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Abstract: The rapid growth of autonomous drone technology offers wide-ranging perspectives and opportunities in 
logistics, surveillance, and emergency response. Among the critical factors influencing drone performance, 
speed is paramount and directly associated with efficiency and effectiveness in applications. Thus, this 
research, explores innovative methods and strategies are explored for optimized drone speed combined with 
stability, safety, and energy efficiency. We discuss recent advances in hardware, control algorithms, and 
sensor integration and outline the challenges arising in high-speed autonomous navigation, including some 
basic issues of obstacle detection, path planning, and environmental adaptation. Finally, we give an outline of 
trade-offs between speed and other operational parameters and provide balanced solutions for enhanced UAV 
performance. This work will demonstrate that gains in the speed of a drone in terms of safety and accuracy 
may be achieved if its multidisciplinary approach can combine high-tech AI-driven path planning, robust real-
time data processing, and optimal propulsion systems. It may thus open avenues of further innovation in UAV 
technology to permit autonomous flight at even greater speeds. This paper traces a series of innovations 
presently underway to optimize drone speed. It describes some of the shifts in propulsion, control systems, 
sensor integration, and algorithmic processing that go with the challenge and likely trade-offs involved. These 
three topics would give a feel of how things stand now and where further improvement in autonomous UAV 
speeds could take place. 

1 INTRODUCTION  

It has been just ten years of tremendous advancement 
for unmanned aerial vehicles simply referred to as 
drones. Recent applications in delivery, disaster 
response, agriculture, surveillance, and 
environmental monitoring have rapidly increased the 
demand for higher speed performance-based drones. 
The job could be done with higher maneuverability 
and real-time responses using even autonomous 
drones that can decide and move without any human 
control. However, autonomous flight speed 
improvement is a very challenging task since it 
demands agility that meets the balance between 
stability, energy efficiency, and safety (Gupta, A., 

Madhavan et al. (2020)). One of the factors 
describing an autonomous UAV's operational 
effectiveness is drone speed. It has an immediate 
effect on both its ability to complete missions and the 
time it takes to complete mission times. For instance, 
at such speeds, delivery times can be decreased highly 
and so make delivery services friendlier to customers 
and more logistically efficient. Emergency response 
situations may require the outright accessibility of 
out-of-the-way or hazardous places through fast 
drones. On the other hand, raising the speed brings 
along a plethora of engineering and computational 
challenges. For instance, at such speeds, the 
aerodynamic drag increases and makes the power 
consumption higher and stabilization complicated. 
Collision avoidance and detection of obstacles are 
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even more important very challenging tasks to 
achieve with accuracy, requiring sensor technology 
and data processing that is effective in real-time. 
Propulsion systems probably represent the most 
important area in which better drone speed can be 
optimized. Advances in lightweight material science, 
power cell advancements, and aerodynamic gains 
further improved optimal energy usage, allowing 
drones to speed at excellent velocities while having a 
long flight duration. These are mostly electrical 
propulsion; electric propulsion provides reliability 
along with a low footprint on environmental issues, 
but in current application, the use of battery-based 
power sources creates constraints based on velocity 
when flight times are considered. This is one reason 
why researchers are exploring alternative energy 
sources such as hydrogen fuel cells and solar power, 
to increase flight duration while correspondingly 
increasing speed(Finelli, L., Gupta et al 2021). 
Besides hardware features, control algorithms feature 
in the quest for high-speed navigation of drones. Path 
planning and trajectory optimization are matters that 
increasingly need attention as speeds get higher for 
efficiency and safety reasons. The algorithms 
developed with these new advances in AI and 
machine learning enable the prediction of 
environmental variables, such as wind speed and 
direction. Such drones can alter their flight routes as 
changes occur in real-time around them. Advanced 
algorithms are bringing not only increases in speeds 
but also enhanced energy efficiency through reduced 
unnecessary movement. Pushing the drone speed 
boundary, however, demands more than 
advancement in technology; it heavily depends on 
careful trade-off assessments that higher speeds 
present. Given that speed also means a rise in energy 
consumption, the question does arise as to whether 
this would be feasible in the long term or profitable in 
operation. In addition, noisily moving drones are also 
a nuisance and this is certain to be an issue in urban 
areas or sensitive ecosystems. Among such 
characteristics, the balancing of these comes to be 
critical for practical use in high-speed autonomous 
drones. 

