are critical factors that must be 
addressed to realize their full potential (Zhang, 2018). 
Furthermore, ethical considerations and regulatory 
frameworks for deploying AI-driven encryption 
techniques will be explored, ensuring that these 
technologies are implemented responsibly and 
securely (Zhao, 2022). 

The structure of this paper is as follows: Section 2 
provides a comprehensive overview of GANs, their 
architecture, and key principles. Section 3 delves into 
the application of GANs for secure data encryption, 
outlining proposed methodologies and use cases. 
Section 4 discusses the challenges, limitations, and 
potential risks associated with GAN-based 
encryption systems. Section 5 highlights future 
research directions and opportunities for advancing 
GANs in the context of secure communication. 
Finally, Section 6 concludes the paper by 
summarizing key findings and emphasizing the 
transformative potential of GANs in redefining 
secure communication systems. 

Through this research, we aim to bridge the gap 
between cutting-edge AI technologies and the 
pressing need for advanced encryption mechanisms, 
providing a foundation for future innovations in 
secure communication (Li, 2019). By harnessing the 
power of GANs, we envision a new era of adaptive, 
resilient, and intelligent communication systems 
capable of withstanding the challenges of an 
increasingly complex digital landscape (Bhat, 2025). 

2 RELATED WORKS 

A neural network was designed for impulsive 
coordination within the reaction-diffusion 
mechanism, effectively modelling the dynamic 
behaviours of these systems (Chen, 2016). This 
method was later utilized for image encryption 
purposes. Chaotic systems demonstrate notable 
cryptographic potential, particularly in the context of 
image cryptosystems, providing robust security 
features against various traditional attacks, such as 
plaintext attacks. The neural network described was 
later employed in image cryptosystems. A scheme 
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that combines chaotic systems with neural networks, 
resulting in a solution that exhibits improved security 
and decreased complexity compared to previous 
methods (Dridi, 2016). An image encryption scheme 
utilizing a stacked autoencoder network to generate 
chaotic sequences. The scheme exhibited significant 
efficiency, attributable to the parallel computing 
capabilities of the stacked autoencoder and its 
resilience against conventional attacks (Hu, 2017). In 
a specific study, a new image steganography 
technique that avoided the embedding of messages 
within carrier images. The deep model demonstrated 
significant improvements in image security metrics, 
exhibited an effective extraction phase, and showed 
strong resilience against steganalysis algorithms (Hu, 
2018).  

An image encryption approach (Li, 2018) using a 
CNN trained on the CASIA iris dataset (Debiasi, 
2015) to generate encryption keys. Iris characteristics 
were retrieved and encoded using RS error-correcting 
codes. The encoded vector was used to XOR-encrypt 
plain images. An encryption keys with a Montgomery 
County chest X-ray dataset-trained GAN (Ding, 
2020). This updated system has a larger key space, 
better pseudo-randomness, resilience to typical image 
processing assaults, and higher modification 
sensitivity (Jaeger, 2014). A scheme utilizing a deep 
neural network that removed the requirement for pre-
shared keys between systems (Jin, 2020). The system 
dynamically generated and utilized encryption keys, 
resulting in enhanced overall security. A DNN-based 
image encryption scheme that employs the SIPI 
image dataset. This scheme integrates chaotic maps 
for the encryption process, ensuring the preservation 
of image quality (Manivath, 2020).  

An encryption method that employs multiple 
chaotic sequences generated from sensitive keys, 
which were derived by training a convolutional neural 
network (CNN) on the ImageNet database (Erkan, 
2022). The initial conditions for encryption in the 
hyperchaotic logistic map were determined using 
parameters produced by the network. A two-layer 
deep neural network aimed at classifying silica 
aerogel (SA) in the context of physical unclonable 
functions (Fratalocchi, 2020). The chaotic behavior 
of SA was employed to produce cryptographic keys, 
yielding random key sequences for various input 
conditions. We strongly encourage authors to use this 
document for the preparation of the camera-ready. 
Please follow the instructions closely in order to make 
the volume look as uniform as possible (Moore and 
Lopes, 1999). 

