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Abstract: Seismic prognosis is considered as one of the most important scientific challenges. Among many nations, 
Japan is in greatest need of such system due to the constant and frequent occurrence of strong earthquakes 
caused by tectonic activity in the Pacific seismic zone. Therefore, the development of an advanced early 
warning system is necessary to predict the earthquake in advance to prevent the disaster. For this purpose, 
data related to earthquakes are collected from 1970 to 2024. This time-series data is trained using the hybrid 
stacking model, based on Random Forest, Extra Trees and CatBoost as base models and Linear Regression 
as a meta-model. The objective of the proposed model is to enhance the precision of earthquake magnitude 
forecasting, focusing on significant earthquakes. The performance of the proposed model is evaluated using 
two parameters i.e. R-Squared and Mean Square Error (MSE). The dataset is split in to 80:20 ratio for training 
and testing data respectively. From the results, it is inferred that the developed hybrid model decreases error 
rates with an R-squared value of 0.83 and MSE of 0.066. Thus, the proposed work helps to improve early 
warning systems for earthquakes, minimizing risks in Japan. 

1 INTRODUCTION 

Japan situated at the intersection of four tectonic 
plates (Pacific, Philippine Sea, Eurasian and others) 
is one of the most seismic-sensitive countries. The 
country has suffered from some of the worst 
catastrophic earthquakes in history. They are the 
Great Kanto Earthquake (1923), which claimed more 
than 100,000 lives and the Tohoku Earthquake 
(2011), which resulted in extensive destruction of 
buildings and important infrastructure, such as 
Fukushima nuclear reactor complex. These two 
quakes highlight the fact that the world still requires 
better and more efficient means of predicting 
earthquakes in order to reduce the effects of future 
ones. 

 Elastic movements in Japan are mainly caused by 
the Benioff zones, where the Pacific Plate is being 
pushed below both the Philippine Sea Plate and the 
Eurasian Plate. This tectonic activity makes this area 
highly susceptible to various types of earthquakes 
such as megathrust earthquakes at the subduction 
interface. While advancements have been made in 

seismic monitoring and early warning systems, 
accurate prediction of time, location and magnitude 
of earthquakes still remains challenging. This is due 
to their unpredictable and flexible nature. Among the 
existing earthquake forecasting techniques, Seismic 
Gap Theory and Historical seismicity have made 
significant efforts to forecast earthquakes. However, 
these approaches have not been successful in regions 
with complex tectonic activities like those in Japan.  

So, in this work to overcome the limitations, 
hybrid stacking model is used to predict the 
magnitude of Earthquakes. The models such as 
Random Forest Regressor, Extra Trees Regressor and 
CatBoost Regressor are used as the first-level models, 
while a Linear Regression model is employed as the 
second-level model in the stacking approach. For this, 
time series data of Japan is collected from 1970 to 
2024. The collected data is split into 80% for training 
and the remaining 20% for testing. This approach 
aims to improve the prediction of earthquake 
magnitudes and enhance the understanding of how to 
improve early warning systems in Japan. This extends 
the existing work by integrating various Machine 
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Learning models to hybrid models to improve the 
potential for more accurate seismic forecasting.  

The rest of the paper is organised as follows: 
Section-II presents the Literature Review, Section-III 
explains the proposed methodology, Section-IV 
discusses the results and its comparison, Section-V 
concludes the paper and outlines the Future work. 

2 LITERATURE REVIEW 

In (Joshi et al., 2023), the authors have outlined the 
disadvantages of the classical form of early warning 
systems. According to the authors, the disadvantage 
is that the system provided delayed response. This is 
due to the time required for data analysis from several 
stations. In this paper, the authors have focused 
particularly on the ability of ML models to improve 
the predictive capabilities based on the multi-
parametric relationships within the collected data. 
Feature engineering is also applied in this study 
resulting in 29 features derived from the initial phase 
of the P wave in relation to earthquake magnitude. 
From the results, it is inferred that XGBoost model 
effectively enhanced the performance by giving 
better prediction results, for which the average error 
is lower than conventional methods. In this paper  
(Asim et al., 2017), authors focused on the analysis of 
earthquake magnitude prediction for the Hindukush 
region through a ML classifier based on historical 
data of past seismicity. Eight physical characteristics 
in accordance with geophysical concepts were used to 
simulate future earthquakes, specifically those 
exceeding a magnitude of shake of 5.5. The authors 
have used various ML methods and evaluated the 
performance of the models using sensitivity and 
accuracy.  

