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We propose EveCamNet, a novel framework that fuses features from RGB and event cameras to detect drivable

areas in dynamic scenarios. This framework enhances semantic segmentation for identifying drivable regions
in autonomous driving systems. While RGB cameras excel at capturing spatial and textural details, they often
struggle in dynamic conditions, such as motion blur and varying lighting. In contrast, event cameras offer high
temporal resolution and low latency, but they lack detailed spatial context. Our proposed framework effectively
combines the strengths of both modalities through attention-based feature fusion mechanisms and a robust
loss function incorporating Cross-Entropy and Dice losses. Using an open-source dataset, we evaluate the
performance of EveCamNet, achieving a mean Intersection over Union (mloU) of 69.94% and Pixel Accuracy
(PA) of 90.54%. These results highlight the potential of RGB-Event fusion as a promising approach for

advancing autonomous driving systems.

1 INTRODUCTION

The rapid advancements in autonomous driving have
made intelligent mobility an important aspect of mod-
ern transportation. It is crucial to understand the envi-
ronment to ensure safe and efficient navigation. How-
ever, to achieve this, it is important to understand the
challenges it poses, especially in diverse and complex
scenarios. One of the fundamental tasks in this do-
main is the detection of drivable areas, which serves
as the basis for path planning, obstacle avoidance, and
overall navigation. This task becomes even more dif-
ficult in unstructured environments, such as settings
with dynamic objects, varying terrains, or rural roads
that lack clear lane markings.

Semantic segmentation has emerged as a key tech-
nique to address the challenges of drivable area detec-
tion (Qiao and Zulkernine, 2021) (Jain et al., 2023).
Unlike traditional object detection (Zou et al., 2023),
which provides bounding-box outputs, semantic seg-
mentation offers pixel-level classification of road sur-
faces and surrounding elements. This detailed scene
understanding is crucial for accurately distinguishing
between drivable and non-drivable areas, even in the
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presence of environmental variations.

RGB cameras are widely used for semantic seg-
mentation due to their ability to capture detailed spa-
tial and color information. They are cost-effective,
scalable, and capable of handling a variety of road
scenarios. However, they face significant limitations
in dynamic environments, such as those involving
fast-moving objects, motion blur, or changes in il-
lumination. These challenges necessitate the use of
complementary sensors to fill in the gaps left by RGB
data.

In recent applications of autonomous driving,
event cameras have attracted attention due to their
unique functionality. Unlike conventional cameras,
event cameras operate asynchronously, capturing
pixel-level changes in brightness with microsecond-
level temporal resolution. Their advantages consist of
extremely high temporal resolution and low latency,
both of which are measured in microseconds. Addi-
tionally, they offer a dynamic range of 140dB, signif-
icantly higher than the 60dB typically found in stan-
dard cameras, along with lower power consumption
(Shariff et al., 2024) (Gallego et al., 2022). This
makes them highly effective in scenarios with rapid
motion or abrupt lighting changes, where traditional
cameras often struggle. Their sparse data output and
resilience to motion blur make them particularly suit-
able for detecting dynamic objects. Despite their

135

EveCamNet: A Fusion Framework of Event and RGB Camera Towards Detecting Drivable Area for Autonomous Vehicles.

DOI: 10.5220/0013588200004664
Paper published under CC license (CC BY-NC-ND 4.0)

In Proceedings of the 3rd International Conference on Futuristic Technology (INCOFT 2025) - Volume 2, pages 135-143

ISBN: 978-989-758-763-4

Proceedings Copyright © 2025 by SCITEPRESS — Science and Technology Publications, Lda.



INCOFT 2025 - International Conference on Futuristic Technology

strengths, event cameras lack the spatial richness re-
quired for tasks such as semantic segmentation. Addi-
tionally, aggregating event data into frame-based rep-
resentations requires careful handling to align tempo-
ral and spatial information effectively.

