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Abstract: We present a novel secure execution environment that provides comprehensive protection for program ex-
ecution through a unified cryptographic approach. Our construction employs authenticated encryption, en-
suring instruction confidentiality, integrity, and correct execution ordering. The system’s key innovation
lies in its cryptographic binding of consecutive instructions through a novel key chaining mechanism that
prevents instruction reordering and replay attacks while maintaining an enforced order of instructions us-
ing cryptographic chaining via keys. We introduce specialized handling for control flow operations, in-
cluding branches, jumps, and function calls, that preserves security guarantees across complex execution
paths. The framework includes a protection mechanism for registers and memory, creating a fully se-
cured execution environment. Our performance analysis quantifies the computational overhead and pro-
vides a Python proof-of-concept implementation that validates the practical viability of our approach https:
//github.com/shahzadssg/Control-Flow-Protection-by-Cryptographic-Instruction-Chaining.git.

1 INTRODUCTION

The security of program execution remains a criti-
cal challenge in modern computing systems as threats
grow increasingly sophisticated. Traditional protec-
tion mechanisms, such as memory isolation and ac-
cess control, are inadequate against advanced attacks
exploiting speculative execution, instruction reorder-
ing, and memory tampering (Abadi et al., 2009;
Kocher et al., 2018). This paper presents a novel se-
cure execution environment that addresses these vul-
nerabilities through a unified cryptographic approach,
ensuring instruction confidentiality, integrity, and cor-
rect execution ordering.

Secure program execution requires addressing
three interrelated challenges: maintaining instruction
confidentiality to prevent leakage of sensitive behav-
ior, ensuring execution integrity to protect against
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tampering, and enforcing strict control over instruc-
tion order to thwart reordering attacks. These is-
sues are critical in systems processing sensitive algo-
rithms, where vulnerabilities like return-oriented pro-
gramming (ROP) (Shacham, 2007) and speculative
execution attacks (e.g., Spectre (Kocher et al., 2020))
exploit execution patterns and microarchitectural side
channels to compromise security.

Previous approaches, such as memory en-
cryption (Gueron, 2016), control-flow integrity
(CFI) (Wang et al., 2012), and hardware-based so-
lutions like Intel SGX (Costan and Devadas, 2016)
and Morpheus (Gallagher et al., 2019), offer partial
protections but lack a unified framework. Memory
encryption secures data but not execution order, CFI
validates paths without ensuring confidentiality, and
hardware solutions rely on specific features without
inherent ordering guarantees. These gaps leave sys-
tems vulnerable to multi-vector attacks, necessitating
a comprehensive solution that integrates all required
security properties with practical performance.

Our contribution is a secure execution environ-
ment that combines instruction confidentiality, in-
tegrity protection, and execution order verification
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through a cryptographic framework. This is achieved
via a novel key chaining mechanism that binds con-
secutive instructions, preventing reordering and re-
play attacks, and specialized handling of control flow
operations (e.g., branches, jumps, function calls) to
maintain security across complex paths. A Python
proof-of-concept validates its feasibility, supported by
performance and security analyses.

1.1 Threat Model and Assumptions

Our threat model assumes adversaries can observe
and manipulate encrypted instructions and memory,
execute chosen-instruction attacks, and run arbitrary
code outside the secure environment, but cannot ex-
ploit microarchitectural side channels due to serial-
ized processing. We assume a secure processor with a
protected master key, symmetric encryption, HMAC,
and secure key generation capabilities, enabling guar-
antees against confidentiality breaches, integrity vio-
lations, and control-flow hijacking.

2 RELATED WORK

Secure execution has become critical in protecting
modern computing systems against increasingly com-
plex attack vectors. Existing approaches include
memory encryption, control-flow integrity, processor
architecture enhancements, a cryptographic compu-
tation framework, and hardware-based security solu-
tions. This section reviews key developments in these
areas, highlighting the limitations that our work aims
to address through a cryptographically unified secure
execution environment.

2.1 Memory Encryption and Smart
Card Security

Memory encryption has been widely studied to pro-
tect data confidentiality and integrity, particularly for
environments vulnerable to physical access or side-
channel attacks. Henson and Taylor (Henson and Tay-
lor, 2014) provided an extensive survey on memory
encryption techniques, describing strategies such as
block ciphers and integrity verification. Specialized
implementations, such as the low-latency memory en-
cryption for smart cards presented by Ege et al. (Ege
et al., 2011), showcase memory encryption tailored
for constrained devices, balancing security with effi-
ciency.

2.2 Control-Flow Integrity (CFI) and
Instruction Set Randomization
(ISR)

Control-flow integrity (CFI) and Instruction Set Ran-
domization (ISR) have proven effective in defending
against code-reuse attacks and code injection attacks.
The foundational work of Abadi et al. (Abadi et al.,
2009) on CFI introduced a robust approach for secur-
ing program control flow against hijacking attempts.
Tice et al. (Tice et al., 2014) expanded CFI implemen-
tation to widely used compilers like GCC and LLVM,
creating practical tools for protecting against forward-
edge attacks. ISR techniques, such as those pro-
posed by Kc et al. (Kc et al., 2003), further mitigate
code injection by randomizing instruction encoding
at runtime, preventing predictable exploit payloads.
Meanwhile, Christou et al. (Christou et al., 2020) ex-
plored architectural enhancements to support ISR, en-
suring that randomized instruction sets are resilient
to static analysis and reverse engineering. Werner
et al. (Werner et al., 2018) propose sponge-based
control-flow integrity for IoT, leveraging lightweight
cryptography. Savry et al. (Chamelot et al., 2022) in-
tegrate instruction and data authenticated encryption
(Confidaent) for holistic protection.

