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Applications which involve text classification may still need a breakthrough in capturing the latent structure
in the text and more complex dependencies which limits its capacity to make correct predictions. This paper
presents a new approach to a text classification application in which a hybrid graph representation learn-
ing algorithm has been used to demonstrate interactions between latent semantic and structural data in text
documents. Text is represented as a graph, where a node represents a sentence and an edge represents the
semantic relationship between two nodes. With nodes converted to embeddings generated through Sentence-
BERT, it offers contextualized representations for every node. Along with this framework, we also learn
low-dimensional representations of the text graphs using graph auto-encoders. Our model thus enhances gen-
eralization and has a powerful representation for downstream tasks by minimizing the difference between
reconstructed and input graphs. Experimental results demonstrate that our model surpasses traditional meth-
ods by successfully integrating semantic and structural information to enhance classification accuracy. This
work contributes to the advancement of GNN-based architectures for text retrieval, demonstrating the potential

of graphs in natural language processing.

1 INTRODUCTION

Text classification is a very well-known process that
can be directly used major process like sentiment
analysis, spam detection, document categorization
and constructing a recommendation system. There
are various algorithms for this process. In order to
improve the accuracy of these algorithms, text pre-
processing plays a major role. Capturing the latent
sense of the text has been a well-known research prob-
lem. Text representations also help to improve the
evaluation metrics. From the tf-idf model to deep
learning language models, representations have been
the primary focus in improving the classification ac-
curacy. Our work focuses on a retrieval application
which requires a strong representation and a classifier
that predicts the relevance of a document for a given
query. For this purpose, we are utilizing the strength
of graph neural networks (GNNs), which are repre-
sentation learning models used to represent the docu-
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ments as nodes of a graph. This permits the model to
comprehend complicated graph relationships by uti-
lizing message passing to collect information from
neighboring nodes. GNNs excel in text classification,
link prediction, and clustering tasks. Graph Neural
Networks (GNNs) represent a modern shift from ma-
chine learning and artificial intelligence to deep learn-
ing concepts. With the increase in related data aris-
ing from numerous domains including social media,
recommendation systems, biology, and cyber secu-
rity, GNNs have significantly improved. These mod-
els are able to extract complex relationships, which
makes them pivotal in the design of real-world prob-
lems. Consequently, Graph Neural Networks (GNNs)
has the ability to apprehend the complicated structural
nuances hidden inside the text. Those insights, com-
prising dependencies, connections, and contextual re-
lationships, are capable of feature extraction and pre-
dictive tasks. Consequently, GNNs have proliferated
across diverse applications, revolutionizing the ma-
chine learning capabilities.
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2 RELATED WORK

GNN has witnessed rapid development in address-
ing the unique demanding situations where data are
presented as graphs at places where traditional deep
learning approaches often fail to provide significant
insight. This comprehensive survey on GNNs of-
fers an in-depth analysis that includes critical aspects
along with the basics of GNN, the interaction with
convolution neural networks, GNN message-passing
mechanisms, various GNN models and suitable ap-
plications. Inside the message-passing mechanism of
a neural network, every node has its message stored
in the form of characteristic vectors(Khemani et al.,
2024). This process aggregates the vectors to create
a new message. Graphs can be classified as directed
or undirected, static or dynamic, homogeneous or het-
erogeneous, transductive or inductive. In (Yuan et al.,
2023), GCN and GAT / GAN are compared with re-
spect to the processes incolved. GCN entails initial-
ization, convolution operation, weighted aggregation,
activation feature, and stacking. GAT/GAN consists
of initialization, self-attention mechanism, attention
computation, weighted aggregation, more than one at-
tention, output mixture, learning weights, and stack-
ing layers. These models have applications in graph
construction, social networks, and citation networks.

Document preprocessing is always an important
step in document classification. (Kavitha et al.,
2023) has used mutual information for feature ex-
traction based on word sense disambiguation. This
method claims to improve the text classification by
distinguishing the sense of polysemy words correctly.
Sparse Graph Auto-Encoders have shown remarkable
contribution to improving the performance of docu-
ment recommendation systems as proved by (Menon
etal., 2023). Explainability is one of the two vital top-
ics of interest these days.In the paper, (Li et al., 2022),
a comprehensive assessment of contemporary GNN
explainability strategies is presented, including evalu-
ations of quantitative metrics and datasets. Further-
more, the paper introduces a novel evaluation met-
ric for comparing various GNN explainability tech-
niques using unique real-world datasets, GNN archi-
tectures, and future instructions for GNN explainabil-
ity. In explainability, the two primary modern meth-
ods are function visualization and behavior approx-
imation(Li et al., 2022). Function visualization en-
compasses techniques such as saliency maps for im-
ages and heatmaps for text, which highlight key re-
gions or words contributing to predictions. However,
these methods encounter challenges when applied to
non-Euclidean data structures, such as graphs, and
can involve subjective evaluation. Behavior approx-
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imation, on the other hand, relies on interpretable
models designed to replicate the behavior of black-
box systems.The evaluation of modern explanation
methods revolves around two main criteria: plausi-
bility and correctness. Plausibility refers to how con-
vincing the explanations are to humans, often rely-
ing on subjective human judgment. Correctness, on
the other hand, assesses whether an explanation accu-
rately reflects the reasoning process of the underlying
model, with various metrics proposed for this evalua-
tion(Li et al., 2022).

