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Abstract: Clustering is a well-known task in machine learning, which is normally exposed to noise, non-standard cluster 
sizes, and uneven data sets. This paper provides a hybrid adaptive algorithm on the basis of weighted k-means 
and DBSCAN which combines the strengths to resolve the limitations. The method proposed utilizes weighted 
areas for dynamic adjustment of priorities and data density, robustness against imbalances, and increase the 
noise. DBSCAN, if integrated into optimization the algorithm handles nonlinear and irregular boundaries well. 
Three different data types, namely, blobs, months, and Gaussian mixtures, were tested on this algorithm. The 
experimental results indicate high clustering accuracy, with an adjusted rand index (ARI) of 0.92 on the blobs 
dataset, outperforming traditional k-means (0.85) and weighted k-means (0.88). Scalability analysis reveals 
efficient runtime memory usage, with some compensation for improved efficiency and accuracy. Sensitivity 
analysis confirms the flexibility of the algorithm for changes in hyperparameters, including the number of 
clusters, weighting, and DBSCAN parameters. Visual proof, such as ARI and runtime comparison charts, 
confirms the superiority of the hybrid approach with regard to accuracy and efficiency. Utility was 
demonstrated through the data sets; it is indeed capable of solving real challenges in the world. Further work, 
combining deep learning for automatic feature extraction with the extended method for streaming or online 
clustering applications, opens up the way to even more flexible and dynamic solutions to clustering problems. 

1 INTRODUCTION 

Clustering is the most basic problem in machine 
learning which divides a dataset into clusters or 
groups, in a manner that data points which are in the 
same group share similar characteristics. It is used in 
data mining, pattern recognition, bioinformatics, 
image processing, to identify any hidden structures of 
data (Jain, 2010). Applications of Clustering 
algorithm include customer segmentation, organizing 
documents, fraud detection, medical diagnosis. These 
are considered based on their efficiency to accurately 
find clusters and scalability to large-sized data. Even 
though so much has been achieved in this, the 
traditional clustering algorithms face problems with 
noise, scalability issues, and skewness in distribution 
that leave much area to work on (Dhillon, Guan, et 
al., 2004). 
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K-Means is the most commonly used algorithm 
on clustering that is very simple and fast to execute 
(Wang, Song, et al. , 2020), (Aleem, Srivastava, et al. 
, 2009). But it assumes spherical shapes for the 
clusters and equal sizes. In other words, K-Means is 
sensitive to noise as well as outliers. Its performance 
is poor on the datasets with imbalanced sizes and also 
complex shapes. While a number of improvements 
such as Weighted K-Means introduce the concept of 
weighted feature influence on centroids, methods fail 
to address all kinds of challenges arising from non-
regular data distributions, and scalability (Ester, 
Kriegel, et al. , 1996), (Kaufman, and, Rousseeuw, 
2009). Density-based methods include DBSCAN that 
can discover arbitrary-shaped clusters, insensitive to 
noise but at very high computational costs and very 
heavy sensitivity to the tuning of hyperparameters 
(Xu and Wunsch, 2005). All these aspects point 
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toward adaptive methods for clustering that balance 
accuracy and robustness with computational costs. 

The article presents adaptive clustering with 
weighted centroids - a hybrid algorithm that combines 
the features of Weighted K-Means and DBSCAN 
(Xiong, Wu, et al. , 2009), (Guha, Rastogi, et al. , 
1998). The method of Weighted K-Means considers 
features or data points to determine the centroids and 
thus can sense different densities in clusters. 
Additionally, DBSCAN can distinguish between non-
convex shapes and deal noise in a robust manner, 
improving the property above. Integrating these 
techniques, this approach mitigates the drawbacks of 
traditional algorithms, and this scalable method with 
accuracy proves to be appropriate for any type of 
data. This hybrid approach is very efficient for the 
application where high sensitivity is needed towards 
data imbalance and the complexity of the clusters. 
This article mainly contributes to the following: 

• Hybrid Adaptive Clustering Algorithm: This 
proposes a new framework in clustering 
which combines Weighted K-Means and 
DBSCAN providing a robust and efficient 
approach for partitioning the data. 