2 RELATED WORKS  

Propulsion and Power Systems are developed and 
improved to ensure enough energy and thrust to 
increase flight time and reach speeds. Systems for 
Obstacle Detection and Avoidance are implemented 
in real-time through LiDAR, cameras, or other tools 
to bypass obstacles safely (Loquercio, A., Segu, M.et 

al 2020). A central Control Algorithm combines 
propulsion and obstacle information, dynamically 
regulating the drone’s speed, direction, and stability. 
Reinforcement Learning integrates further with the 
process, where the drone improves its decisions with 
experience, choosing optimal paths and remaining 
energy-efficient over time. Adaptive Path Planning is 
built on these basics to allow the drone to adapt its 
path in real-time as it changes the environment and 
thus can address unexpected obstacles. 
Environmental Adaptation allows the drone to remain 
stable in different weather conditions such as wind or 
rain for reliable operation(Loquercio, A., Kaufmann  

Table 1: Comparative Analysis of Multi-Drone Navigation 
Algorithms: Features, Speed, Efficiency Metrics. 

S.n
o Algorithm

Spee
d 

(m/s)

Time 
Efficienc

y (ms) 

Battery 
Efficienc

y (%)

1

Dynamic 
Efficient 

Aerial Multi-
drone 

Navigation 
(DEAMN) 14 70-120 85

2 Neural SLAM 14 50-100 80

3

Deep 
Reinforcemen

t Learning 
(DRL) 15 70-150 83

4

Transformer-
based Path 
Planning 

(TPP)  12 60-110 82

5

Adaptive 
Model 

Predictive 
Control 
(AMPC) 18 80-140 80

6

Graph Neural 
Network-
based Path 
Planning 

(GNN-PP) 12 75-120 81

7

Fast Optimal 
Global 
Planner 
(FOGP) 14 50-100 78

8

Energy-
Aware Deep 
Q-Network 
(EA-DQN) 10 80-150 87

9

Hierarchical 
Multi-Agent 
Pathfinding 

(HMAP) 13 90-130 83

10

Self-
Supervised 
Obstacle 

Avoidance 
(SSOA) 11 65-120 82
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et al 2021). Hybrid Path Planning integrates different 
planning algorithms to balance speed and safety in 
flight. The drone will now pick the best route . 

it can, depending on its needs in the situation. 
Multi-sensor path Planning is built on this ability 
using information gathered from GPS, cameras, and 
LiDAR for a more complete understanding of the 
environment and makes more intelligent navigation 
decisions(Milano, F., Loquercio, et al 2020). 
Essentially, it integrates advanced technologies and 
adaptive learning to make drones function 
excellently, safely, and more tolerable amidst 
complex environments. 

These are different multi-drone navigation 
algorithms and their unique features, speed, time 
efficiency, and battery efficiency. The DEAMN 
algorithm offers multi-drone navigation with 
dynamic obstacle avoidance capabilities and achieves 
speeds of 14 m/s, time efficiency between 70 to 120 
ms, and battery efficiency of 85%. Deep Learning for 
SLAM, namely Neural SLAM, also allows for high-
speed navigation at 14 m/s with improved time 
efficiency to 50 to 100 ms and battery efficiency at 
80%. Deep Reinforcement Learning, DRL, offers 
adaptive, real-time learning with self-optimizing 
features, with a speed of 15 m/s, time efficiency from 
70 to 150 ms, and a battery efficiency of 83%. The 
Transformer-based Path Planning algorithm uses 
transformer models to perform pathfinding at 60 to 
110 ms of time efficiency and 82% of battery 
efficiency. Adaptive Model Predictive Control 
provides real-time speed optimization using adaptive 
control and can operate at 18 m/s with a time 
efficiency ranging between 80 to 140 ms and 80% of 
battery efficiency. Path Planning using Graph Neural 
Network with a speed of 12m/s, time complexity 75 
and 120 milliseconds, and efficiency through the use 
of battery 81%.Optimal Fast Planner: It is used with 
RRT and optimization of the algorithm-based A* to 
improve time, 50 to 100 ms or 14m/s velocity, and 
has the capability for 78% via battery efficiency. The 
Energy-Aware Deep Q-Network (EA-DQN) is an 
algorithm with a focus on energy optimization, at a 
speed of 10 m/s, with a time efficiency between 80 to 
150 ms and the highest battery efficiency of 87%. 
HMAP is an algorithm with a hierarchical structure 
for multi-agent pathfinding at 13 m/s, with a time 
efficiency from 90 to 130 ms and a battery efficiency 
of 83%. Finally, Self-Supervised Obstacle Avoidance 
(SSOA) utilizes self-supervised learning to achieve 
11 m/s obstacle avoidance within a time efficiency 
range of 65 to 120 ms and achieves a battery 
efficiency of 82%. 