Explainability methods are generally divided into
two categories: those that originate outside of GNNs
and those specifically developed for GNNs. GNN-
specific strategies often adapt gradient-based and
decomposition-based methods to explain graph neu-
ral networks. Examples of such techniques include
GNN Explainer and PGExplainer(Parameterized Ex-
plainer), which aim to generate explanations by iden-
tifying important sub-graphs, DeepLIFT, GNN-LRP,
Grad-CAM, SubgraphX, and XGNN.These are pro-
vided in pytorch geometric. Other methods, like
Graph Mask and SubgraphX, provide both instance-
level and global explanations by effectively discard-
ing unnecessary edges or exploring diverse sub-
graphs. XGNN offers a model level clarification with
the aid of producing graph patterns for class predic-
tions(Yuan et al., 2023).

Explainable Al tools are used in (Reghu et al.,
2024) to interpret the output produced by retrieval
systems. It has a classifier as a sub-task which pre-
dicts the relevance of a document for a given query.
The results of the evaluation metrics for this sys-
tem are explained using various tools like LIME,
SHAP, Partial Dependency Plots, DALEX, Anchors
and saliency maps.

The critical significance of evaluating the qual-
ity and reliability of factors generated by using graph
neural networks (GNNs) in diverse high-stake appli-
cations is given in (Agarwal et al., 2022). It empha-
sizes the need for standardized evaluation techniques
and reliable information sources to assess GNN cor-
rectly. The authors introduce ShapeGN (Shape Gen-
eration Networks), an artificial graph data genera-
tor, and GraphXAlI, a graph explainability library, as
gear to aid the benchmarking modern GNN explain-
ers. These resources enhance explainability research
in GNNs with the aid of providing a broader sur-
roundings for evaluating post-hoc motives throughout
numerous real-world packages.

A modern approach to text summarization with
the usage of Graph Neural Networks (GNNs) and
Named Entity Recognition (NER) models is pre-
sented in (Khan et al., 2024). The paper highlights the
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challenges in comparing text summarization systems
because of the subjective nature of defining a sum-
mary measure and the limitations of widely used met-
rics. It emphasizes the importance of capturing the
context in summarization and the need for resource-
efficient summarization. The paper additionally men-
tions the significance of key entities in text for effec-
tive summarization and the enhancements in extrac-
tive text summarization methodologies. Furthermore,
it describes the process of sentence selection and re-
dundancy elimination to produce concise and infor-
mative summaries. The evaluation and testing phase
includes modern metrics like ROUGE and user stud-
ies to assess the quality and applicability of the gener-
ated summaries. The combination of NER and GNNs
enhances the performance and relevance of text sum-
marization methods by handling the large amount of
textual data available today.

(Zhang et al., 2020) proposes a novel method
called TextING for inductive text classification with
the help of Graph Neural Networks (GNNs). Con-
ventional text classification methods fails in capturing
contextual word relationships for new words. Tex-
tING addresses those troubles by means of construct-
ing personalized graphs and cutting-edge fine-grained
phrase representations based on their local contexts.
This technique allows the model to generate embed-
dings for unseen words efficiently. Large experiments
on four benchmark datasets exhibit that TextING out-
performs traditional text based techniques. The paper
highlights three key contributions: proposing a new
GNN model for text classification that captures text-
level word interactions, generalizing the model to deal
with new, unseen words throughout the testing, and
demonstrating the superior performance of the model
via substantial experiments.

The rise of social networking models and the re-
sulting abundance of time-sensitive news facts, which
has significant economic value for companies un-
dertaking data mining and sentiment analysis is dis-
cussed in (Li et al., 2024). Text classification, a
key research area, has evolved from traditional ma-
chine learning techniques like Naive Bayesian (NB),
Support Vector Machine (SVM), and Maximum En-
tropy models, to deep learning methods that automat-
ically extract features and capture semantic statistics.
The paper highlights the constraints of existing mod-
els, together with TextCNN'’s lack of ability to rep-
resent local textual data and contextual relationships.
It additionally reviews improvements in models in-
corporating the attention mechanism and Graph Neu-
ral Networks (GNNs), like Graph Attention Networks
(GAT). The study proposes a unique text classification
model using GATs that integrates lexical knowledge,

carries noise perturbations for adverse training to im-
prove robustness, and employs a multi-head attention
mechanism to enhance classification accuracy.