To overcome the individual limitations of RGB
and event cameras, RGB-Event fusion has emerged
as a promising approach. By combining the comple-
mentary strengths of these modalities, fusion-based
frameworks can generate richer and more reliable
scene representations. For semantic segmentation,
this fusion enables models to leverage the spatial de-
tail of RGB data and the motion sensitivity of event
data, resulting in improved performance across di-
verse driving conditions. While RGB-Event fusion
has been explored for tasks like object detection and
tracking (Zhou et al., 2023) (Tomy et al., 2022), its
application to semantic segmentation for drivable area
detection remains underexplored.

In this paper, we propose a novel RGB-Event fu-
sion framework for semantic segmentation to improve
drivable area detection in autonomous driving. The
framework incorporates mid-level cues and utilizes an
attention-based fusion mechanism to effectively inte-
grate and refine RGB and event features across spatial
and channel dimensions. This approach ensures accu-
rate and consistent segmentation, making it suitable
for challenging conditions. Our key contributions in-
clude:

* Integration of RGB and event data to enhance seg-
mentation accuracy by combining the spatial rich-
ness of RGB images with the temporal sensitivity
of event data, addressing the limitations of stan-
dalone modalities.

* Implementation of a robust combined loss func-
tion to balance pixel-level accuracy and boundary
precision, improving the model’s ability to handle
segmentation tasks.

* Evaluation of the model’s effectiveness using met-
rics such as mean Intersection over Union (mlIoU)
and Pixel Accuracy, demonstrating its applicabil-
ity and reliability across diverse and real-world
driving scenarios using DDD17.

The remainder of this paper is structured as follows:
Section 2 reviews related work on various segmenta-
tion techniques that utilize different modalities. Sec-
tion 3 describes the proposed methodology, focus-
ing on input representation, feature extraction, fusion,
and the segmentation process. Section 4 presents the
experimental results and compares them with base-
line methods. Section 5 discusses the findings from
the ablation studies. Finally, Section 6 concludes the
paper and explores potential future directions.
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2 LITERATURE SURVEY

Semantic segmentation is an essential technique in
autonomous driving that allows vehicles to catego-
rize each pixel in an image into specific classes. By
doing so, it significantly enhances the vehicle’s abil-
ity to understand and perceive its environment at a
detailed level. The introduction of deep learning,
particularly through Convolutional Neural Networks
(CNNs), has transformed semantic segmentation by
providing more accurate and scalable solutions.

Early deep learning models, particularly Fully
Convolutional Networks (FCNs) (Long et al., 2015),
laid the groundwork for semantic segmentation by al-
lowing for end-to-end learning, which demonstrated
strong performance on RGB datasets like Cityscapes
(Cordts et al., 2016) and KITTI (Geiger et al., 2013).
Semantic segmentation for drivable area has pro-
gressed through two primary approaches: monocular
vision-based methods and multimodal sensor-based
methods (Rasib et al., 2021).

Monocular vision-based methods primarily uti-
lize RGB cameras, which makes them more cost-
effective and easier to implement. Notable exam-
ples of these methods include road detection using
neural networks, as demonstrated by Li et al. (Li
et al., 2022), and instance segmentation techniques
employed by Chan et al (Chan et al., 2019). Mod-
els like ENet (Almeida et al., 2020) and EdgeNet
(Han et al., 2021) have achieved significant improve-
ments in pixel-level segmentation accuracy for both
structured and unstructured roads. U-Net (Siddique
et al., 2021) has gained popularity in autonomous
driving due to its encoder-decoder architecture and
skip connections, which effectively capture both spa-
tial and semantic features. DeepLabv3+ (Liu et al.,
2021) enhances segmentation capabilities even fur-
ther by utilizing improved convolutions and spatial
pyramid pooling, allowing for better handling of com-
plex scenes.

Despite these advancements, methods relying
solely on RGB cameras struggle in dynamic environ-
ments and varying weather conditions. While RGB
cameras provide rich spatial and color information,
they face limitations such as motion blur, changing
lighting conditions, and difficulties in capturing un-
structured roads without clear lane markings. These
challenges underscore the need to explore comple-
mentary sensing modalities.

Multimodal methods that incorporate LiDAR and
point clouds utilize spatial and depth information to
enhance detection capabilities. For example, Demir
et al. (Demir et al., 2017) developed a point-cloud-
based adaptive method, while Yang et al. (Yang et al.,
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2020) introduced a fusion network that combines Li-
DAR with image data. However, these approaches
often face challenges such as high costs and limited
datasets.