2.3 Data-Oblivious and Encrypted
Computation

Data-oblivious computation frameworks have
emerged to facilitate secure computations on un-
trusted platforms by concealing data access patterns.
PHANTOM, proposed by Maas et al. (Maas et al.,
2013), utilizes oblivious RAM to secure memory
accesses, ensuring that patterns reveal minimal
information to potential adversaries. Similarly,
Liu et al. (Liu et al., 2015) developed ObliVM, a
programming framework for oblivious computation,
offering support for cryptographic protocols and
secure multiparty computation. Rass et al. (Rass
et al., 2015) introduced Oblivious Lookup-Tables
(OLUTs), enabling arbitrary function evaluation on
encrypted data using group homomorphic encryp-
tion through clever use of Vandermonde matrices,
offering an efficient middle ground between basic
homomorphic schemes and fully homomorphic
encryption (FHE). HEROIC, introduced by Tsoutsos
and Maniatakos (Tsoutsos and Maniatakos, 2014),
implemented homomorphic encryption within a
minimalistic one-instruction architecture, proving
useful for encrypted cloud computing and privacy-
preserving processing. However, these frameworks
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often need more formulation which come at a higher
computational cost.

2.4 Side-Channel and Cache Attack
Mitigation

As side channel attacks become more sophisticated,
research has turned to mitigating vulnerabilities in
cache and timing. Gruss et al. (Gruss et al., 2015)
presented cache template attacks, demonstrating how
adversaries can exploit last-level cache inclusivity for
information leakage. Speculative execution vulnera-
bilities, as exposed by Kocher et al. (Kocher et al.,
2020) with the Spectre attacks, further underscored
the need for more rigorous protections at the hard-
ware level. In response, Rass and Schartner (Rass and
Schartner, 2016) examined countermeasures against
chosen instruction attacks within cryptographic en-
vironments, proposing instruction verification to pre-
vent unauthorized instruction modification.

2.5 Cryptographic Techniques for
Execution Order and Integrity

Recent research has focused on cryptographic meth-
ods to enforce correct instruction sequencing and pro-
gram integrity. Zahur et al. (Zahur et al., 2015) in-
troduced a half-gate approach to reduce data trans-
fer in garbled circuits, improving efficiency in cryp-
tographic computation. Zahur and Evans (Zahur and
Evans, 2015) developed Obliv-C, a language for ex-
tensible data-oblivious computation, enabling flexi-
ble applications in privacy-preserving environments.
The formal verification of control-flow graph flatten-
ing by Blazy and Trieu (Blazy and Trieu, 2016) high-
lights ongoing efforts to ensure control-flow integrity
within cryptographic environments, preventing adver-
sarial manipulation of execution order. De Clercq et
al. (de Clercq et al., 2017) (SOFIA) combine soft-
ware and control-flow integrity for embedded sys-
tems. Stecklina et al. (Stecklina et al., 2015) intro-
duced Intrinsic Code Attestation, which uses cryp-
tographic instruction chaining for embedded devices
to prevent unauthorized code execution and instruc-
tion reordering attacks. Their work demonstrated the
feasibility of creating cryptographic dependencies be-
tween consecutive instructions using block ciphers,
providing early validation of instruction chaining con-
cepts in resource-constrained environments.

Our approach leverages key aspects from prior
works, introducing a cryptographically unified secure
execution environment that combines data confiden-
tiality, integrity, and execution order verification. This
work extends current models by addressing forward

and backward secrecy in instruction sequences, offer-
ing tamper detection and replay protection against so-
phisticated attacks. The unique key mechanism in our
approach not only enhances security but also simpli-
fies the execution process. Like Morpheus II (Harris
et al., 2021), we employ strong cryptography to pro-
tect code and control data. However, we advance be-
yond simple encryption by creating a cryptographic
binding between consecutive instructions through our
key chaining mechanism.

3 CONSTRUCTION

We present a novel secure execution environment that
provides confidentiality and integrity protection for
instructions and data while ensuring correct execution
order even in the presence of adversarial tampering
attempts. The system employs a combination of sym-
metric encryption, HMAC, and a unique key chain-
ing mechanism to create a provably secure execution
model.

3.1 System Model and Notation

We consider a processor architecture with the follow-
ing essential components. The system uses a set of
registers R = {r1,r2, . . . ,rn} alongside an instruction
memory I and data memory M, both storing encrypted
content with authentication tags. Program execution
is tracked via an instruction pointer ip ∈ N, while an
encrypted call stack manages function calls and re-
turns. The architecture’s security relies on crypto-
graphic primitives including symmetric encryption E,
decryption D, an HMAC function H, and a secure ran-
dom key generator KeyGen. We use the following no-
tation:

• KM: The Master key is known only to the secure
processor. The complete life cycle of this key (in-
cluding creation, distribution, usage, rotation and
destruction processes) is outside the scope of this
paper. We assume secure processes are in place to
manage this key.