(Rastakhiz et al., 2024) introduces a method
for text classification using Graph Neural Networks
(GNNs). The proposed method includes converting
raw text into structured heterogeneous graphs, which
effectively capture complex data relationships. By
transforming each document into a graph and captur-
ing both explicit and implicit contextual information,
the text classification problem is framed as a graph
classification problem. This method is adaptable to
texts of any length, eliminating the need to set the
maximum lengths or padding shorter texts.

The study evaluates the models using two
datasets: Yelp Polarity for binary sentiment analy-
sis and AG News for multiclass text classification.
The outcomes spotlight the effectiveness of the use
of dependencies and tags to enhance the model’s
contextual understanding. Compared to conventional
baselines, the GNN-based technique demonstrates ad-
vanced text representation abilities, underscoring the
potential of GNNs to improve text classification accu-
racy and robustness.

The importance of text classification in Natural
Language Processing (NLP), including topic classi-
fication and sentiment analysis is outlined in (Wang
et al., 2023). Traditional text classification methods
make use of N-gram or Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) representations combined
with Machine Learning models like SVM. With the
advent of neural networks, more advanced models
like Convolutional Neural Networks (CNNs), Recur-
rent Neural Networks (RNNs), and attention-based
models have been employed. However, these models
often fail to capture complicated word-document rela-
tionships and effectively identify contextual word re-
lationships. To address these challenges, Graph Neu-
ral Networks (GNNs) have been introduced, utilizing
the graph-structured data to enhance text classifica-
tion.

(Zhou et al., 2018) highlights applications of GNN
in social networks, in which they enhance tasks like
community detection and link prediction; knowl-
edge graphs, where they improve reasoning over en-
tities and relationships for applications like query
answering; biological networks, in which they ana-
lyze molecular structures and protein interactions for
drug discovery and genomics; and recommender sys-
tems, where they capture the patterns in user-item in-
teraction to improve recommendation accuracy.Key
methodologies discussed consist of GCNs, which ex-
pand convolution operations to graph data for effec-
tive information propagation; GATs, which use at-
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tention mechanisms to focus on relevant graph el-
ements during information aggregation; and GRNs,
which uses recurrent neural networks to capture tem-
poral dependencies in dynamic graphs. Moreover,
the paper identifies possibilities for future research,
along with developing scalable GNN models, improv-
ing model interpretability, advancing methods for dy-
namic graphs, and integrating GNNs with other data
modalities to create more robust models. The paper
underscores the potential of GNNs across numerous
domains, encouraging continued research to address
the challenges and leverage rising possibilities.

(Menon et al., 2020) has built a complete retrieval
system using two models viz. Kernel pooling based
neural ranking model and semantic similarity based
model. There are three layers in Kernel pooling model
including a representation layer where documents are
embedded using neural models, a kernel pooling layer
and a ranking layer. Semantic similarity based model
uses Word movers distance and cosine similarity as
methods to find the similarity between documents
and queries.Cranfield, Medline and WikiQA collec-
tion has been used for evaluation.

Text Graph Convolutional Neural Networks
(TextGCN) and Vision Transformers (ViT) have been
used in (Visweswaran et al., 2024) for fake news iden-
tification in online posts which contain both text and
images. TextGCN has outperformed SVM and Ran-
dom forest in precision and recall. The effectiveness
of graph model in classifying Telugu news content
into different topics is done in (Namburu et al., 2024).
They found that bi-directional LSTM performed bet-
ter in their experimental environment where limited
power of BERT were utilized for representation and
Parts of Speech relationships were not included. In
conclusion, our paper throws light into the broad as-
pects of existing literature related to graphs in the con-
text of its different architectures, pre-processing, ex-
plainability, evaluation, applications and domains.

3 PROPOSED SYSTEM

The proposed approach leverages Graph Neural Net-
works (GNNs) and Graph Autoencoders (GAEs) to
improve text classification by considering the latent
semantic and structural information in the text. This
methodology is designed to improve classification ac-
curacy by integrating these two aspects effectively.

3.1 Architecture

The architecture depicted in the figure 1) represents
a pipeline designed for training and testing a Graph
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Neural Network (GNN) model, specifically a GAE
(Graph Autoencoder)-based framework. The input
data comprises three key components: Query, Ab-
stract, and Relevance, which are utilized throughout
the process to model and predict relevance relation-
ships.