A recent advancement in the industry is the use
of event cameras, which provide significant advan-
tages over conventional cameras in various scenarios.
Event cameras have emerged as a promising alter-
native due to their unique ability to capture changes
in brightness at the pixel level with high temporal
resolution. Unlike traditional cameras, event cam-
eras operate asynchronously, making them resilient to
motion blur and variations in lighting (Shariff et al.,
2024) (Gallego et al., 2022).

Research has demonstrated that event cameras
are particularly effective in dynamic scenes involving
fast-moving objects or rapid transitions between light
and shadow. Recent advancements have explored
their utility in various fields, including robotics, aug-
mented reality, and object tracking. The unique abil-
ity of event cameras to operate efficiently under chal-
lenging lighting conditions and their low power con-
sumption further enhance their suitability for wear-
able devices and autonomous systems. However,
the unconventional output of these sensors neces-
sitates developing specialized algorithms to exploit
their potential fully. Emerging methods, ranging from
low-level vision tasks such as optical flow estima-
tion to high-level applications like recognition and
segmentation, underscore the transformative impact
of this technology on computer vision and robotics
(Chakravarthi et al., 2024).

The first significant work in this domain intro-
duced an event-based semantic segmentation dataset
derived from DDD17, utilizing an Xception-type net-
work to demonstrate robust performance, particu-
larly in edge-case scenarios like overexposed im-
ages (Alonso and Murillo, 2019) (Binas et al., 2017)
(Chollet, 2017). Semantic labels for the dataset were
generated using a pre-trained network on grayscale
frames from the DAVIS346B sensor, which aligns
events with frames. However, the DAVIS346B’s
low resolution and image quality introduced signif-
icant artifacts and limited label granularity. Simu-
lated datasets like EventScape, recorded in CARLA,
offer higher-quality labels but suffer from sim-to-real
gaps, reducing real-world applicability (Gehrig et al.,
2021) (Hidalgo-Carri6 et al., 2020). Follow-up stud-
ies leveraged synthetic events from video datasets to
enhance performance, while others explored combin-
ing labeled image datasets like Cityscapes with un-
labeled events to reduce dependence on video data
(Cordts et al., 2016) (Gehrig et al., 2019) (Wang et al.,
2021). Despite these advancements, methods relying

solely on events face challenges due to their sparse
data output and lack of spatial richness.

Standalone event-based segmentation struggles
with providing detailed scene understanding due to
the inherently sparse and asynchronous nature of
event data. Techniques like Temporal Multi-Scale
Aggregation (ETMA) (Zhou et al., 2023) have at-
tempted to address this by aggregating temporal in-
formation into event frames, improving feature util-
ity. However, even with such advancements, event-
only approaches fall short in high-resolution semantic
segmentation tasks, particularly in scenarios requiring
fine-grained pixel-level classification.

To overcome these limitations, fusion-based tech-
niques integrating RGB and event data have been pro-
posed. Fusion frameworks combine the spatial rich-
ness of RGB images with the temporal sensitivity
of event data, offering a more comprehensive under-
standing of the scene. While early works focused
on object detection and tracking (Zhou et al., 2023)
(Tomy et al., 2022), where fusion demonstrated im-
proved accuracy in dynamic environments, applica-
tions to semantic segmentation remain limited. Ex-
isting methods often rely on simple feature concate-
nation or static weighting, failing to fully exploit the
complementary strengths of the two modalities.

Our project addresses these gaps by proposing
a novel RGB-Event fusion framework for seman-
tic segmentation, specifically designed for drivable
area detection in autonomous driving. By leveraging
attention-based mechanisms for feature refinement
and alignment, our framework dynamically integrates
RGB and event features, addressing their individual
limitations and enhancing segmentation performance.
This approach aims to advance the field by optimiz-
ing RGB-Event fusion for pixel-level tasks, ensuring
robust and scalable solutions for autonomous driving
systems.