• Kprev: Key used to decrypt registers before exe-
cuting an instruction

• Knext : Key used to encrypt registers after execut-
ing an instruction

• Kret : Randomly generated key to be put onto the
stack

• EK(m): Symmetric encryption of message m un-
der a key K
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• DK(c): Symmetric decryption of ciphertext c un-
der a key K

• HK(m): HMAC of message m under key K

• KeyGen(t) : {0,1}t , a cryptographically secure
random key generator that produces a key of
length t, where t is the security parameter

3.2 Cryptographic Chaining and
Instruction Execution

Our system employs a key chaining mechanism to en-
sure the correct order of instruction execution and to
prevent various attacks, including instruction reorder-
ing and replay attacks. This mechanism creates a
cryptographic binding between consecutive instruc-
tions, effectively forming a chain of keys that must
be followed for correct execution. The key derivation
chain operates as follows:

3.2.1 Initialization

For the first instruction I0

• Kprev← KM (the Master key)

• Knext←KeyGen(t) (a randomly generated key, in-
dependently generated afresh for each instruction)

3.2.2 Sequential Instructions

These basic arithmetic, logic, and data movement in-
structions within the register file (e.g. MOV) execute
in sequence without altering the control flow. These
instructions maintain the strict sequential execution
order through the cryptographic chaining mechanism,
where the previous key of each instruction must cor-
respond to its predecessor’s next key. For each se-
quential instruction Ii (where i > 0):

The key mechanism operates as follows:

• Kprev← Knext of instruction Ii−1 (the previous in-
struction’s next key)

• Knext ← KeyGen(t) (a freshly generated random
key)

The key derivation chain works in conjunction with
the instruction encoding scheme. Each instruction is
encoded as a tuple:

Ii = (opi,argsi,Kprev,i,Knext,i)

Each instruction i comprises four essential ele-
ments: the opcode (opi is encoded as 8 bits) that de-
fines the operation, instruction arguments( argsi) as
32-bit values (though other bit lengths are supported),
Kprev,i (128 bits) for decrypting registers before exe-
cution, and Knext,i (128 bits) for encrypting registers

after execution. This structure ensures secure instruc-
tion handling throughout the execution cycle. The in-
struction is then processed and stored as:

Ti = HKM (Ii)

Ci = EKM (Ii||Ti)

where Ti is the authentication tag for instruction Ii,
and || denotes concatenation.

Execution Process

The execution of a sequence of instructions proceeds
as follows:

i) Fetch encrypted instruction Ci at address ip

ii) Decrypt and verify integrity:

• (I′i ||T ′i ) = DKM (Ci)

• T ∗i = HKM (I
′
i )

• If T ∗i ̸= T ′i , halt execution

iii) Parse I′i = (opi,argsi,Kprev,Knext)

iv) Decrypt registers: For each register j ∈ {1, . . . ,n},
r j = DKprev(R[ j]). In this register system, j serves
as the register index within the total set of n reg-
isters in the bank. The system maintains two rep-
resentations for each register: R[ j] represents its
encrypted state, while r j holds the corresponding
decrypted value used during computation. This
dual representation enables both secure storage
and practical usage of register contents.

v) Execute instruction (opi,argsi) on decrypted reg-
isters

vi) Update state: registers and memory

vii) Encrypt updated registers: For each register j in
{1, . . . ,n}: R[ j] = EKnext (r j)

viii) Update ip (instruction pointer) based on instruc-
tion type.

In our model, cryptographic chaining enforces
a strict sequential order across all pipeline stages:
fetch, decode, execute, and commit. Each instruc-
tion’s decryption and validation depends on the cryp-
tographic key from its predecessor, serializing the
entire pipeline. Unlike traditional out-of-order ar-
chitectures where only commit/retirement stages en-
force program order, our scheme restricts parallelism
at every stage. Functional units cannot process in-
structions out-of-order, as the cryptographic binding
requires the prior instruction’s key to unlock subse-
quent operations. This ensures that even if dependen-
cies theoretically allow reordering, the cryptographic
chain mandates sequential progression.
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3.2.3 Conditional Branches

Our secure execution environment handles condi-
tional branches through a deterministic key deriva-
tion mechanism that maintains cryptographic conti-
nuity across both potential execution paths.

For a conditional branch instruction Ibr

• Kprev← Knext of the previous instruction

• Knext f alse ← KeyGen(t) if the branch is “non-
taken” (sequential)

• However, if the branch is “taken” then for the
branch instruction’s Knext true, the function must
have properties:

i) the output must be suitable for use as an en-
cryption key, typically a fixed-length bit string
matching the security parameter t

ii) the computation must be deterministic but
depend on both the target label and the
master key KM to prevent adversaries from
computing it themselves. This can be ex-
pressed as: Knext true ← f unc(target label) =
HKM (target label)

A target label represents a secure destination identi-
fier within the execution environment that serves mul-
tiple critical purposes in the control flow mechanism.
It is an integral component encoded within various
control transfer instructions (conditional branches,
unconditional jumps, and function calls) that speci-
fies where program execution should continue. The
target label is both encrypted and integrity-protected
through HMAC verification, and plays a crucial role
in the cryptographic key derivation process through
the function f unc(target label). This design ensures
that only authorized code possessing the master key
can compute valid keys for execution at target loca-
tions. The target label maintains the cryptographic
binding between source and destination instructions
while enabling secure control transfers, as it serves as
the basis for deriving the next encryption key (Knext )
that will be used to verify proper execution sequenc-
ing at the destination. This mechanism prevents unau-
thorized jumps or execution reordering while allow-
ing legitimate program control flow to proceed se-
curely within the encrypted execution environment.

The above key derivation for Knext true provides
critical security properties. First and foremost, only
entities possessing the master key KM can compute
Knext true, ensuring that key derivation remains re-
stricted to authorized parties within the secure exe-
cution environment. The construction’s determinis-
tic nature means that identical labels consistently pro-
duce the same keys, which is essential for maintaining

execution consistency across multiple runs of the pro-
gram. Additionally, the output maintains the crypto-
graphic operations. The use of HMAC ensures that
different labels produce cryptographically indepen-
dent keys, preventing any potential key-relation at-
tacks. This independence property is crucial for main-
taining security isolation between different branches
in the program’s execution flow.