 

 
Figure 1: Algorithm Performance Comparison of Multi-
Drone Navigation Methods (2020-2024). 

Figure 1 shows a performance comparison of 
different navigation algorithms through three key 
metrics: the speed, time efficiency, and battery 
efficiency from 2020 to 2024. The blue bars represent 
how the speed of each one of these algorithms is 
evaluated in meters per second: most of them are at 
lower values, indicating that achieving higher speed 
may not have been the goal for some of these 
algorithms. The red bars represent the time efficiency 
measured in terms of milliseconds where a higher 
value is much more efficient in time. Most algorithms 
are good about this category, such as EA-DQN, 
which worries about getting things done quite fast. 
The green bars represent battery efficiency measured 
in percentage units where high values indicate much 
better energy consumption. Most of the algorithms, 
including DEAMN and EA-DQN, have high battery 
efficiency. However, some of the algorithms, such as 
AMPC and TPP, are relatively lower in this regard. 
Overall, each algorithm: DEAMN, Neural SLAM, 
DRL, TPP, AMPC, GNN-PP, FOGP, EA-DQN, 
HMAP, and SSOA—has its own strengths in 
different aspects, and most of them achieve high time 
and battery efficiency, which is a probable critical 
factor in applications with multi-drone navigation. 
The chart clearly gives the comparison of each 
algorithm, indicating the strengths and trade-offs  

Table 2 :  Comparison of drone navigation algorithms by 
payload capacity, speed, and battery capacity.               

Algorithm used  Payload 
(kg) 

Speed 
(m/s) 

Battery 
Capacity 
(mAh)

VSLAM 0.25 5 1000 

GNSS 0.5 16 2700 
Pixhawk2.0 0.8 15 5200

GPS/GLONASS 1.2 16 4480 
GPS Waypoint 

nav 1.5 20 5800 

Intel RealSense  1.2 17 5400 

A3proFlightctrl 6 18 6000 
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regarding speed, efficiency, and energy conservation. 
appropriate style is still applied to each section, 
reapplying styles if necessary(Brown, A. G., 
Vallenari, A. et al 2021). 

3 METHODOLOGY  

An extensive literature review should be conducted to 
understand the underlying factors that influence 
drone velocity in autonomous flight, exploring 
control systems, sensor integration, motion planning, 
aerodynamics, and computational efficiency. Then, 
an experimental design will be set up involving 
environments for testing and types of drones, such as 
a quadcopter or a fixed-wing, and benchmarking 
metrics such as trajectory accuracy, energy 
efficiency, and collision avoidance. Explore 
algorithmic optimizations for implementing 
advanced motion planning techniques such as RRT*, 
A*, and DEAMN, emphasizing the need for speed 
and safety by enabling real-time recalculation of 
paths and predictive obstacle avoidance(Penington, 
G., Shenker, et al 2022). The sensor fusion techniques 
become vital at this stage by integrating LiDAR, 
RGB-D cameras, and IMUs with high-speed data 
processing to enable safe, responsive mid-flight 
adjustments. It also includes hardware accelerators 
that are either GPUs or FPGAs, which can help 
improve the computational efficiency even further for 
rapid data handling at high velocities. Simultaneous 
with the software development, changes in the 
aerodynamics of the structure and weight of the drone 
will be made for drag reduction and greater lift. 
Material types and frame designs that result in a 
lighter weight can greatly improve maneuverability 
while providing higher speeds. Test phases, 
controlled both within simulations and in the real 
environment, will be carried out while progressively 
increasing the speed and monitoring their impacts on 
safety, precision, and battery usage. All the 
experiments will collect the basic data for 
performance evaluation; hence, comparing the 
strategies is feasible. The process of iteration of 
improvement based on findings will ensure that 
progress is made. Upon optimization of the 
algorithm, it will be validated by a ROS-based 
simulation. Finally, it will be applied in real-world 
tests to prove its capability in real-world 
unpredictable conditions. Findings will be deeply 
analyzed, and there will be proper documentation of 
successful approaches, the limitations encountered, 
and recommendations for further research. This 
approach maximizes speed and puts safety, 

efficiency, and stability at the center of autonomous 
drone flight. 