The XGBoost-SC model for ground motion 
prediction was developed in this paper (Dang et al., 
2024) using 67,164 data records of shallow crustal 
earthquakes that occurred in Japan between 1997 and 
2019. Some of the features include magnitude, depth, 
Vs30, hypo-central distance, altitude, and focal 
mechanism. From the results, it is inferred that 
XGBoost has shown to be more successful and 
outperformed traditional approaches in terms of 
accuracy and stability. The result of the SHAP 
analysis confirmed the importance of features and 
demonstrated the model's overall value in predicting 
future disaster engineering, particularly with regard to 
earthquakes. The primary objective of this paper 
(Dutta et al., 2011) is to develop a standard 
earthquake database for the South Asian region 
(1905–2009) in the context of comparing seismic 

risks in low-to-moderate seismicity regions. 
Specifically, the accuracy of the magnitudes greater 
than five was improved using linear regression to 
model the relationship between earthquake 
magnitude, latitude, longitude and depth. Weka had 
better performance than SPSS in the prediction of 
earthquake magnitude when data was smoothed. The 
results suggested that WEKA is more suitable for this 
task.  

In this work (Ahmed et al., 2024), several ML 
techniques were applied on data obtained from the US 
Geological Survey to classify earthquake magnitudes. 
During data pre-processing, it was found that more 
than 10 percent of the data has NULL values. Suitable 
actions such as imputation and removal of “null” 
feature were taken. To improve the performance of 
the model, features were encoded ‘one hot’ and 
feature scaling was applied. With the better 
hyperparameters, the SVM model achieved the most 
accurate results, with MSE of 0.10 and a coefficient 
determination of 0.93. In a recent study, the effects of 
earthquakes, including ground movement and 
economic losses were examined. The Researchers 
have used a global dataset and shaped the same using 
a technique called gradient boosting regressor to 
forecast earthquake events with respect to date, time 
and magnitude. They broke down the predictions into 
smaller components and the results were improved to 
86.1% for magnitude and 99.7% for depth, which 
actually surpassed previous models.  

In (Wang & Wang, 2024), the authors have also 
tried to determine risk-free zones to minimize loss by 
comparing actual and predicted values. In 
(Sadhukhan et al., 2023) , the authors have explored 
the use of DL algorithms for earthquake prediction, 
focusing on significant seismic magnitudes from 
regions such as Japan, Indonesia and  Hindu-Kush 
Karakoram Himalayan (HKKH) area. Three DNN 
models such as LSTM, Bidirectional LSTM and 
Transformer were used to analyze the correlations 
between the seismic features and possible earthquake 
activities. For Japan dataset, LSTM outperformed all 
the other models, while Bi-LSTM outperformed all 
other models for the Indonesia region and the 
transformer model outperformed all other models for 
the HKKH region. The models gave good results for 
predicting earthquake magnitude in the range of 3.5 
to 6.0. Various studies have focused on improving 
earthquake prediction using ML models. The 
limitations of the existing systems are: 

 traditional system suffer from delayed 
response  
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 current model still face challenges in 
achieving accurate prediction and less error 
rate.      

3 PROPOSED METHODOLOGY 

In the proposed work, the dataset is cleaned by 
handling missing values and removing unnecessary 
columns. The categorical features are labelled using 
one-hot encoding.  Further, the dataset is split into 
80% for training and the remaining 20% for testing. 
The data is then fed to base model and the output of 
it is given to meta model as shown in Fig.1. 