• Method: This will be the adaptive 
computation of centroids dynamically along 
the weights of assigning data points to feature 
importance or local density to better adapt in 
imbalanced dataset scenarios. 

• Comprehensive Evaluation: An attempt will 
be made to prove the algorithms have shown 
excellence concerning clustering accuracy, 
scalability, and tolerance with noise in both 
synthetic as well as actual dataset analysis 
compared to traditional ones. 

• Scalability Analysis: the paper gives full 
analysis as to how such an algorithm would 
perform computationally vis-à-vis 
applicability on big data sets. 

This article contributes to the adaptive and hybrid 
clustering methods literature, addressing some of the 
key challenges in traditional algorithms. The 
proposed method is tested using metrics like Adjusted 
Rand Index (ARI) and Silhouette Score, providing a 
quantitative comparison against baseline methods 
like K-Means, Weighted K-Means, and DBSCAN. 
Experimental results show the robustness of the 
algorithm with respect to diverse data distributions, 
scalability for large datasets, and resilience to noise 
(Bock, 1994), (Hinneburg and Keim, 1999). 

The rest of the article is divided into the sections 
as per evolution to perfection (Aleem, Kumar, et al. , 
2019): Section II presents the related work about 
clustering algorithms that depict their limitations. In 

Section III, the methodology used by the proposed 
hybrid approach is described as well as its 
computation steps on weighted centroids and their 
integration with DBSCAN. Section IV talks about the 
experimental setup and the datasets used to evaluate 
this. Section V gives the results and insights into the 
performance of the algorithm. Finally, Section VI 
concludes the article and mentions future research 
directions. 

2 LITERATURE REVIEW 

Clustering techniques have been an essential 
interest for decades in machine learning and data 
analysis. In addition, different methodologies have 
been proposed in this area to split up data into 
meaningful clusters. Strengths and weaknesses of 
traditional, adaptive, and hybrid methodologies are 
presented, in general, in the literature on clustering 
techniques. Traditional K-Means, adaptive weighted 
K-Means methods will be analyzed in this chapter 
emphasizing its usage, limitation, and use in the 
developed approach. 

The K-Means algorithm, first proposed by 
MacQueen (MacQueen, 1967), is one of the most 
applied clustering methods because of simplicity and 
computational efficiency. K-Means minimizes the 
intra-cluster variance by iteratively assigning points 
in data to the nearest centroid and updating centroids 
based on the mean of assigned points. However, K-
Means assumes spherical cluster shapes and fails to 
handle noisy datasets or cases with outliers or 
imbalanced clusters (Bandyopadhyay, and, Maulik, 
2018). Improvements such as Weighted K-Means 
have tackled some limitations by including weights 
from the importance of features or density in data 
(Aggarwal and Reddy, 2019). The algorithm has 
more flexibility with respect to the computation of 
centroids, but still suffers from the sensitivity to 
initial placement of centroids and doesn't work well 
with nonlinear cluster boundaries (Li, Liu, et al. , 
2019). 

2.1 Adaptive Clustering Techniques 

Adaptive clustering methods adapt according to the 
properties of the input dataset, thus making them less 
susceptible to noise, data imbalance and irregular 
shapes of clusters. The most common density-based 
algorithm is DBSCAN (Shao, Zhang, et al. , 2020), 
which can identify and separate noise points from all 
other clusters, regardless of their shape. However, its 
performance is highly based on the choice of hyper-
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parameters such as neighbourhood radius (eps), and 
minimum number of points within the neighbourhood 
(minPts) that are usually really challenging to tune 
(Ma, Yu, et al. , 2020). Other adaptive methods 
include Spectral Clustering (Liu, Wang, et al. , 2021), 
which is graph-based, partitions the datasets but is 
limited by its scalability to large datasets. 