The conditional branch instruction is encoded
as:The conditional branch instruction

Ibr = (BRcond , target label,Kprev,Knext true,Knext f alse)

The conditional branch instruction consists of sev-
eral key components that work together to ensure
secure execution flow. The instruction uses BRcond
to represent a generic conditional branch operation
that can handle any type of branching logic. The
target label specifies the destination address in the
program’s code where execution should proceed af-
ter the control flow transfer, whether it’s from a jump,
branch, or function call. To maintain security dur-
ing branching, the system employs two distinct keys:
Knext true for when the branch is taken and execution
moves to the target address, and Knext f alse for when
the branch is not taken and execution continues se-
quentially. This dual-key structure ensures crypto-
graphic separation between the two possible execu-
tion paths.

Execution Process

The execution of a conditional branch instruction
proceeds as follows:

Knext ←

{
Knext true : if branch taken = True
Knext f alse : if branch not taken = False

ip =

{
target label : if branch taken = True
ip+1 : if branch not taken = False

When execution continues at a target label loca-
tion, the key chaining mechanism ensures proper se-
quential execution 3.2.2 resumes from that point.

The instruction format for sequential instructions
is
op,args,K prev,K next = 8 + 32 + 128 + 128 =
296 bits and for conditional branch it includes a
target label (32 bits) and
Knext true,Knext f alse (2× 128 bits). In order to mit-
igate the memory overhead, the deterministic keys
(e.g., HKM (target label)) reduces storage for branch
targets and in future we will explore in compressing
authentication tags or using shorter keys (e.g., 64-bits
truncated HMACs).
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3.2.4 Unconditional Jumps (JMP)

Unlike conditional branches, unconditional jumps al-
ways transfer control to their target location. The key
management must be such that the key for the next
instruction is computable from any point in the pro-
gram, i.e., we let this key depend on the jump target
and the secret master key to avoid an attacker com-
puting it from the source code already.

For an unconditional jump instruction I jmp

• Kprev← Knext of the previous instruction

• Knext ← f unc(target label) = HKM (target label)
The jump instruction is encoded as:

I jmp = (JMP, target label,Kprev,Knext)

The unconditional jump instruction consists of three
core components that enable secure control flow
transfer. The JMP opcode designates an uncondi-
tional jump operation that transfers execution to a
new location, while the target label specifies the ex-
act destination address where execution will continue.
The third component, Knext , is a cryptographic key de-
rived deterministically from the target label to main-
tain security throughout the jump operation.

The keychain operation for jumps follows a
carefully designed sequence to ensure security.
First, Knext is computed deterministically using the
f unc(target label) function. This deterministic
derivation ensures that any jump targeting the same
label will generate identical key values, providing
consistency in the security mechanism. Finally, this
approach creates a robust cryptographic binding be-
tween jump instructions and their target locations,
preventing unauthorized modifications to the control
flow. This three-part mechanism works together to
maintain both the integrity and security of program
execution during unconditional jumps.

Execution Process

The execution of an unconditional jump instruction
proceeds as follows:
i) Encrypt registers with Knext ←

f unc(target label)

ii) Transfer control to target label location

iii) Target instruction must use jump’s Knext at its
Kprev

3.2.5 Function Calls

Our secure execution environment implements func-
tion calls using a deterministic key derivation mecha-
nism for function entry points, ensuring consistent ac-
cess across multiple calls. Furthermore, each CALL

instruction is assumed to have a corresponding RET
(return) instruction.

For a function call instruction (CALL):

• Kprev← Knext of the previous instruction

• Knext ← f unc(target label) is deterministically
derived from the target label

• Kret ← KeyGen(t)

The CALL instruction is encoded as a tuple:

Icall = (CALL, target label,Kprev,Knext)

Execution Process

i) Registers are decrypted using the Kprev of the
CALL instruction

ii) The return address (ipret ) is set to the address of
the next instruction after the call function is per-
formed

iii) The Knext of the RET instruction is denoted by
Kret , and it is put on the stack (together with ipret )
and will be used as Kprev for the instruction where
execution returns.

iv) The return information is encrypted and pushed
onto the call stack:

Spush = EKM (ipret ∥ Kret ∥ HKM (ipret ∥ Kret))

v) Registers are encrypted using the Knext of the
CALL instruction, and this next key will become
the previous key for the called function

vi) The instruction pointer is set to the target address
of the called function.

This approach ensures that the return address and
key are securely stored and cannot be tampered with
during the function execution.

3.2.6 Function Returns

The return mechanism (RET instruction) is designed
to securely restore the execution context and maintain
the integrity of the key chain.

For a return instruction:

• Kprev← Knext of the previous instruction

• Knext is obtained from the call stack

The RET instruction is encoded as:

Iret = (RET,Kprev,∗)

where ∗ indicates Knext will be determined at run-
time from the call stack.
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Execution Process

i) Call Stack Retrieval: The encrypted return infor-
mation is popped from the call stack:

Spop = top element of the call stack

ii) The return information is decrypted and verified:

(ipret ,Kret ,T ) = DKM (Spop)

T ∗ = HKM (ipret ∥ Kret)

If T ∗ ̸= T , execution is halted due to potential
tampering.

iii) The instruction pointer is set to ipret .

iv) Knext is set to Kret .

v) Registers are encrypted using Kret (which be-
comes the Kprev for the next instruction).

This mechanism ensures that:

a) The return address cannot be manipulated during
function execution.

b) The key chain integrity is maintained across func-
tion calls and returns.

c) Any tampering with the call stack or attempt to re-
turn to an unauthorized location will be detected.

