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Ensuring data privacy is critical in today’s data-driven world. Differential privacy provides a mathematical
framework to protect individual privacy while enabling data analysis. However, its integration with machine
learning introduces challenges in maintaining model accuracy and scalability. In this work, a novel approach is
proposed that combines differential privacy with cryptographic systems to enhance privacy and security. The
Private Aggregation of Teacher Ensembles (PATE) algorithm is employed to train models on the Canadian
Institute For Advanced Research (CIFAR) dataset and the Modified National Institute of Standards and Tech-
nology (MNIST) dataset. Privacy is achieved by aggregating noisy predictions from teacher models trained
on disjoint data subsets. To further secure datasets, the Advanced Encryption Standard-Galois/Counter Mode
(AES-GCM) encryption algorithm is utilized. Experimental results show that this method effectively balances
strong privacy and security with high model accuracy, highlighting the potential of integrating differential pri-

vacy with cryptographic techniques in machine learning applications.

1 INTRODUCTION

Differential privacy and encryption are two key con-
cepts used for protecting the privacy and confiden-
tiality of sensitive data. Differential privacy aims to
safeguard individual privacy while allowing for the
analysis of aggregate data by adding random noise
into the data. This ensures that the overall statistical
properties remain intact while making it significantly
harder to identify individual records, thereby prevent-
ing attackers from learning specific information about
any individual (Papernot et al., 2018; Boenisch et al.,
2023). Homomorphic encryption, which enables
computations on encrypted data without decryption,
has also gained traction as a privacy-preserving ap-
proach for secure collaborative learning frameworks
(Fang and Qian, 2021). By combining differential pri-
vacy with encryption, data can be protected through-
out its lifecycle—during storage, transmission, and
analysis—offering a robust framework for ensuring
the privacy and confidentiality of data across various
applications (Xu et al., 2021).
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2 METHODOLOGY

This section details the implementation of privacy-
preserving machine learning methodologies, includ-
ing the Private Aggregation of Teacher Ensembles
(PATE) algorithm and Differentially Private Stochas-
tic Gradient Descent (DP-SGD), enhanced with AES-
GCM encryption. These approaches were evaluated
on the MNIST dataset.

2.1 Private Aggregation of Teacher
Ensembles (PATE)

PATE is a privacy-preserving technique designed to
train machine learning models on sensitive datasets. It
utilizes an ensemble of teacher models and a student
model to maintain individual data privacy (Papernot
et al., 2018). An overview of the PATE methodology
is shown in Figure 1.

2.1.1 Data Partitioning

The sensitive dataset is divided into non-overlapping
subsets, with each subset assigned to a distinct teacher
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model. This ensures that no single model has com-
plete access to the dataset, preserving privacy.

2.1.2 Teacher Model Training

Each teacher model is trained on its respective data
subset using standard machine learning algorithms.
To protect privacy, noise is added to the models’ pre-
dictions, controlled by a privacy budget parameter,
which determines the balance between privacy and
accuracy (Wagh et al., 2021).

2.1.3 Aggregation of Predictions

The teacher models’ noisy predictions are aggregated
using a voting mechanism, which selects the most
commonly predicted label for each data point. This
process prevents individual data points from being di-
rectly inferred (Xu et al., 2021).

2.1.4 Student Model Training

The aggregated predictions are used to train a student
model, which learns from the collective knowledge of
the teacher models. As the aggregated predictions al-
ready include noise, the student model uses a smaller
privacy budget (Boenisch et al., 2023).

2.1.5 Evaluation

The student model is tested on a separate dataset to
evaluate its accuracy and ability to generalize.
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Figure 1: Overview of PATE (Papernot et al., 2018)

2.2 Differentially Private Stochastic
Gradient Descent (DP-SGD)

DP-SGD ensures differential privacy during the train-
ing of machine learning models by adding noise to the
gradients (Papernot et al., 2018). While DP-SGD is
effective in preserving individual data privacy through
noise addition, integrating advanced techniques such
as homomorphic encryption can further enhance pri-
vacy by allowing computations to be performed on
encrypted data, thus minimizing the exposure of sen-
sitive gradients (Fang and Qian, 2021). This hybrid
approach can address specific attack vectors, such as
membership inference, that exploit plaintext gradient
information.

2.2.1 Gradient Computation and Clipping

Gradients are computed using stochastic gradient de-
scent (SGD) on randomly sampled data batches. To
limit the influence of individual data points, gradients
are clipped to a fixed norm.

2.2.2 Adding Noise and Aggregation

Noise is added to the clipped gradients, adjusted
based on the privacy budget. These noisy gradi-
ents are aggregated to compute the average gradient,
which is used to update the model parameters.

2.2.3 Model Updating and Evaluation

The model parameters are iteratively updated using
the average noisy gradients. The trained model is
evaluated on a test dataset to measure accuracy and
privacy guarantees (Boenisch et al., 2023).