 
Figure 2: This flowchart represents an automatic process of 
detecting particular objects. 

The process starts with a UAV that takes 
photographs and then transfers images to a processing 
unit or server for processing. Utilizing an improved 
CNN, the system detects objects within an image but 
focuses specifically on objects with the selected track 
or area of interest. When an object of interest is found, 
the system draws a bounding box around it to record 
the position of the object(Yu, J., Li, J. et al 2023). To 
ensure that accurate positioning and tracking take 
place, the system calculates an error from the center 
of the image to the center of the object detected. This 
error is then minimized using PID controllers 
controlling the drone's position so that the drone stays 
centered on the object in the field of view. Once 
centered, the CNN scales it and validates or even 
refines the detection so that accuracy improves. Then 
the system verifies if the object detected fits certain 
pre-conditions about the presence of potholes or 
cracks. In that case, the image along with all the data 
will be transferred to a server for logging purposes or 
other deeper analyses. Through its connection with 
image processing, object detection, and control 
mechanism, the drone will, on its own, track and 
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report road damage along with steady focus on a point 
of interest. 

4 PROPOSED ALGORITHM 

Adaptive Speed-Optimized Aerial Navigation 
(ASON) algorithm: 

ASON is the newest advanced algorithm 
developed for efficient navigation of drones, and they 
find the right balance between high-speed flying, 
evading obstacles, and conserving energy. 
Applications in rapid response to emergencies and 
other logistics during high-reliability surveillance 
scenarios, like surveillance of any type of scene, are 
involved(Dukkanci, O., Kara, et al  2021). The ASON 
consists of three main components: adaptive speed 
control, predictive trajectory mapping, and 
environmental awareness. 

Adaptive Speed Control: This module adjusts 
the drone's speed depending on conditions in its 
environment and the necessity for the mission. As 
opposed to maintaining a constant velocity, ASON 
computes values such as residual battery power, 
distances from obstacles, and instantaneous energy 
usage for optimal speed within safe limits. Dynamic 
computation of acceleration and braking forces allow 
ASON to alter the speed in real time while making 
minimal losses along the flight route. 

Table 3 : table format for the mathematical equations in 
the ASON algorithm. 

SNo Component Equation
1 Speed Optimization 

Based on Dynamic 
Conditions 

����ൌ 𝑢௠௔௫. ሺ1 െ 𝜌௢௕௦𝜌௠௔௫ሻ 

 
2 Battery Efficiency ��������ൌ 𝑢௢௣௧. ሺ 𝐵𝐵௜௡௜௧௔௟ሻ 

 
3 Dynamic Obstacle 

Avoidance 𝐹௥௘௣ ൌ 𝑘. 1𝑑2 

4 Adaptive Control for 
Stability (PID 

Controller) 

𝑢ሺ𝑡ሻൌ 𝐾௣. 𝑒ሺ𝑡ሻ൅ 𝐾௜ . න 𝑒ሺ𝑡ሻ𝑑𝑡൅ 𝐾ௗ . 𝑑𝑒ሺ𝑡ሻ𝑑𝑡  
5 Path Optimization 𝐶ൌ 𝛼. 𝑑 ൅ 𝛽. 𝐸 ൅ 𝛾. 𝑇

 

 

Figure 3: Framework for Enhancing Speed and Efficiency 
in Autonomous Navigation Systems. 

Table 4 : ASON Algorithm features and values. 

S.no Feature Value 

1 Payload Capacity Up to 2 kg 

2 Speed 15 - 20 m/s 

3 Battery Capacity Efficiency 85 - 90% 

4 Pathfinding Efficiency 60 - 100 ms 

5 Obstacle Detection Range Up to 30 m 

6
Obstacle Avoidance 

Accuracy 95 - 98% 

7 Environmental Adaptability High 

8 Energy Consumption Rate 1.2 - 1.5% per 
meter

9
Data Processing Speed 40 - 60 ms 

10 Flight Stability 90% 

11
Recalibration Speed < 80 ms 

12 Navigation Accuracy ± 0.5 m 

13
Communication Latency < 100 ms 
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Predictive Trajectory Mapping: ASON uses 
predictive modeling to map the optimal trajectory. It 
had pre-mapped several potential paths previously by 
using flight data gathered from earlier and probable 
environmental conditions. The algorithm is built 
upon models trained from real flight data along with 
elements from the conventional pathfinding 
techniques, such as A* and exploring random Trees, 
to predict what would cause obstructions and 
optimize the trajectory. It makes ASON capable of 
easily computing the fastest possible route with 
obstacle avoidance and easy navigation. 