3.1.1 Data Description and Preprocessing

The dataset used for our work includes abstracts,
queries and the relevance information of abstracts for
different queries.In the preprocessing step, the dataset
is loaded, and key components—queries, abstracts,
and relevance labels—are extracted .Then stopword
removal is also done.

3.1.2 Latent Semantics through Node
Embeddings

The queries and abstracts are encoded into dense
vector embeddings that capture their semantic mean-
ing. Those embeddings are generated by using pre-
trained language models, such as BERT or Sentence-
Transformers, encapsulating the contextual statistics
for each phrase. This enables the model to accommo-
date complexities in natural language, including pol-
ysemy (meaning of one word as more than one word)
and synonymy (words with similar meanings). These
embeddings then formulate the semantic richness in
the model.

3.1.3 Text Representation as Graphs

The embeddings are used to create the adjacency ma-
trix .This matrix is then used to construct the graph.
In this case, the edges between nodes denote rela-
tionships that may be extracted from techniques such
as co-prevalence or dependency parsing. Thus, this
graph-based model captures nearby and global struc-
tural elements which enable representations to be
used in natural language processing tasks.

3.1.4 Graph Auto Encoder (GAE) Architecture

A Neural Network architecture designed to learn a
low-dimensional representation of a graph in an un-
supervised manner.

Goal: To encode the input into a lower-
dimensional representation, then reconstruct the orig-
inal graph from this representation.

GAE consists of two main components:

1.Encoder

Input: A graph represented as an adjacency ma-
trix.The graph passes through multiple Graph Convo-
lutional Network (GCN) layers, with each layer pro-
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Figure 1: Architecture of the System.

ducing a new representation of the graph by perform-
ing nonlinear or convolutional operations on the input
graph. This allows the model to capture the relevant
features of the graph and transform them into a lower-
dimensional space.

Output: A low-dimensional matrix known as the
latent space representation that captures the essential
features of the input graph to reconstruct the original
graph.

2.Decoder

Input: The low-dimensional representation (em-
beddings) produced by the encoder. The encoded rep-
resentation is passed through a series of fully con-
nected layers, where each layer applies a non-linear
transformation to the input and outputs a new set of
features.

QOutput: The reconstructed graph, which is as
close as possible to the input graph. The reconstruc-
tion is evaluated using a loss function that measures
the difference between the reconstructed graph and
the original input graph, such as the mean square error
(MSE).

3.1.5 Graph Neural Networks for Text
Classification

The final node representations are used for category
classification. A classifier, possibly a fully connected
layer, classifies the labels based on the representations
this model learns. Using the semantic as well as the
structural features, the model is accurate and has bet-
ter performance compared to traditional text classifi-
cation approaches using just sequential steps alone.

3.2 Algorithm

The proposed algorithm introduces an innovative ap-
proach to text classification that uses a Graph Auto-
Encoder (GAE) model. Our work constructs a graph
where nodes represent abstracts and queries. Edges
signify their semantic relationships. The algorithm
processes this graph to learn a low-dimensional latent
representation which captures the essential features of
the text. In addition to learning this latent represen-
tation, the GAE reconstructs the original graph, en-
suring that the model retains key information about
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the connections between abstracts and queries. This
reconstruction step helps to refine the representation,
enhancing its ability to capture meaningful patterns in
the data.

Input: Corpus of abstracts and Queries

Output: Relevance of abstracts for different
queries

Step 1: Preprocessing Preprocessing is a criti-
cal step in preparing the text for semantic embedding.
This level includes cleaning and normalizing the text
to enhance the generated embeddings.Preprocess the
entire document set, including tokenization and re-
moving stop words. stemming/lemmatization has not
been attempted as it may lose the phrasal presence in
the text.In the merged dataset, a few documents may
not have abstracts, or a few queries may additionally
lack narratives. These lacking values are treated by
filling in placeholder textual content for missing nar-
rative facts and removing rows with lacking abstracts.
This ensures that the dataset is suitable for similarity
check.

Step 2: Adjacency Matrix Construction

» Generate both abstract and query embeddings.

* Values of the matrix stores the similarity scores
between abstract-abstract and abstract-query.

Step 3: Graph Construction Construct a graph
from the adjacency matrix where:

* Nodes represent both abstract and query embed-
dings.

* Edges represent the connections between them
based on abstract-abstract and abstract-query re-
lationships.

» Weights on the edges are determined by:
— similarity scores

Step 4: GAE Model Pass the graph object as in-
put to the Graph Autoencoder (GAE) model.

Encoder Network The encoder network maps the
input graph to a low-dimensional latent representa-
tion. The encoder consists of:

* Multiple layers of graph convolution layers.
¢ Fully connected layers.
* Relu Activation functions.