By implementing function calls and returns this
way, our secure execution environment maintains a
continuous chain of keys throughout the program’s
execution, including across function boundaries. This
approach provides strong protection against vari-
ous attacks, including return-oriented programming
(ROP) and other control-flow hijacking attempts. The
key derivation chain mechanism makes sure that the
correct execution order is maintained even in the pres-
ence of complex control flow structures. The use of
distinct keys for different execution paths (Knext true
and Knext f alse for branches, Kret for function returns)
provides strong cryptographic binding between in-
structions and their intended execution sequence. The
key derivation chain provides several security proper-
ties:

1. Instruction Ordering: The chain assures that in-
structions can only be executed in the intended
order, even across branches and function calls.

2. Replay Protection: Each instruction uses unique
keys, preventing replay attacks.

3. Forward Secrecy: Compromising one instruc-
tion’s keys does not reveal information about sub-
sequent instructions.

4. Backward Secrecy: Similarly, compromising one
instruction’s keys does not allow the derivation of
keys for previous instructions.

CALL subtract ,  

subtract: ,  

SUB AX, BX ,  

RET , 

MOV CX, AX , 

MOV DX, AX , 

CMP DX, 1 
 ,  

MOV DX, 0  
, 

equal_one: , 

MOV DX, 100 , 

JMP end , 

end: , 

MOV AX, 10  (Master) ,  (random)

MOV BX, 3 ,    

CALL subtract ,  

false

Push 

Legends

MOV/SUB/JMP:

CALL:

CMP:

Labels:

RET:

Stack Op:

Normal Flow:

Push 

true

BEQ equal_one 
,   

, 
  

Pop

Pop

Figure 1: Execution flow example.

Figure 1 presents an illustration of the execution flow
in the secure execution environment, demonstrating
how the key chaining mechanism works across vari-
ous instruction types and control flow operations. The
execution flow begins with basic instructions, starting
with MOV AX, 10 that uses the master key (KM) as
Kprev and generates a random K2 as Knext , followed
by MOV BX, 3 which continues the key chain. The
diagram then shows how function calls are handled,
with a CALL subtract instruction that derives its Knext
using a special function of the target label. The func-
tion call mechanism is illustrated with stack opera-
tions, showing how return keys (Kret ) are pushed onto
the stack, and how the subtract function executes its
operations (including SUB AX, BX) before returning
via a RET instruction.
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The figure also demonstrates the handling of com-
plex control flow operations, including conditional
branching through a CMP DX, 1 instruction followed
by a BEQ equal one branch. This shows how the
system manages different execution paths, with sep-
arate key chains maintained for both the taken and
not-taken paths of the branch. The diagram includes
an unconditional jump (JMP end) as well, illustrating
how control flow is maintained across different types
of transfers. Throughout the execution flow, the dia-
gram uses a clear visual notation system with distinct
shapes for different instruction types, directional ar-
rows showing execution flow, and dotted lines indicat-
ing the stack operation. The key transitions between
instructions are explicitly labeled, showing how Kprev
and Knext values are maintained and derived through-
out the program’s execution. This visualization effec-
tively demonstrates how the system maintains cryp-
tographic continuity while handling complex control
flow structures, ensuring secure execution across all
program paths.

3.2.7 Asynchronous Events: Interrupts and
Exceptions

Asynchronous events, such as interrupt requests
(IRQs) and processor exceptions, pose a unique chal-
lenge to the strict sequential and deterministically
chained execution flow described so far. These events
occur at unpredictable times, forcing a transfer of con-
trol to a specific handler routine outside the program’s
planned control flow graph. To maintain the secu-
rity guarantees of cryptographic instruction chain-
ing across asynchronous context switches, the sys-
tem must securely handle the saving of the interrupted
task’s state and key context, the execution of the han-
dler, and the secure restoration of the original task’s
state upon return. When an asynchronous event oc-
curs:
1. Interrupt Recognition and State Save: The secure

processor recognizes the interrupt or exception.
Before executing the first instruction of the han-
dler, it must securely save the full execution state
of the interrupted task. This includes:
• The Instruction Pointer ip of the instruction that

would have executed next.
• The current register state R = {r1,r2, . . . ,rn} in

their encrypted form.
• Crucially, the current cryptographic key con-

text, specifically the Kprev and Knext keys asso-
ciated with the instruction at the saved ip.

This entire saved state context must be encrypted
and authenticated using the master key KM and
pushed onto a dedicated, secure system stack or

save area. Similar to the function call stack (Sec-
tion 3.2.5), this secure save area prevents tamper-
ing with the interrupted task’s context.

Saved Context = EKM

(
ip∥R∥Kprev saved ∥Knext saved ∥

HKM (ip∥R∥Kprev saved ∥Knext saved)
)

2. Handler Entry Key Derivation: The system must
determine the entry point address of the specific
interrupt or exception handler. This lookup pro-
cess (e.g., via a vector table) is assumed to be
secure and protected. The handler’s entry point
needs a Kprev key to begin execution within the
secure environment. This key must be determin-
istically derived in a way that is secure and tied to
the specific handler.
Similar to function calls (Section 3.2.5), we use a
deterministic derivation based on the handler’s se-
cure identifier or address and the master key KM:

Khandler entry = f unc(handler ID) = HKM (handler ID)

This Khandler entry becomes the Kprev for the first
instruction of the handler.

3. Handler Execution: The processor transfers con-
trol to the handler’s entry point using Khandler entry
as the initial Kprev. The handler executes using the
standard sequential chaining mechanism (Section
3.2.2). If the handler involves branches, jumps, or
function calls, those are handled as described in
Sections 3.2.5–3.2.6, maintaining chain continu-
ity within the handler’s execution path.