3.1 Dataset Pre-processing 

The dataset consists of earthquake data from Japan 
taken from the USGS, with 25,326 rows and 27 
columns. After cleaning the data by removing 
unnecessary columns ('id', 'updated', and 'place'), 
categorical columns ('magType', 'net', 'type', 'status', 
'locationSource', and 'magSource') were encoded 
using LabelEncoder. Label encoding is applied to 
convert categorical data into numerical values, 
making it compatible with ML models for processing. 
The dataset pre-processing for the collected data is 
done as follows: 

 Removing Unnecessary Columns: Columns 
such as 'id', 'updated' and 'place' were 
removed because they may not provide 
relevant information for prediction. For 
example, 'id' is a unique identifier and does 
not contribute predictive value. 

 Label Encoding: Categorical columns were 
converted into numerical representations 
using LabelEncoder. This is essential for 
models like Random Forest and XGBoost 
that work with numerical data. For instance, 
'magType' may have values like 'mb', 'ms', 
etc., which are transformed into numbers. 

 Features:  The cleaned data focuses on 
numerical features like 'latitude', 'longitude', 
'depth', 'mag', 'nst', and 'rms', along with 
categorical ones like 'magType'. 

3.2 Base Models 

The pre-processed dataset is split into 80 % for 
training data and the remaining 20% for testing data. 
The pre-processed data is given as input to the base 
models. The base models are 

3.2.1 Random Forest Regressor 

The Random Forest Regressor is an ensemble model 
in ML that creates several decision trees while 
training and then delivers the averaged results. It 
builds on the method bootstrap aggregation were each 
tree is learnt from a boot strap sample of the data. 

During the splits in the trees, the candidate 
features to be used for splitting are chosen randomly 
so as to avoid proximity between individual trees and 
enhance the generalization power of the entire 
system. Random Forest outperforms single decision 
trees when it comes to minimizing overfitting, and it 
is exceptionally apt for regression problems as well 
as classification (Al Banna et al., 2021). The model is 
capable of analysing non-linear relationship in the 
data; and since the output is an aggregation of many 
trees it is less sensitive to noise in the data. In 
mathematical terms, the prediction of a Random 
Forest model is expressed as in Equation (1). 
 
                     𝑦ො =  ଵ் ∑ 𝑓௧ሺ𝑥ሻ௧்ୀଵ                              (1) 

 
where 𝑇  is the total number of trees in the forest 

and  𝑓௧ሺ𝑥ሻ  is the prediction made by the 𝑡th tree for a 
given input x. Each decision tree in the forest is built 
by recursively splitting the data based on certain 
features, chosen to minimize a loss function, typically 
the mean squared error (MSE) for regression tasks. 
The model continues splitting the nodes of each tree 
until a stopping criterion, such as a maximum depth 
or a minimum number of samples per leaf, is met. 
Random forest identifies non-linear patterns and 
address issues regarding variance through 
accumulation of outcome from a variety of classifier 
trees. The bootstrapping mechanism assures the 
existence of stability in the predictions even if there 
is a high level of noises. 

3.2.2 Extra Trees Regressor 

Extra Trees Regressor (Extremely Randomized 
Trees) is an ML algorithm that involves several 
decision trees created randomly. In Extra Trees, the 
splitting nodes that fractures at each node is randomly 
chosen within a given range other than being chosen 
at best split based on certain criterion such as the 
mean squared error (Kumar et al., 2023).  

This randomness both in the feature and in the 
split selection also helps to lessen the variance of the 
model and therefore generalizes well and does not 
over fit. Extra Trees enhance the accuracies’ 
homogenization and generation speed in addition to 
general stability by averaging the output of several 
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trees randomly constructed. Random split in Extra 
Trees improves generality and resolves the overfitting 
problem. It gives variance by aggregating the results 
of an extremely randomized decision trees model. 

3.2.3 CatBoost Regressor 

CatBoost Regressor is actually a gradient boosting 
model that is excellent when used with datasets that 
contain both categorical and numerical variables 
(Jozinović et al., 2022). 