Low-Dimensional Representation The output of
the encoder is a low-dimensional representation of the
input graph, capturing the structural properties of the
graph.

Decoder Network The decoder receives the latent
representation and generates a reconstruction of the
original graph.

Step 5: Loss Calculation and weight updates
A loss function measures the difference between the
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reconstructed graph and the original graph. The ob-
jective is to minimize this difference to learn a good
latent representation. During backpropagation, the
weights and biases of both the encoder and decoder
are updated to minimize the loss function.

Step 6: GNN-based Classification A dataset
comprising of query embeddings, abstract embed-
dings and corresponding label is constructed. Here
labels are 0 (Non-relevant),1 (partially relevant) and
2 (relevant). This data is given for training to a GNN
classifier which then predicts the relevance of an ab-
stract for a query.

4 EXPERIMENTAL RESULTS
AND ANALYSIS

4.1 CORD-19 Dataset

Cord-19 which is a biomedical dataset is used in this
work. It contains full-text articles, abstracts, and
metadata associated with COVID-19. This dataset
serves as a foundation for the evaluation of classifi-
cation models.

4.1.1 Key Files and Their Roles

* topics-rnd3: A CSV record containing the topics,
each related to a completely unique subject mat-
ter, query, and narrative. These queries are used
for searching relevant documents.

¢ docids-rnd3:This report includes a list of docu-
ment IDs which can be potential candidates for
relevance matching.

e grels: A CSV file containing relevance judgments
that suggest the level of relevance of each docu-
ment to precise queries, based on previous evalu-
ations.

This work deals with the identification of abstracts
that are applicable to queries from the cord-19 dataset.
The evaluation of relevance is entirely based on the
cosine similarity between the query and abstract em-
beddings.

4.2 Data Loading and Merging

The raw information is loaded. The records are then
merged such that every query is associated with its
corresponding abstracts, ensuring that every question
has a related set of abstracts to evaluate for relevance.
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4.3 Embedding Generation and Graph
Construction

The Sentence-BERT model, specifically the
paraphrase-MinilM-L6-v2 variant, is used to
generate semantic embeddings for both the queries
and the abstracts. Sentence-BERT is a state-of-
the-art model designed for generating high-quality
embeddings that capture the semantic meaning of
sentences, making it ideal for document retrieval
tasks.The core idea of the proposed model is to treat
the query-abstract pairs as nodes in a graph Figure
2), where each node represents either a query or an
abstract. The relationships between these nodes are
learned using a GNN, which processes the graph
structure and node features (embeddings of the
queries and abstracts).

Graph Visualization with Relevance (5 Nodes with Edges)

Query 0
oo m

Abstract_3 Ui L

oo ]
Query_3- 052Abstract-0 05 Query_4
h (R

“ep %) \ L6
2, o Abstract APstract.1

-
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5/ &% B

77 N\

9 Query1 %

Abstract 2

Figure 2: Query-abstract relationship graph.

4.4 Training Using Graph Neural
Network (GNN)

The model is trained using a GAE and then a Graph
Neural Network (GNN) to categorise files based on
their semantic capabilities. The graph structure was
constructed using cosine similarity between abstracts,
and a threshold of 0.5 applied to edges among ab-
stracts with moderate similarity. For training, the
GNN utilizes graph convolutional layers (GCNConv),
accompanied by a completely connected layer for bi-
nary class. The model is trained with a standard
cross-entropy loss and an Adam optimizer. The train-
ing technique involved minimizing the loss character-
istic by backpropagating the gradients and updating
the model parameters over 100 epochs. Assessment
is performed at normal intervals (every 10 epochs),
using class accuracy as the assessment metric. The
model’s last performance is assessed based on ac-
curacy and the model’s capability to classify unseen

documents need to be considered. The final trained
model is stored for future use.

Table 1: Classification Report of GNN

PrecisionRecall|F1-score[Support
Not Relevant 0.86 | 048 | 0.61 |15191
Partially Relevant| 0.21 | 0.48 | 0.29 | 2537
Relevant 026 | 057 | 036 | 2849
Accuracy 0.49 | 20577
Macro avg 044 | 051 042 |20577
Weighted avg 0.70 | 0.49 | 0.54 |20577

4.4.1 Results of GNN

The evaluation of the GNN’s performance demon-
strated its effectiveness in categorizing documents
with high accuracy. Figure 1 shows the evaluation
metrics across training epochs.

Confusion Matrix
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Figure 3: Confusion Matrix of GNN.