4. Return from Handler: A special instruction, anal-
ogous to RET , is required to return from an inter-
rupt or exception handler (e.g., RET ). The Kprev
for this RET instruction is the Knext generated by
the last instruction of the handler.
The execution of RET involves:

• Retrieving and decrypting the Saved Context
from the secure save area using KM .

• Authenticating the restored context using the
included HMAC tag. If verification fails, ex-
ecution halts.

• Restoring the saved ip, register state (now de-
crypted using Kprev saved), and the saved key
context Kprev saved and Knext saved .

• The restored Knext saved becomes the Kprev for
the instruction at the restored ip.

3.3 Register and Memory Protection

Our secure execution environment implements a pro-
tection mechanism for both register content and mem-
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ory locations, ensuring confidentiality and integrity
throughout program execution.

3.3.1 Register Protection

Each register’s contents are encrypted and authenti-
cated after the execution of every instruction. For a set
of registers R = {r1,r2, . . . ,rn}, the protection scheme
operates as follows:
a) Before instruction execution:

• Registers are decrypted using Kprev from the
current instruction

• r j =DKprev(R[ j]) for each register j∈{1, . . . ,n}
b) After instruction execution:

• Registers are encrypted using Knext from the
current instruction

• For each register j:

R[ j] = EKnext (r j||HKnext (r j))

3.3.2 Memory Protection

Data memory locations are encrypted (with integrity
protection) using the master key:

M[addr] = EKM (data||HKM (data))
This allows data sharing between different code

sections while maintaining confidentiality and in-
tegrity.

3.4 System Architecture Overview

The secure execution environment’s components, in-
cluding the secure processor, encrypted instruction/-
data memory, encrypted register file, and crypto-
graphic modules (encryption, HMAC, key genera-
tor) with Master Key inside the tamper proof region.
The architecture enforces a strict in-order execution
pipeline where each stage (fetch, decrypt, execute,
encrypt) depends on the previous instruction’s cryp-
tographic key.

Impact on High-Performance Features

• Pipelining: Pipeline stages integrate decryption
and key derivation. For example, the “Decrypt”
stage verifies HMAC tags and decrypts registers
using Kprev, while the “Encrypt” stage updates
registers with Knext . This introduces latency but
preserves pipelining for sequential code.

• Out-of-Order Execution: Disabled by design, as
the key chain enforces sequential dependencies.
Performance loss is mitigated through hardware-
accelerated cryptography (e.g., AES-NI).

• Branch Prediction: Predictions are allowed, but
mispredictions force a pipeline flush. Target la-
bels and derived keys (Knext true) are deterministic,
enabling precomputation for predicted paths.

4 SECURITY ANALYSIS

Our security analysis follows a systematic catalog-
based methodology that examines the system’s de-
fenses across multiple attack surfaces and security
properties. The framework evaluates four primary
interconnected categories: execution order security,
control flow security, state protection, and key man-
agement. Execution order security encompasses pro-
tections against out-of-order execution, instruction re-
ordering resistance, sequential execution guarantees,
and edge case handling. Control flow security ad-
dresses branch instruction protection, jump target val-
idation, function call/return integrity, and key chain
continuity. State protection covers register state con-
fidentiality, memory access security, stack integrity,
and context switching security. Key management ex-
amines key derivation security, forward/backward se-
crecy, key chain integrity, and cryptographic binding
strength 5.2. This structured methodology enables
us to evaluate the system’s security properties and
demonstrate resistance against both known attack pat-
terns and potential new threat vectors.

4.1 Security Against Out-of-Order
Execution

Our implementation practically prevents known at-
tacks like the “Chosen Instruction Attack” from (Rass
and Schartner, 2016). Our design incorporates several
features to counter chosen instruction attacks and pro-
vide security against Out-of-Order execution:

4.1.1 Key Chaining Protection

a) Initial State Security: The first instruction I0 es-
tablishes security through the master key KM as its
Kprev, where this master key remains exclusively
known to the secure processor. For initialization,
Knext is generated randomly for each instruction
(except for labels).

b) Sequential Execution Protection: Each subse-
quent instruction Ii maintains execution order by
requiring its Kprev to match the Knext of the previ-
ous instruction. The register decryption process
succeeds only when this key matching is valid.
The system generates a fresh Knext using a cryp-
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tographic RNG, ensuring uniqueness and unpre-
dictability.

c) Chain Integrity: The instruction integrity re-
mains protected through HMAC validation un-
der the master key. The system establishes cryp-
tographic bindings between consecutive instruc-
tions through key transitions. Throughout execu-
tion, all register states maintain their encrypted
form between instructions, preventing unautho-
rized access or modification.

4.1.2 Attack Resistance

The system resists attacks by generating unique, un-
predictable Knext values via a cryptographic RNG,
rendering key prediction negligible; HMAC protec-
tion ensures instruction integrity, preventing forgery
without the master key; and cryptographic chaining
validates each step, making reordering infeasible un-
der standard assumptions.

4.1.3 Sequential Execution Guarantees

The system ensures sequential execution through
cryptographic chaining, requiring key validation at
each step to maintain secrecy and halt violations; it
verifies predecessors via the key chain, protecting
register states for confidentiality and integrity, while
preventing skipping, replays, and insertions through
cryptographic bindings.