The key difference between the CatBoost model 
and the other models is that while the gradient 
boosting is used, ordered boosting is applied, which 
helps to minimise the target leakage problem and to 
prevent overfitting, which is characteristic of small 
datasets (Mir et al., 2022).  

The model continuous features are engineered 
using “target statistics”, where a value is given to a 
continuous variable based on the distribution of the 
target variable by the categories of the dummy 
variable (Kalavakunta & Parthipan, 2024). This 
ordered boosting technique helps in preventing the 
model to overlearn the training data as in the normal 
boosting techniques of using part of the data set for 
prediction in boosting. Therefore, CatBoost works 
well with density data and offers stable performance 
irrespective of significant feature transformation. The 
prediction in CatBoost is calculated sequentially 
according to the gradient boosting algorithm, when 
new trees try to reduce the residual error of previous 
predictions (Su & Zhang, 2020). The prediction at 
iteration t is given by Equation (2) 
                     𝑦ොሺ௧ሻ =  𝑦ොሺ௧ିଵሻ + 𝜂 ⋅ 𝑔ሺ௧ሻሺ𝑥ሻ                    ሺ2ሻ 
 

where η is the learning rate, 𝑔ሺ௧ሻሺ𝑥ሻ  is the 
prediction from the new tree at iteration t and 𝑦ොሺ௧ିଵሻis 
the prediction from the previous iteration. 

In CatBoost, the model iteratively refines its 
predictions by focusing on errors from previous 
iterations, combining the strengths of boosting with 
advanced handling of categorical data for superior 
performance. This model adds a gradient-boosting 
perspective to the stacking approach, complementing 
the randomness of Random Forest and Extra Trees 
models. Its ability to handle categorical features 
natively provides an advantage when modeling 
seismic data, which often includes discrete 
categories. CatBoost ensures stable performance 
irrespective of the nature of the dataset (dense, sparse, 
or mixed). 

 

3.3 Meta Model (Linear Regression) 

Linear regression is a fundamental method of using 
statistics in developing the relationship between one 
or more variables. The advantages of this model are 
simplicity, interpretability and strong predictive 
performance on input features. The primary objective 
of this model is to find a line that predicted values 
(Varshney et al., 2023). This approach provides a 
model that assumes a direct linear relationship, 
minimises the deviations between the actual and the 
allowing for clear inference on how changes in 
predictor variables influence the outcome.  

In the proposed hybrid stacking approach for 
earthquake magnitude prediction, the Linear 
Regression model serves as the meta-model, 
combining the predictions from the base models such 
as RF, ET and CatBoost. Instead of using the 
predictions from these models directly, the Linear 
Regression model treats them as features, optimising 
the strengths of each algorithm (Roy et al., 2024). 
This result in more accurate and reliable final 
predictions compared to the case with each individual 
model. This hybrid approach not only increases 
prediction but also provides insights into how each 
base model contributes to the final result, which is 
particularly valuable in applications such as in 
disaster response and earthquake vulnerability. 

The mathematical formulation of the prediction in 
a Linear Regression model is expressed in Equation 
(3) 
                        𝑦ො =  𝛽଴ + ෍ 𝛽௝௡

௝ୀଵ 𝑥௝                               ሺ3ሻ 

 
where 𝑦ො  represents the predicted earthquake 

magnitude, 𝛽଴ is the intercept, 𝛽௝ are the coefficients 
for each predictor 𝑥௝ (indicating the predictions from 
the base models), and n is the total number of base 
models (Katole et al., 2024). 