2.2 Hybrid Approaches in Clustering 

Hybrid clustering methods aim to combine the energy 
of multiple algorithms to conquer especial 
limitations. For instance, combining K-Means with 
hierarchical clustering enables efficient computation 
while capturing cluster hierarchy (Huang, Jin, et al. , 
2022). Similarly, hybrid models that integrate K-
Means with DBSCAN leverage the former’s 
computational efficiency and the latter’s robustness 
to noise and irregular shapes (Qian, Wang, et al. , 
2022). These methods often demonstrate improved 
accuracy and scalability, though they may introduce 
complexity in parameter tuning and algorithm 
integration (Singh and Arora, 2023). 

2.3 Research Gaps 

Despite significant advancements in clustering 
algorithms, there are still key challenges: 

• Scalability: Most adaptive and hybrid 
methods fail to scale effectively for large 
datasets (Li, Chen, et al. 2023). 

• Noise Handling: Most algorithms face 
problems with noisy or outlier datasets 
(Wang, Zhang, et al. , 2024). 

• Imbalanced Data: Traditional and adaptive 
methods have a problem with uneven-sized 
clusters (Kumar, Singh, et al. , 2024). 

• Dynamic Adaptation: Not many methods 
adapt the clustering parameters dynamically 
based on data characteristics, which 
confines the robustness of the method 
(Yuan, Wang, et al. , 2024). 

The key features and limitations of all the 
clustering algorithms discussed in the literature 
review has been summarized in Table 1. The 
proposed method fills up the gaps by integrating 
Weighted K-Means and DBSCAN in a hybrid 
framework with weighted centroids for adapting 
purposes and density-based techniques to handle 
noise and complex cluster shapes. 

 

Table 1: Summary of Clustering Algorithms, Features, 
Limitations, and References 

Algorithm/ 
Approach

Key Features Limitations 

K-Means 
(Ma, Yu, et al. 
, 2020), (Liu, 
Wang, et al. , 

2021)

Simple, 
efficient, 

minimizes 
intra-cluster 

variance 

Sensitive to noise, 
assumes spherical 

clusters 

Weighted K-
Means 

(Huang, Jin, 
et al. , 2022)

Accounts for 
feature 

importance or 
density

Still sensitive to 
noise, poor initial 

centroids 

DBSCAN 
(Qian, Wang, 
et al. , 2022) 

Handles noise, 
detects 

irregular 
shapes

Hyperparameter 
tuning, poor 
scalability 

Spectral 
Clustering 

(Singh, and, 
Arora, 2023) 

Graph-based 
approach, 

effective for 
complex 
shapes

Computationally 
expensive for large 

datasets 

K-Means + 
Hierarchica 
(Li, Chen, et 

al. 2023)

Efficient, 
captures 
cluster 

hierarchy 

Complexity in 
integration 

K-Means + 
DBSCAN 

(Wang, 
Zhang, et al. , 

2024), 
(Kumar, 

Singh, et al. , 
2024)

Combines 
efficiency and 
noise handling 

Hyperparameter 
sensitivity 

Proposed 
Hybrid 
Method  

Weighted 
centroids, 

noise handling, 
scalability 

TBD in further 
research and 

implementation 

3 METHODOLOGY 

3.1 Adaptive Clustering Framework 

Adaptability in clustering refers to the ability of the 
algorithm to dynamically change its parameters and 
methodology based on data characteristics. Most 
traditional clustering methods rely on fixed 
parameters, which can significantly limit their 
effectiveness when processing a variety of data sets 
with different sizes, densities, and noise levels. 
Adaptive clustering frameworks address these 
limitations by including regulation mechanisms 
responses to data properties; this includes 
adjustments to cluster endpoints, centroids, or 
weights related to local density or importance. In the 
proposed framework, two mechanisms are used to 
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achieve fitness: weighted centrality calculation and 
hybrid integration with density-based techniques. 
Weighted centroids allow the algorithm to be robust 
to unbalanced data sets because it can prioritize 
certain features or data points. The method's ability to 
combine the advantages of K-Means and DBSCAN 
to dynamically handle noise and unevenly formed 
clusters is another strength. 