.
Not Relevant

The confusion matrix (Figure 3) highlights the
GNN model’s classification performance across three
categories: Not Relevant, Partially Relevant, and Rel-
evant. The "Not Relevant” class shows the highest
correct predictions (7251) but also a notable number
of misclassifications into Partially Relevant (4007)
and Relevant (3931), indicating that some irrelevant
abstracts share overlapping features with more rele-
vant ones. The “Partially Relevant” class proves the
most challenging, with only 1213 correct predictions,
while 619 samples were misclassified as Not Relevant
and 705 as Relevant. This reflects the inherent ambi-
guity of the Partially Relevant class, as its abstracts
often exhibit characteristics of both extremes. For the
“Relevant” class, 1633 samples were correctly classi-
fied, but 559 were labeled as Not Relevant, and 657
as Partially Relevant, suggesting some overlap in se-
mantic signals between relevance levels. Overall, the
model performs well in distinguishing extremes (e.g.,

99



INCOFT 2025 - International Conference on Futuristic Technology

Not Relevant versus Relevant) but struggles with the
intermediate Partially Relevant class due to overlap-
ping features and subtle semantic boundaries. This
analysis indicates that future improvements could fo-
cus on refining feature representations, addressing
class imbalances, and enhancing the model’s sensi-
tivity to nuanced relevance levels.

4.4.2 Precision-recall graph of GNN

The Precision-Recall (PR) curve illustrates (Figure 4)
the classification performance for three classes: “Not
Relevant,” “Partially Relevant,” and “Relevant.” The
x-axis represents recall, which measures the model’s
ability to identify positive instances, while the y-axis
shows precision, the proportion of correct positive
predictions. The “Not Relevant” class (blue curve)
demonstrates consistently high precision across dif-
ferent recall values. However, the “Partially Rele-
vant” (orange curve) and “Relevant” (green curve)
classes show a decline in precision as recall increases,
indicating that the model has difficulty distinguish-
ing these classes accurately. The curve highlights the
varying performance across classes, which could in-
dicate class imbalance or challenges in classification.

Precision-Recall Curve for All Classes

10 —e— Not Relevant Class
—m— Partially Relevant Class
—4— Relevant Class

Precision

00 02 0.4 06 08 10
Recall

Figure 4: Precision-recall graph of GNN.

4.5 Training Using Graph Autoencoder
(GAE)

A Graph Auto Encoder (GAE) is employed for low
dimensional representation. Just like GNN training,
the graph is built using cosine similarity between ab-
stracts but the importance is shifted from classifi-
cation to unsupervised representation learning. The
GAE model consists of two graph convolutional lay-
ers, which analyze low-dimensional embeddings for
each document based on the graph shape. These em-
beddings are used to reconstruct the adjacency matrix
of the graph.
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During training, the model optimizes the Mean
Square Error (MSE) which may be credited to the
reconstruction of the graph structure. The optimizer
used is Adam, and the model is trained for one hun-
dred epochs. The training losses and accuracies are
recorded, and the final trained model is stored for fu-
ture use.

Table 2: Classification Report of GAE

Precision|Recall|F1-score[Support
Not Relevant 0.86 | 048 | 0.61 |15191
Partially Relevant| 0.21 | 0.43 | 0.28 | 2537
Relevant 025 |0.62| 036 | 2849
Accuracy 0.49 | 20577
Macro avg 0.44 1051 | 042 |20577
Weighted avg 0.70 049 | 0.54 |20577

4.5.1 Results of GAE

The evaluation of the GAE’s performance demon-
strates its effectiveness in categorizing documents.
(Table 2) shows the evaluation metrics across training
epochs.
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Figure 5: Confusion Matrix of GAE.

.
Not Relevant

The confusion matrix (Figure S)provides insight
into the model’s classification performance across
three categories: Not Relevant, Partially Relevant,
and Relevant. The Not Relevant class achieved the
most correct predictions (7253), though a consider-
able number of samples were misclassified as Par-
tially Relevant (3533) and Relevant (4405), suggest-
ing some overlap in features with relevant abstracts.
The Partially Relevant class proved more challeng-
ing, with 1095 correct predictions, while 619 were
incorrectly labeled as Not Relevant and 823 as Rele-
vant, highlighting the difficulty in differentiating this
intermediate category. For the Relevant class, 1765
samples were classified correctly, but 559 were mis-
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taken as Not Relevant and 525 as Partially Relevant,
indicating some misalignment in recognizing subtle
relevance cues. Overall, the model effectively distin-
guishes between the clear extremes (Not Relevant and
Relevant) but struggles with the intermediate class
due to overlapping features and subtle semantic sim-
ilarities, pointing to areas for improvement in captur-
ing nuanced distinctions.