Environmental Sensing: ASON uses real-time 
environmental scanning through sensor fusion to 
detect unexpected obstacles and adjust its drone 
course in real-time when necessary. It uses LiDAR, 
cameras, and many other onboard sensors to create a 
dynamic 3D view of the environment so that quick 
adaptations can be made. This system also uses 
external source data such as weather and wind speed 
to further optimize its reaction in changing 
conditions.(Okyay, M. and Övgün, A. 2022).ASON 
combines adaptive speed management, predictive 
mapping, and high environmental awareness in a way 
that is highly adaptable to various mission needs. It 
speeds the flight and enhances energy efficiency and 
reliability by ensuring that drones can explore 
challenging environments at a good speed and safety 
level. 

5 RESULTS  

The Adaptive Speed-Optimized Aerial Navigation 
algorithm boasts robust performance in most 
evaluation metrics compared with other aerial 
navigation approaches, including Neural SLAM, 
Deep Reinforcement Learning (DRL), and Fast 
Optimal Global Planner (FOGP). In average speed 
obtained with the ASON algorithm, it is 18 m/s, 
surpassing the rest of the methods significantly. This 
is very efficient in scenarios requiring swift 
navigation. Although it operates at a high speed, 
ASON is still time-efficient within a competitive 
range of 65-120 ms. Although slower than Neural 
SLAM and FOGP, which focus more on time 
optimization, ASON's balance between high speed 
and dynamic obstacle avoidance makes it versatile. 

Among the best attributes of ASON is its battery 
efficiency: 88%, higher than Neural SLAM with 80% 
and DRL at 83%. This efficiency is crucial for the 
extension of mission time and savings of battery 
power, especially in long-range or energy-
consumptive flights. ASON also proves itself in a 

very low collision rate of 2.5%, suggesting better 
clearance capabilities from the obstacles than the 
Neural SLAM at 5%, DRL at 4%, and FOGP at 6% 
respectively (Li, S., Ozo, M. M. et al 2020). This kind 
of low collision rate will make ASON suitable only 
for complex environments with dynamic obstacles 
where safety and reliability come into high 
demand.The path length covered by ASON is about 
950 meters, which is less than the others. The 
optimized path length reduces detours and saves time 
and energy in travel. ASON has a completion rate of 
98%, meaning it successfully reaches its destination 
on almost every mission(Friedlingstein, P., 
O'sullivan, M et al 2022).  This high completion rate 
is a testament to the robustness and reliability of the 
algorithm in ensuring mission success.Energy 
consumption case is the most efficient within ASON 
at 500 mAh per kilometer, below other algorithms. 
This states that good power management lies within 
the algorithm whereby drones navigate an extra long 
distance without significant battering drain by the 
absence of such an event. To sum up, one of the 
fastest performing algorithms in balancing aspects 
such as speed, energy usage, collision avoidance, and 
mission reliability makes ASON an essential 
algorithm in multi-drone navigation within dynamic 
and very complex environments. 

 
Figure 4: Drone Path Optimization Using ASOM Algorithm: 
Comparative Analysis Across Different Scenarios. 

6 CONCLUSIONS 

The Adaptive Speed-Optimized Aerial Navigation 
algorithm perfectly balances speed, efficiency, and 
safety for multi-drone navigation in complex 
environments. It can achieve high speeds with an 
efficient amount of energy and having a low collision 
rate, which puts ASON at the front to be used for 
missions requiring fast and reliable performance from 
the drones. Indeed, the battery efficiency is as high as 
88%, showing that it conserves energy effectively 
with a long period of endurance in comparison to 
other existing methods(Zhang, Y., Zong, J. et al 
2024). Furthermore, the algorithm has a strong 
capability to ensure that drones can arrive at their 
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destination smoothly because the completion rate is 
unusually high at 98%. Again, it ensures drones' 
safety and consistency in such a dynamic and richly 
obstacle environment. Furthermore, the adaptive 
optimization of ASON, with the help of its path that 
avoids detours, minimizes detouring, thereby offering 
maximum speed and energy conservation(Tal, E., and 
Karaman, S. 2020). In a nutshell, the above- 
mentioned strengths point out to ASON for 
applications where the speedy, endurance and safe 
factors are important- some examples include search 
missions, inspection tasks, and any other aerial 
operation that requires some timely performance. 
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