3.2 Weighted Centroid Calculation and 
Hybrid Clustering Approach 

The second algorithm is a combination of the 
Weighted K-Means and the DBSCAN The hybrid 
clustering algorithm is chosen because it addresses 
the disadvantages of the noisiness of data, imbalance, 
and the geometric irregularities of the analyzed 
region. In this case, a weighted centroid calculation 
provides a simple framework for this algorithm given 
its ability to alter its representation of the cluster as a 
means of adapting to the characteristics of a given 
data set. 
 

3.2.1 Weighted Centroid Calculation 

In Weighted K-Means, a centroid of a cluster is 
determined depending on the weight density of every 
point according to such characteristics as the 
importance, density, or sensitivity to noise. The 
formula for the weighted centroid of a cluster k is: 

 

 
 
Ck - closed centroid of cluster k 
Xk - data point for belongs to cluster which is of 

‘k’ 
Wi- weight for xi, and 
A collection of data points of cluster k. 
Weights (wi) may be assigned to respect to several 

criteria: 
 
1. Feature Importance: To improve the weights 

of features, its considered importance level should be 
assigned high values through PCA or through feature 
selection scores. 

2. Data Density: To obtain weights, the paper 
suggested the use of local density estimates, such as 
the reciprocal of distances to the closest neighbors. 

3. Outlier Sensitivity: This is why, if you 
detected outliers using z-scores or any density 
measurements, you should set the weights lower for 
them. 

3.2.2 Hybrid Clustering Algorithm 

Combining Weighted K-Means with Density-Based 
Spatial Clustering of Applications with Noise 
(DBSCAN) promotes the resilience of clustering. 
Weighted centroids which are calculated with help of 
some formulas are the actual location of clusters and 
are critical in initialization phase. It assigns each data 
point to the closest weighted centroid in a way that is 
both qualitative and quantitative and manageable 
computationally. DBSCAN is then used to add more 
density based clusters to the existing ones, and 
remove additional noise points as well as smooth out 
the edges of irregular shaped geographical 
microclusters. DBSCAN is highly immune to noise 
and can handle twisted shapes through this step as all 
noise points that may disturb the clustering are either 
rejected or relocated depending on the chosen density 
parameters. Any isolated data points or noise points 
are left on the map as unassigned or if they are 
reclassified according to the distance of the centroids 
involved. The last clusters are acquired by applying 
the integration of both the WK- initialization step and 
DBSCAN density-based clustering using different 
combination rules which makes it highly accurate and 
efficient method. 

• DBSCAN 
• DBSCAN is applied to further refine the 

clusters to eliminate noise points and 
change the boundaries of irregular shapes. 

• Noise points found by DBSCAN are 
ignored or reallocated based on the density 
threshold in order to have a good robustness 
to outliers and irregular clusters. 
 

• Cluster merging: 
• Combination of Final Clusters obtained 

from Weighted K-Means and DBSCAN. 
• Noise points or unassigned data are kept as 

outliers or reassigned to the nearest cluster 
based on the distances between the 
centroids and the data points. 

 
The use of both Weighted K-Means and 

DBSCAN will ensure that when applying the 
algorithm, the machine learns for different datasets 
and at the same time do away with the noise and 
irregularities encountered while reducing the 
computational time. This merger is better than the two 
used independently where WKM offers an effective 
starting point and DBSCAN offers a more robust end 
solution. 
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3.2.3 Unified Representation 

In this hybrid approach, the center calculation of 
clusters refers to the weighted center formula: 
 

 
 
that does depend on data characteristics in a way 

that avoids creating initialization problems. The final 
clustering is achieved through the use of principles of 
density-based DBSCAN while handling the noise and 
irregular shapes also. Thus, the proposed algorithm 
uses both these approaches and achieves improved 
adaptability, robustness, and accuracy for different 
and intricate data sets. 