4.1.4 Analysis of Key Chain Edge Cases

a) Branch Point Instructions: When a conditional
branch instruction has been executed, both paths
must have valid keys, i.e. Knext true derived from
target label and Knext f alse randomly generated.
An attacker might try to force execution down the
unintended path. However, this fails since branch
condition evaluation depends on register values
that remain encrypted and MAC-protected, pre-
venting condition tampering.

b) Function Entry Points: Multiple CALL instruc-
tions targeting the same function could provide an
opportunity since they all generate the same Knext
through f unc(target label). An attacker might
try to redirect execution to a different valid call
site. However, the call stack’s encryption and in-
tegrity protection and the protected register state
prevent unauthorized control flow changes.

c) Convergence Points: Program points where mul-
tiple execution paths converge, such as after con-
ditional blocks or at function returns, necessarily

share the same next instruction with the associ-
ated key. An attacker might attempt to jump to
these points prematurely. This fails because:

• The register state remains encrypted under the
previous path’s keys

• The stack state containing return information is
encrypted and integrity-protected

• Key derivation depends on the master key KM ,
which remains inaccessible

• The MAC mechanism protects all state transi-
tions

Therefore, even in cases where multiple paths lead
to instructions sharing the same next key, the cryp-
tographic protections on the program state prevent an
attacker from successfully exploiting these situations
to execute instructions out-of-order.

The system maintains its security guarantees
through the combination of encrypted states, pro-
tected control flow information, and key derivation
chain, even in the presence of multiple valid execu-
tion paths sharing key information.

4.2 Security Analysis of Control Flow
Mechanism

The control flow mechanism’s security is built upon
several interconnected layers of protection. At its
foundation, conditional branching security ensures
secure execution through multiple key properties. The
system evaluates branch conditions using register val-
ues decrypted with the previous key (Kprev), keeping
these decrypted values confined within a secure en-
vironment. This evaluation process produces a bi-
nary outcome that definitively determines the execu-
tion path.

Each branch instruction maintains two distinct
next keys: Knext true for the branch path taken and
Knext f alse for the branch path not taken. The true path
key is deterministically derived from the target label
using the function f unc(target label). This dual-key
approach prevents unauthorized path execution while
maintaining the integrity of the key chain. The sys-
tem further protects branch targets through encryption
within the instruction itself, with integrity checks pre-
venting any tampering with target addresses. The key
derivation mechanism creates a cryptographic binding
between each target and its execution path.

4.2.1 Unconditional Jump Security

For unconditional jumps, the system maintains secu-
rity through several mechanisms. Jump targets are
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encrypted within the instruction, and integrity veri-
fication prevents any target manipulation. The de-
terministic key derivation ensures consistent and se-
cure target resolution. The key chain remains unbro-
ken across jumps through careful key management,
where the next key is derived deterministically from
the jump target. This ensures that only authorized
code at the target labels can execute.

4.2.2 Function Call and Return Security

The function call mechanism ensures security by en-
crypting return addresses and pairing them with a ran-
dom key (Kret ) on the stack, maintaining key chain
continuity across boundaries. Context and register
states are encrypted during switches, preventing tam-
pering. Returns verify stack data and Kret , restoring
the context securely to reconnect the key chain, allow-
ing execution only to verified addresses. This robust
system prevents return-oriented programming (ROP),
jump-oriented programming (JOP), control-flow hi-
jacking, and stack-smashing attacks through crypto-
graphic bindings and integrity checks, leveraging in-
struction confidentiality and integrity for comprehen-
sive protection.

4.3 Security Against Asynchronous
Events

The handling of asynchronous events like interrupts
and exceptions is secured through a dedicated mech-
anism built upon the principles of cryptographic state
protection and deterministic key derivation, comple-
menting the control flow security discussed in Sec-
tion 3.2.7.

• Saved Context Confidentiality and Integrity:
The entire state of the interrupted task, includ-
ing the instruction pointer, register contents (in
their encrypted form), and the crucial key context
(Kprev saved ,Knext saved), is encrypted and authenti-
cated using the master key KM before being stored
in a secure save area. This prevents an adversary
from observing or tampering with the task’s state
or key material while the handler is executing.

• Secure Handler Entry: The Kprev key used for
the first instruction of the interrupt/exception han-
dler (Khandler entry) is derived deterministically us-
ing the master key KM and a secure identifier
for the specific handler (HKM (handler ID)). This
prevents an attacker from forcing execution into
an unauthorized handler or entering a legitimate
handler with a predictable key, as computing the
correct entry key requires the master key.

• Tamper-Evident Return: The IRET instruction
verifies the integrity of the restored context (in-
cluding the saved keys) using the HMAC tag gen-
erated under KM . Any modification to the saved
state between interruption and return will be de-
tected, causing execution to halt.

• Key Chain Continuity: The mechanism ensures
seamless key chain continuity for the interrupted
task upon return. By saving the original Kprev
and Knext and making the saved Knext the Kprev for
the resumed instruction, the system effectively re-
establishes the correct cryptographic link, allow-
ing the task to continue within its original, ver-
ified instruction sequence. This prevents attack-
ers from injecting instructions or replaying saved
contexts at arbitrary points.

• Isolation: The handler executes within its own se-
cure context, starting with a key independent of
the interrupted task’s chain (derived from the han-
dler ID, not the interrupted task’s keys). This pro-
vides isolation between the handler and the inter-
rupted task’s execution state and key material.

4.4 Forward and Backward Secrecy

Informal proof that learning any single instruction-
key Ki does not compromise earlier or later keys.
Forward Secrecy: Even if an adversary learns Ki, they
cannot compute Ki+1,Ki+2, . . . because each future
key is either K j+1←KeyGen(t) (a fresh, independent
RNG output). Neither case allows inversion from Ki
to Ki+1.
Backward Secrecy: Even if an adversary learns
Ki, they cannot recover Ki−1,Ki−2, . . . because both
RNG-drawn keys and PRF-derived keys are pre-
image–resistant: Ki = KeyGen(t) admit no efficient
mapping back to earlier values.

5 PERFORMANCE ANALYSIS

This section describes an analysis of the computa-
tional overheads introduced by our secure execution
environment.