3 EVECAMNET’S PROPOSED
FRAMEWORK

This section outlines the methodology for integrating
RGB and event data to achieve semantic segmenta-
tion of drivable areas. The proposed framework, il-
lustrated in Figure 1, describes the overall architec-
ture, which consists of several essential components
divided into five stages. These components include
temporal multi-scale aggregation of event data, fea-
ture extraction specific to each modality, fusion of
features from both types, and the final decoding pro-
cess for segmentation. Each element is carefully de-
signed to address the unique challenges posed by dy-
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namic driving environments. The following subsec-
tions will provide a detailed explanation of each com-
ponent and its role within the overall framework.

3.1 Input Representation

The proposed model of RGB and event fusion for se-
mantic segmentation utilizes input derived from the
DDD17 dataset (Binas et al., 2017), which contains
synchronized RGB frames and event data. The RGB
frames are captured at a standard rate, providing rich
spatial and textural information vital for understand-
ing scenes. Each RGB frame has a resolution of H x
W, where H represents the height and W denotes the
width.

In contrast, event data consists of asynchronous
brightness changes recorded by event cameras. This
data is presented as a stream of events, each defined
by a timestamp, polarity (indicating the direction of
brightness change), and spatial coordinates. To adapt
the event data for deep learning architectures, it is ag-
gregated over discrete temporal intervals and trans-
formed into a multi-channel image format. For this
study, the event data is categorized into three tem-
poral scales: short-range, medium-range, and long-
range, each highlighting different motion dynamics
from fine details to broader, slower movements. The
RGB frames and event data are preprocessed and re-
sized to 288 x 288 to ensure consistency and compat-
ibility with the model.

3.2 Feature Extraction

Feature extraction for RGB and event data is con-
ducted separately using distinct encoders tailored to
each modality.

RGB Data: The RGB data is processed through
a ResNet-101 encoder, a deep convolutional neural
network designed to capture high-resolution spatial
and textural characteristics. The deeper layers of the
ResNet-101 model capture abstract, global features,
while the earlier layers retain detailed spatial infor-
mation. This encoder analyzes the input RGB frame
and produces a set of hierarchical feature maps, which
are later utilized for fusion and skip connections.

Event Data (E-TMA): To handle event data, the
Event-Based Temporal Multiscale Aggregation (E-
TMA) module (Zhou et al., 2023) is used to har-
ness the temporal richness inherent in asynchronous
events. The event data from each temporal scale &
(where k € {1,2,3}) is transformed into a latent fea-
ture space as follows:

Ep = 0(&) (D
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where ¢ represents a shared convolutional projection
layer that includes batch normalization and ReLU ac-
tivation.

To capture hierarchical motion dynamics, pooling
operations with varying kernel sizes are applied:

ey = pool; (Ey) ()

where the kernel sizes increase with the temporal
range. To standardize the resolutions of these fea-
tures, smaller feature maps undergo upsampling and
are then concatenated:

Fevent = concat(ey,up(ez),up(e3)) 3)
This combined event representation encapsulates mo-
tion patterns from fine to coarse and is subsequently
fed into a lightweight ResNet-18 encoder for feature
extraction. The event encoder is designed to be com-
putationally efficient while preserving essential mo-
tion information.

3.3 Fusion Network

The fusion network integrates features obtained from
both RGB and event encoders, effectively leveraging
the unique advantages of each modality. Prior to fu-
sion, the event features are transformed to match the
dimensionality of the RGB features:

Faligned = \V(Fevem) 4

where  denotes a 1x1 convolution.

Channel Attention: Channel attention mecha-
nisms are utilized to highlight the most pertinent fea-
ture channels within each modality. The features, en-
hanced by attention, are computed as follows:

Fr(gi)l = CA(Faligned) O) Frgb + Frgb 5

Fecvaelnt = CA(Frgb) ©) Faligned + Faligned (6)

Here, CA represents the channel attention module,
and © signifies element-wise multiplication.

Spatial Attention: Spatial attention is applied to

enhance the feature maps by concentrating on the
most significant spatial areas:

Frao = SA(Fgien) © Figh + Figh Q)
Fesvpem = SA(Frgtl)l) © Fe(ii:lnt + Fe(i/aelnt (8)

In this context, SA denotes the spatial attention mod-
ule.