 

3.3 Computational Complexity 

The proposed hybrid clustering algorithm can be 
obtained by understanding its two main components: 
Weighted K-Means Initialization and DBSCAN 
Refinement, followed by the integration of these two 
modules. 

Weighted K-Means 
The number of data points, 

• n, no. of clusters,  
• k, no. of iterations,  
• t is the computational time of the K-Means 

algorithm which increases as the values raised 
to which the latter two are raised. 

The key complexity of the K-Means algorithm is 
time complexity of O(n⋅k⋅t) that means, for each 
iteration and assigns each data point to the nearest 
centroid and then updates the centroid. However, 
Additional step of computing the weights of the data 
points in the Weighted K-Means variant takes time 
complexity of O(n). Therefore, the total time 
complexity for Weighted K-Means is: O(n⋅k⋅t+n) 

This is particularly done to ensure accuracy in the 
computation at early stage of the hybrid clustering 
methodology. 

 

3.3.1 DBSCAN Refinement 

The total complexity of the DBSCAN algorithm 
combines the complexities of its two main phases: 
Spatial indexing and its related operation, 
neighborhood queries. During the spatial indexing 
phase though, the use of geometric data structures 
such as the kd-trees or R-trees is done in order to 

optimize the neighbor search process. The analysis in 
this phase involves looping over the array one and 
two and these steps have a time complexity of 
O(n⋅log(n)), where 𝑛 is a number of data points. In the 
neighborhood query phase, each point is searched to 
check its neighbor to satisfy the density condition 
given as the minimum number of points (minPts) is 
also fulfilled because the number of points (minPts) 
included in a given distance is met. The time 
complexity in this is O(n⋅minPts). Altogether making 
the overall time complexity of DBBsAN O(ν min(n, 
k)). O(n⋅log(n)+n⋅minPts). In the implementation 
scenario that is proposed, the total complexity is 
mediated by an origination of spatial indexing 
structures and a value of minPts, which makes such 
an algorithm suitable for big datasets and effectively 
enhancing the speed of computations. minPts is 
relatively small. 
 

O(nlog(n)+nminPts) 

3.3.2 Hybrid Integration 

Weighted K-means and DBSCAN approaches are 
integrated by the hybrid method. The overall time 
complexity of the hybrid algorithm is dominated by 
the two key components, and hence follows: 

O(nkt+nlog(n)) 
 
• Comparison with Baseline Methods 

 
Traditional K-Means: 

• Complexity O(nkt) 
• Poor in handling noise and irregular cluster 

shapes. 

DBSCAN: 

• Complexity:  O(nlog(n)) 
• Poor in scalability on large datasets. 

Proposed Hybrid Method: 

• Complexity: O(nkt+nlog(n)) 
• Balances both computational efficiency and 

clustering robustness 
 

3.3.3 Justification of Trade-offs 

That is why even such an increase in computational 
overhead due to the use of DBSCAN and Weighted 
K-Means in the framework of the proposed hybrid 
method is justified by the dramatic improvements in 
clustering accuracy, robustness to noise, and 
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versatility of the approach achieved with the help of 
these algorithms. In this case, since the method 
utilizes Weighted K-Means in initialization, and 
follows the refined DBSCAN method, the hybrid 
method successfully offsets the shortcomings of 
previous algorithms. 

4 EXPERIMENT SETUP 

4.1 Dataset 

Unfortunately, the number of clusters is unknown in 
real-world datasets, which is why the proposed hybrid 
clustering algorithm is experimentally tested on 
synthetic and real datasets for exploring its 
performance in a controlled environment and real-
world setups. The generated synthetic data is used to 
assess the performance of the algorithm for the 
various clustering problems such as noise, unequal 
size and skewed shapes. The Blobs Dataset, as shown 
in Figure 1, contains 1000 data points with 2 
functions and well separated with Gaussian clusters 
to be used for evaluating the accuracy of the 
underlying clustering.  
 