An image encryption scheme that employs a 
Cycle-GAN architecture. The network was trained 

using a dataset consisting of both plain and cipher 
satellite images. This approach utilized double 
random phase encoding to achieve image encryption 
(Li, 2021). An alternative scheme utilizing Cycle-
GAN, which was trained on a chest X-ray dataset 
(Ding, 2021). This scheme not only executed 
encryption-decryption tasks but also detected specific 
objects within the cipher images. The flaws in prior 
techniques to establish a foundation for an improved 
avalanche impact (Bao, 2021). A sophisticated 
framework was introduced that integrates a diffusion 
mechanism. The neural network, trained on satellite 
image datasets from Google Maps, demonstrated 
enhanced efficiency; nonetheless, it displayed 
inadequate performance in the decryption process 
(Baluja, 2017).  

Cycle-GAN networks are extensively utilized in 
encryption and decryption operations inside deep 
learning-based image encryption frameworks, 
including picture steganography, showcasing their 
versatility in modern cryptographic applications. An 
experimental results reveal that CryptoGAN achieves 
high levels of randomness and unpredictability, 
essential for secure encryption, and provides strong 
resistance to cryptanalysis (Bhat, 2024). This study 
highlights the potential of CryptoGAN to 
revolutionize image security by combining traditional 
cryptography with advanced machine learning 
techniques. At addressing limitations in traditional 
encryption methods like AES and chaotic encryption, 
CryptoGAN combines U-Net as the generator and 
PatchGAN as the discriminator to encrypt and 
decrypt images while maintaining high visual fidelity 
and robust security (Bhat, 2024). Trained on a dataset 
of 2000 butterfly images, CryptoGAN ensures 
structural similarity, high entropy, and low pixel 
correlation, effectively resisting cryptanalysis and 
statistical attacks. The model achieves superior 
performance compared to existing methods, with high 
SSIM and PSNR values. 

3 CHALLENGES 

Advanced GAN-based models have received 
significant focus in the field of cybersecurity. 
Nonetheless, the implementation of these methods in 
encryption and decryption presents certain 
challenges. This section examines the primary 
challenges faced in utilizing GANs for cybersecurity, 
with a focus on protecting digital assets and the 
effective implementation of these models. The use of 
GANs in encryption and decryption faces several 
technical challenges, including training instability 
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and mode collapse, which may adversely affect the 
performance and reliability of these models. The 
integration of GANs into existing security 
frameworks presents a significant challenge, 
necessitating precise alignment to guarantee seamless 
functionality and scalability. 

3.1 Cryptographic Challenges 

Despite their potential, GANs face notable challenges 
when applied to image data encryption. One 
significant issue is the inconsistency and limited 
diversity in the quality of generated image data. This 
limitation can undermine the effectiveness of using 
GAN-generated images in testing encryption 
algorithms, where reliability and diversity are 
essential. Additionally, GAN training can be 
unstable, often leading to difficulties in achieving 
convergence. This instability not only complicates the 
optimization process but also impacts the evaluation 
of the model's performance in encryption-related 
tasks. 

To address these challenges, a new symmetric 
encryption framework called Adversarial Neural 
Cryptography (ANC) has been introduced, 
specifically designed for image data. ANC integrates 
GANs into its structure to enhance encryption 
capabilities and provide robust security against 
chosen-ciphertext attacks (CCA). The ANC system 
models secure communication between two entities, 
Alice and Bob, who exchange encrypted image data 
using a shared key K. Meanwhile, Eve, a passive 
attacker, attempts to decode the plaintext image P by 
analysing the ciphertext C.  

In developing the ANC system, particular focus is 
given to resisting CCA attacks. The system employs 
a multi-layer encryption strategy coupled with a 
sophisticated key exchange mechanism to minimize 
the statistical correlation between plaintext images 
and their corresponding ciphertext. This approach 
significantly increases the difficulty for attackers 
attempting to breach the system. Additionally, the 
GAN's generator is utilized to introduce higher levels 
of randomness and unpredictability to the ciphertext 
images, further bolstering the system's resilience to 
CCA attacks. 

Experimental findings confirm the effectiveness 
of ANC in mitigating CCA threats. By leveraging the 
GAN's ability to enhance the randomness in 
ciphertext, the feasibility of attackers conducting 
statistical analysis is greatly reduced. Fig. 2 illustrates 
the symmetric encryption and decryption model used 
in ANC for image data using 2 parties Alice and Bob 
using the same symmetric Key which is both used for 

Encryption and Decryption. The experiments also 
evaluate ANC's performance in simulated attack 
scenarios, highlighting its robustness in protecting 
encrypted image communication and ensuring secure 
exchanges. Overall, while challenges such as training 
instability and variability in data quality exist, the 
integration of GANs into cryptographic systems like 
ANC demonstrates their transformative potential. By 
addressing these limitations, ANC effectively 
harnesses GANs to improve both the efficiency and 
security of encryption methodologies for image data, 
paving the way for more advanced and secure 
cryptographic systems. 