The model coefficients are determined by 
minimizing the Residual Sum of Squares (RSS), 
defined as in Equation (4) 

 
             𝑅𝑆𝑆 =  ∑ ሺ𝑦௜ − 𝑦పෝሻଶ௠௜ୀଵ           (4) 

 
where 𝑦௜  is the actual target value and 𝑦పෝ  is the 

predicted value. Through this method, the stacking 
approach effectively integrates the capabilities of 
various models, ultimately leading to improved 
predictions in earthquake magnitude forecasting. 
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Figure 1. Architecture of Proposed Methodology 

 
Linear Regression  determines weights of the base 

models and comes up with the best weights that 
complements each others strengths. The passthrough 
mechanism helps Linear Regression to benefit from 
the forecasts produced by base models and the 
residual distribution in original features. The 
coefficients of Linear Regression also allow for 
interpreting directly the contribution of each base 
model and original feature to the stacking framework. 
Linear Regression does not require many 
computations making it more appropriate for large 
data sets or a situation where, an over-speed meta-
model training is required. 

4 RESULTS AND DISCUSSION 

4.1 Evaluation Metrics 

In evaluating earthquake prediction models, various 
performance metrics are employed to assess the 
accuracy and reliability of predictions. These metrics 
include Mean Squared Error (MSE), R-squared (R²), 
Root Mean Squared Error (RMSE), and so on. Each 
of which provides distinct insights into model 
performance. 

4.1.1 Mean Squared Error (MSE)  

MSE measures the average squared difference 
between actual and predicted values, offering a 
penalization for larger errors. A lower MSE value 
indicates better predictive accuracy as in Equation (5) 
 
                       𝑀𝑆𝐸 =  ଵ௡ ∑ ሺ𝑦௜ − 𝑦పෝሻଶ௡௜ୀଵ                 (5) 

 
where 𝑦௜ represents the actual value, 𝑦పෝ the 

predicted value, and n is the total number of 
predictions. 

4.1.2 R-squared (𝑹𝟐)  

R-squared Evaluates the proportion of variance in 
the target variable explained by the model. It ranges 
from 0 to 1, with higher values signifying better 
model fit as in Equation (6) 
                  

                       𝑅ଶ = 1 − ∑ ሺ௬೔ି௬ഢෞሻమ೙೔సభ∑ ሺ௬೔ି௬ሻమ೙೔సభ                     (6) 
 
where 𝑦 is the mean of actual values. 

4.1.3  Root Mean Squared Error (RMSE),  

RMSE a derivation of MSE, is the square root of 
MSE. It retains the same scale as the target variable, 
making it easier to interpret as in Equation (7) 
 

      𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  ටଵ௡ ∑ ሺ𝑦௜ − 𝑦పෝሻଶ௡௜ୀଵ              (7) 

4.1.4 Mean Absolute Error (MAE) 

MAE calculates the average magnitude of prediction 
errors, without considering their direction. It is less 
sensitive to outliers compared to MSE or RMSE is 
shown as in Equation (8) 
 
 
                   𝑀𝐴𝐸 =  ଵ௡ ∑ |𝑦௜ − 𝑦పෝ|௡௜ୀଵ                       (8) 
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4.1.5 Mean Absolute Percentage Error 
(MAPE)  
MAPE quantifies prediction error as a percentage, 
offering scale-independent insight. Its formula is 
shown as in Equation (9) 
 
                𝑀𝐴𝑃𝐸 = ଵ௡ ∑ |𝑦௜ − 𝑦పෝ|௡௜ୀଵ  ൈ 100              (9) 
 

Together, these metrics provide a complete 
evaluation of the accuracy of earthquake prediction 
models. They highlight both prediction rate and the 
error patterns to choose the model for prediction.  

4.2 Experimental Results 

In this paper, ML models such as XG Boost, Random 
Forest, Gradient Boosting, Lasso, Ridge, SVM, KNN, 
ElasticNet, Extra Trees and CatBoost are compared 
and the results are presented in Table 1. 

The actual earthquake magnitudes and those 
expected based on the stacking model were also 
compared as a way of testing the validity of the 
model. The actual values the magnitudes are shown 
as a blue/gray continuous curve, while the predicted 
values are shown by the orange dashed line in Figure 
2. The proximity of the two lines further supports the 
fact that the stacking model can replicate actual 
seismic data. There is a lack of variability, but this is 
perfect for illustrating the ability of a model to 
analyze the change in magnitude. 