Fusion : The refined features are then concate-
nated and processed through a convolutional layer to
generate the fused representation:

Frused = Conv3x3(FrZi B Fornt) 9

where @ indicates concatenation.
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Figure 1: Architecture for our proposed EveCamNet RGB+Event fusion model (1) The framework initiates with the Input
Representation, which effectively encompasses both grayscale RGB images and event data. (2) The inputs are independently
processed through separate Feature Extraction networks, where RGB features are extracted using ResNet-101 and event
features are extracted using ResNet-18. (3) The extracted feature maps, Fr (RGB features) and Fg (event features) are passed
to a Fusion Network, which combines spatial and temporal information from both modalities. (4) The fused representation
is fed into the Segmentation Decoder to generate pixel-wise segmentation masks. (5) Finally, the Output with Loss Function
compares the predicted segmentation masks with the ground truth (GT) to compute the loss, optimizing the model for precise
segmentation of drivable areas and objects. This pipeline enhances performance in dynamic conditions and by utilizing the

complementary strengths of RGB and event data.

3.4 Segmentation Decoder

The combined feature map Fiyseq is transformed into
a pixel-level segmentation map using an architecture
inspired by UNet (Siddique et al., 2021). This de-
coder includes multiple upsampling layers along with
convolutional operations that work together to gradu-
ally restore the original spatial resolution of the input.
Skip connections are used between matching lay-
ers in the encoder and decoder to retain important spa-
tial information that might otherwise be lost during
downsampling. For example, the output from an ear-
lier encoder layer is added to the output of the cor-
responding decoder layer, which helps maintain fine
details in the spatial data:
F

decoder

= concat(F(rf‘):oder,up(F(Hl) ) (10)

el decoder

where [ represents the layer index.

The final segmentation map S is generated using a
softmax activation function, which converts the out-
put into class probabilities for each pixel:

S = o(Conv3x3(Final ) (11)

decoder

3.5 Loss Function

The model produces a pixel-wise probability map, de-
noted as S, which is then compared to the actual seg-
mentation map, P, to calculate the loss. During train-
ing, we aim to minimize a combined loss function
represented as:

L:LC6+B'LdiCSa BZO-S (]2)

In this equation:

- L¢e (cross-entropy loss) focuses on ensuring ac-
curate classification at the pixel level. Lg;ce (Dice loss)
helps tackle class imbalance and improves the seg-
mentation of boundaries, calculated by the formula:

2.YP-P
YP+YP+e

Here, P is the predicted segmentation map, and € is a
small constant to avoid division by zero.

The cross-entropy loss penalizes wrong class pre-
dictions, while the Dice loss emphasizes enhancing
the overlap between the predicted areas and the ac-
tual ground truth, especially at the edges. By combin-
ing these loss functions, the model effectively learns
not only to classify accurately but also to delineate
boundaries precisely, resulting in strong segmentation
performance even in difficult situations.

Lgice = 1 (13)
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4 RESULTS AND DISCUSSION

This section presents a concise evaluation of the
RGB-Event fusion framework, covering the dataset,
training process, and performance analysis of results.
We compare our model’s performance with estab-
lished baselines, offering a clear understanding of the
pipeline’s capabilities.

4.1 Dataset

The DDD17 dataset (Binas et al., 2017) plays a cru-
cial role in examining how RGB and event data can
work together for segmenting drivable areas. It cap-
tures urban driving situations using an event-based
camera paired with standard RGB frames, allowing
for asynchronous brightness changes (events) that are
aligned with detailed RGB images. This dataset is
excellent for providing high temporal resolution and
a wide dynamic range, which are essential for navi-
gating complex driving environments.

For our project, we focused on a subset of se-
quences that met our criteria for urban environments
with good visibility, using 15,950 frames for training
and 3,890 frames for testing across the dataset’s tem-
poral range.

In the training phase, we integrated events over
a 50ms period to capture the necessary temporal de-
tails. For testing, we evaluated the model at 10ms and
250ms intervals to check its performance across dif-
ferent speeds. This approach ensures that the model
can adapt to both fast-paced and slower situations en-
countered in autonomous driving.