 
Figure 1: Blobs dataset 

 
The Moons dataset, as shown in Figure 2, is made 

of 1000 data points and two functions and crescent 
shape clusters to check, to what extent, the algorithm 
will fail when it comes to nonlinear boundaries. The 
impact of the number of data points, 1000, used for 
the experiment on the performance of the algorithm 
in handling overlapping clusters Assess the 
algorithm’s performance in analyzing overlapping 
clusters of different density and having 1000 data 

points which conform to a Gaussian mixture, as 
shown in Figure 3. 

 
 

 

Figure 2: Moons Dataset 

 
Figure 3: Gaussian Mixture Dataset 

For practical verification, three real-world 
datasets are used. Mall customer data, with 200 data 
points and 4 characteristics (age, income, expenditure 
score, gender), is used to analyze the performance of 
the algorithm in the processing of unbalanced 
customer data. To evaluate the accuracy of the 
algorithm in the processing of well-defined but 
slightly overlapping clusters, I choose the standard 
Iris Dataset, which contains 150 data points with 4 
features. The last experiment is on the Wisconsin 
cancer data set that contains 569 data points with 30 
features. This forces the algorithm to work on high-
dimensional and unbalanced data, as in the real-world 
scenario of medical diagnostics 
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4.2 Evaluation Metrics 

The performance of the hybrid clustering algorithm is 
evaluated using a combination of metrics that focus 
on accuracy, scalability, and robustness. To measure 
clustering accuracy, the Adjusted Rand Index (ARI) 
is used, which provides a similarity score between the 
predicted cluster assignments and the ground truth, 
with values ranging from -1 to 1. Moreover, 
silhouette estimation was assignable to cluster 
compactness and separation, where the higher scores 
represented better clusters. In terms of scalability, 
memory usage and memory utilization entropy are 
considered. Execution time is the time the algorithm 
takes to cluster different data sizes which gives the 
efficiency of the algorithm. System memory is being 
closely checked in order to be able to work with large 
data sets while the algorithm does not take too much 
memory. Consistency is tested in two dimensions: 
features of noise sensitivity and performance on the 
unbalanced dataset. In noise sensitivity tests, 
distributions include ratios that contain different 
levels of noise to confirm the procedure’s 
effectiveness of correctly clustering points in noisy 
ratios. The last thing is done on customer shopping 
mall and breast cancer data sets where one of the 
clusters has significantly less data than the other and 
hence one gets a chance to test the performance of the 
algorithm in conditions where there is a highly 
skewed data distribution. By using these datasets and 
metrics of evaluation, as depicted in Figure 4, the 
experimental setup offers an extensive explanation on 
how accurate, efficient, and viable the hybrid 
clustering algorithm is in different and challenging 
data environments out there. 
 
 
 

 
Figure 4: Evaluation Metrics for Blobs, Moons, and 
Gaussian Mixture Dataset 

5 RESULT AND DISCUSSION 

5.1 Accuracy and Quality of Clustering 

Overall, the proposed hybrid algorithm showed better 
performance compared to original algorithms 
including k-means and weighted k-means in terms of 
better clustering accuracy as well as clustering 
quality. For example, looking into the comparative 
graph of the Adjusted Rand Index (ARI) in Figure 5, 
the hybrid method yielded an ARI score of 0.92 on 
the Blobs dataset whereas for K-Means, it gave 0.85 
and Weighted K-Means gave GOLD of 0. 88. The 
same observation was made when comparing the 
results obtained from the Luna and Gaussian mixture 
datasets In general, the results confirmed the 
effectiveness of the hybrid algorithm in addressing 
cases of non-linearity and overlapping clusters 
Further, the comparison of the Silhouette values also 
clearly established the advantage of the hybrid 
algorithm in generating clusters that were both well 
separated and compact. This improvement is 
attributed to the application of Weighted K-Means for 
the initial initialization of the clusters and DBSCAN 
for refinement of cluster edges and treatment of noise. 
In conclusion, these findings show that the hybrid 
clustering approach is suitable for use in various 
clustering situations.  