2.3 AES-GCM Encryption for Data
Security

AES-GCM is applied to enhance data security during
preprocessing (Das et al., 2019; Gueron and Krasnov,
2014). Its performance and security have been exten-
sively studied across different loT-oriented microcon-
troller architectures, including 8-bit, 16-bit, and 32-
bit cores, where it was found to balance cryptographic
efficiency and resource constraints effectively (Sovyn
et al., 2019). This algorithm’s ability to resist side-
channel attacks, such as timing and power analysis,
makes it suitable for resource-constrained IoT envi-
ronments.

2.3.1 Data Pre-processing and Encryption

The MNIST dataset is normalized and split into train-
ing and testing sets. Selected data points are en-
crypted using AES-GCM, ensuring both confidential-
ity and integrity during training. AES-GCM’s prac-
tical strengths, such as balancing speed and security,
have made it a suitable choice for ML applications
(Arunkumar and Govardhanan, 2018).

2.4 Dataset: MNIST

The MNIST dataset is a standard benchmark in ma-
chine learning, featuring 70,000 grayscale images of
handwritten digits ranging from O to 9. It includes
60,000 images for training and 10,000 for testing,
each sized at 28x28 pixels. This dataset was em-
ployed to validate the proposed methodologies.
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2.5 Integrated Approach and Accuracy
Calculation

The integration of differential privacy techniques with
cryptographic systems forms the core of this method-
ology. The process ensures robust privacy preserva-
tion and data security without significant loss of ac-
curacy. The MNIST dataset is preprocessed, normal-
ized, and encrypted using AES-GCM, ensuring confi-
dentiality and integrity of data throughout its lifecycle
(Bellare and Tackmann, 2016).

Next, the PATE algorithm is applied to train
teacher models on disjoint subsets of the dataset. Ag-
gregated noisy predictions from these teacher mod-
els are used to train a student model, ensuring that
the sensitive data remains private. DP-SGD is sub-
sequently employed to train the student model by
adding noise to gradients, further reinforcing differ-
ential privacy guarantees.

Finally, the encrypted dataset is decrypted post-
training for evaluation. Accuracy is measured at each
stage—baseline, after applying privacy techniques,
and post-decryption—to evaluate the trade-offs be-
tween privacy preservation and model performance.

This integrated approach demonstrates the feasi-
bility of combining cryptographic systems and differ-
ential privacy to secure machine learning applications
without compromising accuracy.

3 RESULTS AND DISCUSSION

The results of this study demonstrate the effective-
ness of privacy-preserving algorithms, namely PATE
and DP-SGD, in protecting sensitive data while main-
taining high accuracy levels. Table 1 summarizes the
accuracy achieved by these methods before and after
applying differential privacy and after decryption.

Table 1: Comparison of PATE and DP-SGD with AES-
GCM.

. After
Methodology | No Privacy | After DP Decryption
PATE 100% 97.15% 0%
DP-SGD 100% 97.30% 0%

When no privacy-preserving algorithm was ap-
plied, the model achieved an accuracy of 100%.
After applying the PATE algorithm, the accuracy
slightly decreased to 97.15%, attributed to the in-
troduction of noise during training to safeguard data
privacy. Despite this reduction, PATE successfully
balanced privacy and performance, with accuracy re-
maining within an acceptable range. Similarly, the
DP-SGD algorithm achieved an accuracy of 97.30%,
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Figure 2: Workflow of the Integrated Approach

a marginal decrease compared to the non-private
model, reflecting the expected trade-offs in differen-
tial privacy frameworks. After decryption, both meth-
ods resulted in an accuracy of 0%, as the encrypted
data could no longer be interpreted without the origi-
nal key.

Visual representations of the performance of these
methods provide additional insights into their behav-
ior. Figure 3 illustrates the outcomes of applying the
PATE algorithm on the MNIST dataset.

Figure 4 presents results from the DP-SGD
method.

Overall, these visuals highlight the robustness of
both algorithms in preserving privacy while maintain-
ing high model usability. The introduction of noise in
PATE and the gradient-level noise in DP-SGD ensure
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Figure 3: PATE results achieved. The left image shows the
original image (Label: 8), and the right image shows the
decrypted image before applying PATE.
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Figure 4: DP-SGD results achieved. The top section shows
the training loss across epochs, and the bottom section dis-
plays the original image (Label: 2).

that sensitive data cannot be directly inferred. Despite
minor accuracy reductions, both methods maintain
strong performance, illustrating the potential of com-
bining differential privacy with cryptographic sys-
tems to address real-world privacy concerns in ma-
chine learning.

4 CONCLUSION

This paper demonstrated the effective integration
of differential privacy and cryptographic techniques,
specifically PATE and DP-SGD algorithms combined
with AES-GCM encryption, to ensure robust data se-
curity in machine learning applications. The approach
achieved high privacy guarantees with minimal im-
pact on model accuracy.

Future work will focus on exploring advanced
techniques such as homomorphic encryption, op-

timizing algorithm parameters to balance privacy
and accuracy, extending the methodology to larger
datasets and diverse models, conducting compre-
hensive security assessments, and developing user-
friendly tools for broader adoption. These advance-
ments aim to enhance the scalability, usability, and re-
silience of privacy-preserving solutions in real-world
applications.
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