4.2 Training

The training process focused on fine-tuning a fusion-
based segmentation model that integrates both RGB
and event data. The RGB frames were resized to
288x288 pixels, while the event data was consoli-
dated into multi-channel formats over various tempo-
ral intervals: short (10ms), medium (50ms), and long
(250ms). This setup was intended to capture different
motion characteristics, ranging from intricate details
to broader, slower movements. The optimization was
carried out using the Adam optimizer, starting with a
learning rate of 5 x 10~*. and progressively decaying
it using a polynomial schedule. A batch size of 8 was
maintained over 30 epochs, and we included data aug-
mentations like random rotations, flips, and shifts to
enhance generalization. The loss function combined
cross-entropy loss for pixel-level accuracy with Dice
loss to tackle class imbalance:
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L:Lce+B'Ldice7 BZOS (14)

where the Dice loss Lgice 1S computed as:

_ PP
YP+YPte

Here, P is the mask of ground truth and P is the
mask predicted.

Ligice = 1 (15)

4.3 Experimental Results

The experimental results are divided into qualitative
and quantitative analyses, providing a comprehensive
evaluation of our RGB-event fusion model’s perfor-
mance across visual and metric-based perspectives.

4.3.1 Performance Analysis

Here, we analyzied our model through qualitative and
quantitative comparisons with existing baseline mod-
els, deriving key observations and results that high-
light its effectiveness.

Qualitative Results : In our qualitative analysis, we
looked at how well our model segments by compar-
ing its output to some baseline methods. These in-
cluded RGB-only segmentation, event-only segmen-
tation, and a combination of both RGB and event data.
The models we compared were UNet for RGB U-Net
(Siddique et al., 2021), EV-SegNet for events (Alonso
and Murillo, 2019), and our own model that fuses
RGB and event information.

The results are presented visually in Figure 2,
where we arranged each input scenario in rows and
the different models in columns. This setup allows
for an easy comparison of the segmentation masks
across methods, highlighting the differences in object
boundaries and how well each method performs un-
der tricky conditions. For instance, in high-motion
scenarios, the event data significantly boosts segmen-
tation performance by keeping the boundaries sharp,
something the RGB-only models often struggle with.
Our model successfully integrates the advantages of
both RGB and event data, resulting in precise segmen-
tation of drivable areas even in dynamic situations.

Quantitative Results : The performance of each
model was quantitatively evaluated using mean Inter-
section over Union (IoU) and pixel accuracy metrics.

* mean Intersection over Union (mloU)

1 & TP.
moU=~-Y ————— (16
C = TP.+FP.+FN,
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EveCamMNet
{Event Only) {Ours)

UNET EV-Segnet
(RGB Only)

Grayscale Event stream

e

Figure 2: Qualitative comparison of segmentation results across different input modalities and models. The columns
show grayscale RGB images, event streams, and outputs from three models: UNet (RGB-only), EV-SegNet (event-only), and
our proposed EveCamNet (RGB+Event Fusion) model. The rows depict urban road scenes with vehicles and drivable areas.
UNet struggles with object boundaries, while EV-SegNet captures motion details but lacks spatial context. Our RGB-Event
Fusion model effectively integrates spatial and temporal information, resulting in accurate segmentation masks with clear

object boundaries, even in dynamic scenarios. This analysis demonstrates our model’s effectiveness in identifying drivable
areas and objects. The red box highlights that EveCamNet achieves segmentation more efficiently than the baseline models.

* Pixel Accuracy (PA)

PA — Number of correctly classified pixels

Total number of pixels
a7

The results in Table 1 clearly demonstrate that
our RGB-event fusion model outperforms others in
all evaluated metrics. The mean Intersection over
Union (mloU) for drivable areas shows a significant
increase, indicating the model’s strength in accurately
identifying navigable regions. Moreover, the im-
proved mloU for vehicle detection highlights better
boundary delineation, which can be attributed to the
complementary capabilities of both RGB and event
data. There are also notable gains in pixel accuracy
(PA) for our proposed model.