In addition to the gradient coloring, the heatmap 
is also presented in Figure 3 for assessing the values 
of each metric to that of the line plot.  

By evaluating the models using MSE, RMSE, 
MAE, MAPE and R-squared, the lower coefficients 
and a higher R-squared value indicate better model 

performance. Among these models tested with the 
considered datasets, the stacking model provided the 
least error estimations and the highest R² (0.832) 
confirming its efficiency and high predictive abilities 
as shown in in Figure 3. 

 
Figure 2: Actual vs Predicted Magnitude prediction using 

Proposed Method 

 
Figure 3: Heatmap of Model Performance Metrics 

 
The overall model comparison across Metrics is 
shown in the Figure 4. 

 

Table 1. Comparison of the performance of models 

MODELS MSE RMSE MAE R-squared MAPE(%) 
XGBoost 0.0727 0.2697 0.1910 0.8112 4.1281 
Random Forest 0.0674 0.2596 0.1801 0.8251 3.8912 
Gradient Boosting 0.0870 0.2949 0.2121 0.7743 4.5875 
Lasso 0.2348 0.4845 0.3522 0.3909 7.6209 
Ridge 0.1689 0.4110 0.3067 0.5618 6.6623 
SVR 0.2038 0.4514 0.3166 0.4712 6.7261 
KNN 0.1735 0.4166 0.2826 0.5497 5.9979 
ElasticNet 0.2292 0.4787 0.3480 0.4053 7.5265 
Extra Trees 0.0669 0.2587 0.1749 0.8263 3.7788 
CatBoost 0.0685 0.2617 0.1873 0.8222 4.0561 
Stacking Model 0.0648 0.2545 0.1768 0.8319 3.8219 
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Figure 4. Overall Model Comparison Across Metrics 

In the confusion matrix as shown in Figure 5, 
results of the stacking model shows how well it 
predicts the earthquake magnitude for various ranges. 
The model shows high accuracy in the range between 
2-4, where 3,919 instances were forecasted correctly, 
therefore its capability in handling the most 
frequently recurrent range of magnitude as shown in 
the dataset. The experiments of the 0-2 range of 
estimates had 823 correct and 172 wrong 
classifications with the 2-4 range. The 
misclassification is very low in the higher magnitude 
zones suggesting that the model has a bias towards 
lower and mid-range magnitudes. This distribution 
means that although the stacking model is precise for 
relative low and about average magnitude seismic 
events, the quality of this work revealed that the 
possibility exists to improve the accuracy of the 
stacking model for more rare, higher magnitude 
earthquakes. 

 
Figure 5. Confusion Matrix for Stacking Model 

 

5 CONCLUSION AND FUTURE 
WORK 

Thus, the proposed work on Earthquake prediction 
has utilized statistical and ML techniques to predict 
earthquake magnitudes accurately using a dataset 
from the Japan region. The proposed model, which 
combines Random Forest, Extra Trees, CatBoost in a 
stacking ensemble, and Linear Regression, 
demonstrated better results. Specifically, the model 
achieved an MSE of 0.0647, RMSE of 0.2544, MAE 
of 0.1766, R-squared value of 0.8321, and MAPE of 
3.82%, confirming its ability to effectively model 
complex seismic patterns. When compared to 
individual models like XGBoost, Gradient Boosting 
and CatBoost, the stacking model leveraged the 
strengths of multiple algorithms to improve accuracy 
and prediction reliability. The stacking ensemble 
further enhanced generalization and reduced the risk 
of misclassification, which is common with 
standalone models. This work underscores the 
importance of combining various models for seismic 
analysis and hazard management. The proposed 
model provides a robust foundation for earthquake 
magnitude estimation, supporting the development of 
early warning systems and improving preparedness. 
The future work will focus on expanding the dataset 
to include additional seismic features, incorporating 
IoT for real-time predictions and applying this 
methodology to other seismic regions. These 
advancements will contribute to strengthening AI’s 
role in enhancing global disaster resilience. 
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