4.5.2 Precision-recall graph of GAE

The graph (Figure 8) shows the Precision-Recall (PR)
curves for three classes: “Not Relevant,” “Partially
Relevant,” and ”Relevant.” The "Not Relevant” class
performs the best, maintaining high precision across
all recall values. In contrast, the "Relevant” and Par-
tially Relevant” classes show a steep drop in preci-
sion and remain low as recall increases, indicating
the model struggles to classify these two classes ac-
curately. This suggests challenges such as class im-
balance or overlapping features.

Precision-Recall Curve for All Classes

—e— Not Relevant Class
Partially Relevant Class
—4— Relevant Class

Precision

Recall

Figure 6: Precision-recall graph of GAE.

4.6 Training Using GNN With Encoder
Decoder Layers

The core idea of the proposed model is to treat the
query-abstract pairs as nodes in a graph, where each
node represents either a query or an abstract. The re-
lationships between these nodes are learned using a
GNN, which processes the graph structure and node
features (embeddings of the queries and abstracts).

The training process involves optimizing the
model to predict the relevance score of a query-
abstract pair. Relevance is classified into three cat-
egories: Not Relevant, Partially Relevant, and Rele-
vant. These categories are represented as classes in
the classification task.

The model utilizes a GNN to propagate informa-
tion between nodes (queries and abstracts), allowing

the system to learn not only from individual embed-
dings but also from the structural relationships be-
tween the queries and the abstracts. This interaction
between the nodes is key to understanding the context
of each query relative to the abstracts, and ultimately,
predicting the relevance.

4.6.1 Layers of the Model

The proposed model consists of multiple layers that
are designed to extract complex patterns from the
graph:

* Graph Convolutional Layers: The model uses
three layers of Graph Convolutional Networks
(GCN). These layers apply graph convolution op-
erations to the input embeddings, capturing the
relationships between connected nodes. Each
convolutional layer updates the node representa-
tions by aggregating features from neighboring
nodes, thereby learning the dependencies between
queries and abstracts.

* Encoder Layer: The output of the third GCN
layer is passed through a fully connected encoder
layer. This layer reduces the dimensionality of the
features, preparing them for classification. The
encoder layer is designed to capture the most rel-
evant features from the graph-processed embed-
dings.

* Decoder Layer: The decoder layer takes the en-
coded features and maps them to the output space,
which corresponds to the classes of relevance.
The decoder layer applies a linear transforma-
tion to predict the relevance class of each query-
abstract pair.

* Dropout Layer: A dropout layer is applied af-
ter each GCN layer to prevent overfitting and im-
prove generalization by randomly setting a frac-
tion of the input units to zero during training.

These layers work together to refine the node features
iteratively and improve the accuracy of the final clas-
sification.

4.6.2 Prediction and Inference

After the model has been trained, predictions are
made by passing the query-abstract embeddings
through the graph neural network. The final output
of the model is a predicted relevance score for each
query-abstract pair, which corresponds to one of the
three predefined classes: Not Relevant, Partially Rel-
evant, or Relevant. The prediction process works as
follows:
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1. The query and abstract embeddings are processed
by the GCN layers, where the node features are
updated by aggregating information from neigh-
boring nodes.

2. The encoded features are passed through the en-
coder layer, which extracts the most important
features from the graph.

3. These features are then decoded by the decoder
layer into a final class prediction.

4. The model’s output is compared to the true la-
bel (ground truth), and the loss is computed dur-
ing training. During inference, the class with the
highest predicted score is chosen as the final label.

Table 3: Classification Report of GNN + Encoder Decoder

Precision|Recall|F1-score|Support
Not Relevant 0.84 |0.63| 0.72 | 15191
Partially Relevant| 0.24 | 035 | 0.29 | 2537
Relevant 0.27 | 053 | 036 | 2849
Accuracy 0.58 | 20577
Macro avg 045 | 050 | 045 |20577
Weighted avg 0.69 | 0.58 | 0.61 |20577
Confusion Matrix
iz

24 418 1507 - 2000

Relevant
'

' .
Partially Relevant Relevant
Predicted

Not Re‘levanl
Figure 7: Confusion Matrix of GNN with Encoder-Decoder.