By incorporating results from various temporal in-
tervals (including 10ms and 250ms), we showcase the
model’s ability to adapt to both high-speed and slower
scenarios. The performance at SOms, which was used
during training, acts as a reference point. The en-
hancements observed at 10ms illustrate its sensitiv-
ity to fine temporal details, while the 250ms perfor-
mance indicates robustness to aggregated motion pat-
terns. Overall, these findings underscore the model’s
versatility across different temporal dynamics, mak-
ing it a strong candidate for a range of operational
conditions.

S ABLATION STUDY

This section explores the contribution of the indi-
vidual component in our framework via the ablation
study, allowing us to measure the impact on segmen-
tation tasks and model efficiency.

Loss Importance Analysis : To assess the im-
portance of the proposed loss functions in our
RGB+Event fusion framework, we conducted abla-
tion experiments by selectively omitting certain com-
ponents of the loss function during training. This
method enabled us to pinpoint the role of each com-
ponent and evaluate how it affected segmentation per-
formance.

The results presented in Table 2 illustrate how
various loss functions impact critical metrics such
as mean Intersection over Union (mloU), accuracy,
and final training loss. Notably, the removal of the
Dice loss resulted in a significant drop in mloU, high-
lighting its crucial role in addressing class imbalance
and enhancing segmentation boundaries. Addition-
ally, eliminating channel or spatial attention mecha-
nisms led to performance declines, emphasizing their
importance in effective feature fusion and alignment
between modalities. The complete model consistently
achieved the highest scores, highlighting the impor-
tance of the proposed loss functions for effective seg-
mentation.
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Table 1: Performance comparison of different segmentation models (UNET, EV-SegNet, and our RGB+Event fusion
approach) across various temporal intervals. The proposed RGB+Event fusion model consistently outperforms others in
both mean Intersection over Union (mloU) and accuracy, highlighting its effectiveness in leveraging multi-modal data for
improved segmentation performance.

Model mloU (50ms) | Accuracy (50ms) | mIoU (10ms) | Accuracy (10ms) | mIoU (250ms) | Accuracy (250ms)
UNET (Siddique et al., 2021) 65.77 87.92 65.34 84.5 65.47 83.89
EV-Segnet (Alonso and Murillo, 2019) 67.15 88.12 66.87 87.91 66.98 87.34
EveCamNet (Ours) 69.94 90.54 69.83 89.97 68.73 90.12

Table 2: Adapted table for loss-based ablation. The table compares the performance of the model under different configu-
rations. Metrics include Accuracy (%), mloU (%), and Final Loss.

Method Accuracy [%]T | mloU [%]1 | Final Loss|
w/0 Lyice 88.76 60.12 0.25
w/o Channel Attention 89.65 62.40 0.23
w/o Spatial Attention 89.78 63.05 0.22
w/o Both Attention Mechanisms 89.40 61.50 0.24
EveCamNet (Ours) 93.50 71.50 0.18

6 CONCLUSION REFERENCES

In conclusion, the proposed RGB+Event fusion
framework effectively combines the unique advan-
tages of RGB and event data for robust segmentation.
By incorporating both channel and spatial attention
mechanisms, the model enhances feature fusion, al-
lowing it to capitalize on the dense spatial details of-
fered by RGB frames while also capturing dynamic
motion cues from event data. This method has shown
impressive segmentation performance across various
temporal scales, particularly in the realm of drivable
area segmentation for autonomous driving applica-
tions.

To tackle challenges like class imbalance and pre-
cise boundary segmentation, which are crucial for
distinguishing between drivable and non-drivable ar-
eas, the framework employs specialized loss func-
tions such as Dice loss. The results demonstrate the
model’s capability to adapt to a range of scenarios, in-
cluding varying lighting conditions and high-motion
environments, highlighting its practical applicability
for real-world situations.

Looking ahead, future research could aim to ex-
pand this framework to tackle low-light and extreme
lighting environments, where event cameras excel.
Additionally, enhancing the framework for greater
computational efficiency may facilitate real-time seg-
mentation, opening up possibilities for its deployment
in edge devices and autonomous systems with limited
resources.
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