 
Figure 2: Symmetric Encryption scheme used by two 
parties 

3.2 Cybersecurity Challenges 

This section highlights key challenges in 
cybersecurity, particularly in addressing adversarial 
attacks and implementing advanced techniques like 
GANs and federated learning. 

3.2.1 Adversarial Attacks and Adversarial 
Example Generation 

Challenges posed by adversarial evasion attacks, 
where altered input samples deceive classifiers, 
compromising botnet detection accuracy (Randhawa, 
2021). While efforts to improve recall rates and 
address dataset imbalance using GANs for synthetic 
oversampling show promise, challenges remain in 
generating diverse, high-quality datasets and keeping 
up with evolving attack methods. Further, modern 
botnets require updated traffic features for effective 
differentiation, emphasizing the need for continuous 
research. 

The emergence of Adversarial Examples (AEs) in 
cybersecurity. AEs are malicious perturbations that 
mislead classifiers, posing threats to machine learning 
(ML)-based systems (Zhang, 2020). While most 
research on AEs focuses on computer vision, their 
impact on cybersecurity systems remains 
underexplored, underscoring the need for robust ML 
models that can withstand adversarial attacks. 

Challenges in countering adversarial attacks, 
where malicious samples deceive both humans and 
ML systems (Schneider, 2023). These attacks exploit 
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vulnerabilities in malware classifiers and pose 
significant risks to cybersecurity (Lucas, 2023). 
Defence strategies, like adversarial training and 
frameworks such as Défense-GAN, aim to enhance 
robustness against such attacks, but their 
effectiveness varies across datasets and attack types 
(Laykaviriniyakul, 2023). 

 
 

3.3 Network Security Challenges 

The growing challenges in network security, driven 
by rapid technological advancements and an 
expanding number of internet users (Yang, 2022). 
The increase in network traffic, fuelled by the rise of 
5G networks, and the emergence of threats like trojan 
horses, viruses, and phishing sites have made 
detecting and mitigating network threats more 
complex. This necessitates improved methods for 
proactive defence and network threat detection. 

In a related study, (Das, 2022) emphasized the 
challenges posed by the dynamic nature of computer 
and mobile networks. Increasing nodes and traffic 
complicate anomaly detection and adaptation to 
modern attacks. Privacy concerns in intrusion 
detection systems and challenges like coordinating 
updates in large-scale networks and preventing model 
tampering were addressed using federated learning. 
This approach enables secure sharing of encrypted 
models while preserving data privacy. 

The vulnerabilities arising from diversified access 
points in 5G and distributed networks, which have 
expanded the attack surface (Park, 2022). The 
increasing frequency and sophistication of 
cyberattacks make detection and prevention more 
difficult, emphasizing the need for enhanced intrusion 
detection systems to safeguard networks. Limitations 
in current botnet detection methods, noting their 
inability to fully capture the evolving and 
sophisticated behaviours of botnets (Yin, 2018). 
These adaptive threats, which leverage advanced 
technologies to evade detection, present a significant 
challenge, underscoring the need for more 
comprehensive network flow analysis. 

4 SUGGESTED 
METHODOLOGIES FOR 
ENCRYPTION WITH GANS 

Designing a robust image encryption scheme using 
Generative Adversarial Networks (GANs) involves 

leveraging the unique architecture of GANs, which 
consists of a generator and a discriminator. These two 
neural networks operate in a competitive framework 
where the generator produces encrypted versions of 
images, and the discriminator evaluates the 
authenticity or quality of these outputs. This 
adversarial process allows the generator to learn 
intricate transformations that obscure the content of 
the original image while maintaining a structured 
framework for decryption. 

It is assumed that both the generator (G) and 
discriminator (D) models possess sufficient capacity 
to handle the required tasks. When the generator's 
data distribution 𝑝௚(𝑥)  aligns perfectly with the real 
data distribution 𝑝ௗ௔௧௔(𝑥), the GAN model achieves 
a state of equilibrium. At this point, the discriminator 
D cannot distinguish between real and generated data, 
resulting in a classification accuracy of 50%. Here, 𝑝௚(𝑥) represents the distribution of data generated by 
the generator. Formally, for a specific generator G, 
the optimal discriminator D* can be determined. 