 
Figure 5: Adjusted Rand Index (ARI) Comparison 

5.2 Scalability Analysis 

This section measures the scaling ability of the hybrid 
approach based on time and space consumed on 
datasets. The real time comparison of the proposed 
hybrid approach from this research to the K-Means, 
Weighted K-Means and the basic but effective 
DBSCAN algorithm are as shown in the runtime 
comparison graph of Figure 6. However, such 
bottleneck is fully justified by the drastic 
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improvement of accuracies of clustering and stability. 
The memory usage was comparable to other methods 
indicating that such hybrid approach is quite efficient 
for real-world applications. Dynamic adjustment of 
weights and selective application of density-based 
refinement help maintain computational efficiency 
even for larger datasets. 

 
Figure 6:  Runtime Comparison Across Methods 

5.3 Case Study: Customer 
Segmentation 

The practical utility of the hybrid clustering algorithm 
was demonstrated on the Mall Customers dataset, 
analyzing customer spending habits and income 
levels. The hybrid approach was successful in 
highlighting distinct clusters, high-value and low-
value customers, and was able to further isolate 
outliers using DBSCAN refinement- customers with 
atypical spending patterns. Results indicate the 
algorithm's capability to produce actionable insights 
for business applications by balancing accuracy and 
interpretability. 

5.4 Sensitivity Analysis 

The sensitivity analysis, as shown in Figure 7, found 
the hybrid clustering algorithm robust toward 
hyperparameters variations. The ones tested included 
the number of clusters, the weight scaling factors, and 
the DBSCAN parameters such as eps and minPts. As 
illustrated on the Accuracy Metrics Figure, the 
adjustment of the number of clusters on the Gaussian 
Mixture dataset did not decrease the values of ARI 
and Silhouette Scores significantly. The scaling 
factors of weights are significant for the improvement 
of feature importance in datasets with overlapping 
clusters. Fine-tuning the eps parameter of DBSCAN 
shows the balance between cluster refinement and 
noise exclusion. Thus, the hybrid algorithm is shown 
to adapt to various datasets while maintaining high-
quality clustering results. 
 

 
Figure 7: Sensitivity Analysis: Impact of Hyper Parameter 
Changes 

6 CONCLUSION AND FUTURE 
WORK 

The proposed hybrid adaptive clustering algorithm 
using a combination of Weighted K-Means and 
DBSCAN attempts to address noise, imbalanced data, 
and shapes of irregular clusters. Performance results 
show the improved precision and scalability of the 
given algorithm compared to other baseline 
approaches, with the increase in ARI and Silhouette 
Scores for multiple datasets, both synthetic and real-
world. The adaptivity to imbalanced clusters is 
enhanced because of weighted centroid computation, 
while a DBSCAN refinement improves against noise 
and irregularities. Further scalability analysis 
confirms that the algorithm is efficient in handling 
large datasets with reasonable runtime and memory 
usage, thus a versatile solution for various 
applications of clustering. Despite various hybrid 
beneficial features, there are detrimental facets of it. 
Some additional dimensions such as setting optimal 
weight, DBSCAN's epsilon and minPts, enhance the 
complexity especially when using high dimensional 
data. Providing initial weights with no prejudice is 
also of paramount significance. These points illustrate 
opportunities for further optimizations. 

Future work would involve the use of this 
algorithm along with deep learning models for feature 
extraction or automated features in case high-
dimensional or unstructured data types such as 
images or texts are to be dealt with. It may further 
help in stream data or even online clustering scenarios 
and have real-time applications in changing 
environments. These avenues shall be the directions 
toward mature development of this hybrid algorithm 
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with better performance and scale complexity for 
complex large data situations. 
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