The confusion matrix (Figure7) provides insight
into the model’s performance across three categories:
Not Relevant, Partially Relevant, and Relevant. The
Not Relevant class achieved the highest accuracy,
with 9,521 samples correctly classified, but still faced
misclassification issues, with 2,341 predicted as Par-
tially Relevant and 3329 as Relevant. For the Par-
tially Relevant category, the model correctly identi-
fied only 884 samples, while 1,024 were misclassi-
fied as Not Relevant and 629 as Relevant, reflecting
the challenge in distinguishing this intermediate class
due to its overlapping characteristics with the others.
The Relevant class had 1,509 correct predictions but
saw 924 misclassified as Not Relevant and 418 as Par-
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tially Relevant, indicating some difficulty in identify-
ing clear boundaries for relevance. Overall, while the
model performs well in identifying Not Relevant sam-
ples, it struggles more with the intermediate Partially
Relevant class and shows room for improvement in
refining feature representation and better distinguish-
ing between relevance levels.The predictions are eval-
uated using standard classification metrics, such as
accuracy, precision, recall, and F1-score. These met-
rics help assess the model’s performance in classify-
ing the relevance of query-abstract pairs.

4.6.3 Precision-recall graph of GNN with
Encoder Decoder

The graph illustrates the Precision-Recall (PR) curve
for a model using a Graph Neural Network (GNN)
combined with an encoder-decoder layer. It evaluates
three classes: Not Relevant (blue), Partially Relevant
(orange), and Relevant (green). The Not Relevant
class demonstrates strong performance, maintaining
precision above 70% across all recall values, which
indicates the model’s effectiveness in correctly iden-
tifying this category. However, the Relevant and Par-
tially Relevant classes show a sharp drop in precision
at low recall values and remain at lower levels as re-
call increases. This suggests that the model struggles
to classify these ambiguous classes accurately, likely
due to overlapping characteristics or class imbalance.

Precision-Recall Curve for All Classes

10 —e— Not Relevant Class

0.0 02 04 0.6 0.8 10
Recall

Figure 8: Precision-recall graph of GNN with Encoder De-
coder.

S MODEL PERFORMANCE
COMPARISON: GNN, GAE,
AND GNN WITH
ENCODER-DECODER

In this section, we compare the performance of three
models Graph Neural Network (GNN), Graph Au-
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toencoder (GAE), and GNN with Encoder-Decoder
in the task of classifying the relevance of query-
document pairs. The task involves evaluating how
well each model predicts the relevance of a document
to a specific query. To conduct this evaluation, we
used a subset of queries and their associated docu-
ments, considering the relevance of the documents as
the actual labels. These labels indicate whether the
document is relevant (labeled as 1), not relevant (la-
beled as 0) or partially relevant (labeled as 2) to the
respective query.

For each model, predictions were generated for a
random sample of queries, and the associated docu-
ments were evaluated based on these predictions. The
evaluation was conducted by comparing the predicted
relevance against the actual labels.

After generating the predictions for the sampled
queries, the results were saved in a CSV file, which in-
cludes the query text, document text, actual label, and
predicted label for each query-document pair. These
results were then used to assess the model’s perfor-
mance by comparing the qrels and the predicted val-
ues.

Actual | GNN | GAE | GNN(Encoder-Decoder)

Figure 9: Comparison of Document Retrieval Models
(GNN, GAE, and Encoder-Decoder) Against Actual Rel-
evance for COVID-19 Queries.

The performance evaluation (Figure 10) of the
models provide insightful information regarding their
relative strengths and weaknesses in predicting the
relevance of query-document pairs.

As shown in the comparison given in Figure 13,
the model that combines Graph Neural Networks
(GNN) with an Encoder-Decoder architecture out-
performs the other models, achieving an accuracy
of 51.46%. This is followed by the Graph Au-
toencoder (GAE), with an accuracy of 49.15%, and
the basic GNN model, which attains an accuracy of
46.29%. These findings underscore the significant
impact of integrating encoder-decoder frameworks

Accuracy Comparison Across Models

49.15%

46.29%

Accuracy (%)

40
GNN GAE

GNN with Encoder-Decoder

Models

Figure 10: Comparison of accuracy across GNN, GAE, and
GNN with Encoder-Decoder models.

and autoencoding approaches, which appear to signif-
icantly boost the models’ ability to better capture the
underlying relationships between queries and docu-
ments.

6 CONCLUSION

Graph Neural Networks (GNNs) have become
pivotal in machine learning, mainly designed to ad-
dress graph-based operations. Using message-passing
mechanisms, GNNs excel in capturing complex re-
lationships within graphs, making them effective for
applications like classification, link prediction and
clustering. This work explores the fundamentals
of GNNs, diverse models such as Graph Convolu-
tional Networks (GCNs), Graph Attention Networks
(GATs) and their variants in domains like social net-
works and sciences. GNN supported by the GAE lay-
ers improved the accuracy of the classification pro-
cess. Future research directions for GNNs include en-
hancing model scalability, interpretability, and assess-
ment metrics, as well as exploring new applications
in conventional graph algorithms. The capability of
GNN:ss to revolutionize numerous fields is substantial
promising great advancements in tackling real-world
problems through research and development.
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