A commonly used approach in GANs is the 
hierarchical structure, which allows encrypted images 
to be generated step-by-step, gradually improving 
their resolution at each stage. This hierarchical 
architecture is particularly beneficial for applications 
that require high-quality outputs, such as image 
encryption. For instance, MultiLevelGAN utilizes 
this method to generate progressively detailed 
outputs, as depicted in Fig. 3. Compared to traditional 
encryption techniques, GANs demonstrate a 
significant advantage in terms of generation speed. 
By replacing the traditional sampling process with a 
generator, GANs eliminate the need for a lower 
bound to approximate likelihood, streamlining the 
generation process. 

A critical component of the encryption process is 
the generation of secure and pseudo-random keys. 
GANs can be trained to generate such keys by 
learning from chaotic systems like logistic maps, 
which provide high randomness and unpredictability. 
The generator produces encryption keys that are 
inherently complex and difficult to decipher, ensuring 
the robustness of the encryption process. 
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Figure 3: Architecture of MultiLevelGAN. 

These keys form the foundation for encryption 
operations, including substitution, permutation, and 
diffusion, which collectively transform the original 
image into an unintelligible form. Substitution 
modifies the pixel values based on the generated key, 
permutation rearranges the pixel positions to disrupt 
spatial coherence, and diffusion ensures that small 
changes in the original image result in significant 
differences in the encrypted output. 

The encryption process begins with training the 
GAN using a dataset of images, where the generator 
learns to encrypt the images, and the discriminator 
assesses the quality of encryption. The goal of 
training is for the generator to produce encrypted 
images that are indistinguishable from a target 
distribution, effectively confusing the discriminator. 
This iterative adversarial training ensures that the 
generator develops the capability to perform highly 
secure and adaptive encryption. The discriminator, in 
turn, becomes a robust evaluator of the encryption 
quality, pushing the generator to continually improve. 
Once the encryption process is established, the 
decryption mechanism reverses the transformations 
applied during encryption. Using the same key 
generated by the GAN, the encrypted image 
undergoes inverse diffusion, permutation, and 
substitution to reconstruct the original image. The 
decryption process is designed to be lossless, 
ensuring that the original image is retrieved without 
any degradation in quality. This reversibility is a 
critical aspect of the encryption scheme, as it ensures 
usability without compromising security. 

The security of the GAN-based encryption 
scheme is rigorously analysed to confirm its 
robustness. Statistical analysis is performed on the 
encrypted images to verify the uniformity of pixel 
value distributions, indicating effective encryption. 
Key sensitivity analysis ensures that even slight 
variations in the key render the decryption process 

ineffective, highlighting the system’s dependency on 
the exact key for secure operations. Additionally, the 
scheme is subjected to various attacks, including 
brute force, differential, and statistical attacks, to 
evaluate its resilience. Studies have demonstrated that 
GAN-based encryption methods are highly resistant 
to such attacks, offering a robust framework for 
secure image transmission and storage. 

Implementing a GAN-based encryption scheme 
requires careful consideration of computational 
resources and dataset quality. Training GANs is 
computationally intensive and demands substantial 
processing power. The quality and diversity of the 
training dataset significantly influence the GAN’s 
ability to generate effective encryption keys. 
Furthermore, hyperparameters such as learning rates 
and network architectures must be carefully tuned to 
achieve optimal performance. Despite these 
challenges, GAN-based encryption provides a 
flexible and adaptive framework for securing images 
in a variety of applications. 

In Figure 4, a Secure Transformation Network 
(STN) processes plaintext and keys by first 
converting them into angles using f(b) as input to the 
neural network. The weight matrix multiplication in 
the adversarial encrypting network is then computed 
to generate the initial ciphertext. The final ciphertext 
is obtained by applying the inverse transformation 𝑓ିଵ(𝑎) . Notably, all data handled by the STN are 
floating-point numbers, with ciphertext values 
constrained to the range [0, 1]. 

Mathematically, the fully connected layer of the 
cipher set performs operations as described in 
Equation (1): (ℎ଴ ℎଵ ℎଶ … . ℎ௡ିଵ) ൌ (𝑎଴ … . 𝑎௡ିଵ 𝑎௡ … . ℎଶ௡ିଵ)𝑊                              (1) 

Here, W represents the unified weight matrix of all 
hidden and convolutional layers in the adversarial 
encrypting network.   
( 𝑎଴ … . 𝑎௡ିଵ 𝑎௡ … . 𝑎ଶ௡ିଵ) corresponds to the 
angles of the plaintext and key, while 
( ℎ଴ ℎଵ ℎଶ … . ℎ௡ିଵ)  represents the network's 
output variables. 

In the rest of the experiment, the cipher set is 
expressed mathematically as shown in Equation (2): 
This section must be in two columns. 𝐶 ൌ 𝜉(𝑊, 𝑃𝐼, 𝐾𝐼)    (2) 

where P, K, and C denote the plaintext, key, and 
ciphertext as n-bit vectors, respectively. 
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Figure 4: Neural Network of MultiLevelGAN 

 
This idea presents an analysis of the encryption 

structure, algorithm functionality, and security 
performance of the Adversarial Neural Cryptography 
(ANC) system, specifically when applied to image 
data. While ANC has shown potential, previous 
research highlights vulnerabilities when ANC is 
combined with multi-layer neural networks for 
computer communication systems. Specifically, it 
has been observed that such systems can be cracked 
by adversarial neural networks through training. 

To address these challenges, this study proposes 
an enhanced adversarial encryption algorithm called 
CCA-ANC, tailored for image data. The core idea 
behind CCA-ANC is to simulate a stronger attacker 
with greater cracking capabilities, thereby forcing the 
sender and legitimate receiver to adopt a more robust 
encryption system. This approach results in a highly 
secure and resilient encryption method. 

 

4.1 Concept of CCA-ANC for Image 
Data 

The Chosen-Ciphertext Attack (CCA) technique in 
CCA-ANC allows an attacker to select a sequence of 
ciphertexts and analyse the corresponding plaintext or 
key information. This method is particularly effective 
for evaluating the security of the ANC algorithm. By 
applying CCA, potential weaknesses in the 
encryption mechanism can be identified and 
addressed, leading to algorithm improvements. For 
image data, this technique ensures the encryption 
system can withstand sophisticated cryptographic 
attacks and enhances the system's overall security and 
reliability in real-world applications. 
 

4.2 Continuous XOR for Image 
Encryption 

One of the novel contributions of this experiment is 
the extension of the XOR operation to a continuous 
space, optimized for image encryption. Traditional 
XOR, commonly used in cryptography, is adapted 
using a unit circle representation. The experiment 
maps binary values (0 and 1) to corresponding angles 
(0 and π), enabling a continuous transformation. The 
resulting XOR operation becomes the sum of two 
angles, making it more suitable for continuous data, 
such as image pixels. 
The mapping of bit positions to angles is defined by 
the following equations: 

1. Mapping bit position to angle: 𝑓(𝑏) ൌ arccos(1 െ 2𝑏)   (3) 

Here in (3), f(b) represents the conversion of bit 
position b to an angle. 

2. Inverse mapping of angle to continuous bits: 𝑓ିଵ(𝑎) ൌ ଵିୡ୭ୱ(௔)ଶ     (4) 

In (4) inverse function transforms the angle back 
to its original bit representation. 

This continuous XOR operation enables the 
encryption of image data in a floating-point space, 
making the process more flexible and secure for high-
resolution and complex image datasets. 

4.3 Secure Transformation Network 
(STN) 

To verify the security of the encryption process, a 
Secure Transformation Network (STN) is introduced. 
The STN, as shown in Figure 4, is designed to 
evaluate the robustness of the encryption mechanism 
by learning and detecting potential vulnerabilities. 

The structure of STN is as follows: 
Input Conversion: The plaintext and keys are 

transformed into angles using the f(b) mapping, 
converting bits into angles for input into the neural 
network. 

Adversarial Encryption: A weight matrix 
multiplication is performed within the adversarial 
encryption network to generate the initial ciphertext. 

The STN processes all data as floating-point 
numbers, with the resulting ciphertext values 
constrained to the range [0, 1]. This ensures precision 
and adaptability when encrypting and decrypting 
image data. 
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5 CONCLUSIONS AND FUTURE 
SCOPES 

The potential of GAN-based encryption extends 
beyond traditional use cases, with opportunities for 
integration into real-time systems and cross-modal 
encryption tasks. Future research can focus on 
developing specialized GAN architectures tailored 
for encryption, optimizing real-time performance, 
and expanding the scope of encryption to other data 
modalities such as video and audio. By addressing 
these directions, GANs can revolutionize secure 
communication systems, ensuring the confidentiality 
and integrity of data in an increasingly interconnected 
digital world. The adaptability and learning 
capabilities of GANs make them a promising avenue 
for advancing encryption methodologies and 
overcoming the challenges posed by emerging cyber 
threats. 
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