5.1 Performance Analysis

The performance analysis considers a program with
n total instructions, including ncb conditional branch
(BEQ) instructions, nc function calls (CALL), nr
function returns (RET), n j unconditional jumps
(JMP), and nm memory operations (LOAD/STORE).
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The core cryptographic operations each have com-
plexity O(k) for input size k: encryption (E), decryp-
tion (D), HMAC computation (H ), and key deriva-
tion (K ).

For basic instruction execution, each instruction
requires encryption/decryption of both the instruc-
tion itself and the register state (E +D) each, plus
two HMAC operations (2H ), yielding a complex-
ity of O(n(2E + 2D + 2H )), which simplifies to
O(nk). Control flow operations add additional over-
head: conditional branches require O(ncb(2K +E +
D)), function calls need O(nc(2E + H + K )), re-
turns take O(nr(D +H )), and unconditional jumps
use O(n j(K + E)). Memory operations contribute
O(nm(E +D +H )).

The total computational complexity sums these
components:

Ctotal = O(n(2E +2D +2H ))+O(ncb(2K +E +D))+

O(nc(2E +H +K ))+O(nr(D +H ))+

O(n j(K +E))+O(nm(E +D +H ))

= O(k(n+ncb +nc +nr +n j +nm))

Since ncb,nc,nr,n j,nm are all subsets of total in-
structions n, their sum cannot exceed n. Therefore,
the final complexity simplifies to Ctotal = O(nk).

While our scheme provides strong security guar-
antees, its strict serialization introduces performance
trade-offs compared to modern out-of-order architec-
tures. In out-of-order designs, instruction reordering
and speculative execution hide latency and maximize
functional unit utilization. By contrast, our crypto-
graphic chaining creates hard dependencies that seri-
alize pipeline stages, leading to:

1. Pipeline stalls: Instructions cannot proceed until
predecessors are decrypted and verified.

2. Branch penalties: Conditional branches exacer-
bate delays, as both paths require cryptographic
validation before resolution.

3. Limited parallelism: Functional units remain idle
if subsequent instructions are cryptographically
blocked.

4. Asynchronous Event Latency: Handling asyn-
chronous events (interrupts, exceptions) incurs
significant overhead. This includes:

• The time and computational cost of encrypt-
ing and authenticating the entire execution state
(registers, IP, and key context) upon interrup-
tion.

• The overhead of pushing this context onto a se-
cure stack/save area.

• The latency of deriving the handler entry key.

• The cost of retrieving, decrypting, and authen-
ticating the saved context upon returning from
the handler.

• A necessary pipeline flush and stall when inter-
rupting and resuming execution.

This overhead is incurred each time an interrupt or
exception is processed, adding latency that scales
with the amount of state that needs to be saved
and restored, impacting the responsiveness of the
system to frequent asynchronous events.

These constraints align our model closer to in-order
processors, trading performance for security. While
our analysis shows linear overhead (O(nk)), practi-
cal implementations should target security-sensitive
workloads where performance degradation is accept-
able relative to the threat model.

5.2 Fault Injection Simulations

The paper acknowledges the need for empirical val-
idation of fault detection capabilities. While the
Python proof-of-concept demonstrates functional cor-
rectness, additional simulations will be conducted to
evaluate fault resistance. For instance:

i) Fault Injection Simulation: We will model fault
injection attacks (e.g., glitches, instruction tam-
pering) to validate detection via HMAC verifica-
tion and key chain integrity checks.

ii) Hardware Faults: Using RISC-V
VP+++ (Schlägl et al., 2024a), we will sim-
ulate hardware-level faults (e.g., register/memory
corruption) to assess the system’s ability to detect
and halt execution under tampering. Results will
quantify detection rates for various fault models.

6 CONCLUSION

This paper has presented a novel secure execution en-
vironment that provides comprehensive protection for
program execution through a unified cryptographic
approach. The system employs authenticated encryp-
tion and a key chaining mechanism to ensure instruc-
tion confidentiality, integrity, and correct execution
ordering across both linear code sequences and com-
plex control flow structures like branches, jumps, and
function calls.

At the core of our design is a cryptographic bind-
ing between consecutive instructions that prevents re-
ordering and replay attacks while maintaining precise
control over execution order. The key chaining mech-
anism creates cryptographic dependencies between
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instructions that enforce their intended sequence. For
control flow operations, we introduced deterministic
key derivation methods that maintain security prop-
erties across branches and function boundaries while
supporting legitimate program behavior.

The system employs authenticated encryption and
a key chaining mechanism to ensure instruction con-
fidentiality, integrity, and correct execution ordering
across both linear code sequences and complex con-
trol flow structures like branches, jumps, function
calls, and asynchronous events like interrupts and ex-
ceptions.

At the core of our design is a cryptographic bind-
ing between consecutive instructions that prevents re-
ordering and replay attacks while maintaining precise
control over execution order. The key chaining mech-
anism creates cryptographic dependencies between
instructions that enforce their intended sequence. For
control flow operations, we introduced deterministic
key derivation methods that maintain security prop-
erties across branches and function boundaries while
supporting legitimate program behavior, extending
this to securely manage state and keys across asyn-
chronous interruptions.

Our security analysis demonstrated the system’s
resistance to various attack vectors including instruc-
tion reordering, tampering, and control flow hijack-
ing attempts. The performance analysis revealed that
while the system introduces computational overhead
from cryptographic operations, it scales linearly with
program size (O(nk) where n is the number of in-
structions and k is the security parameter), making
it practical for real-world applications. The success-
ful implementation of a proof-of-concept in Python
validated both the theoretical framework and its prac-
tical viability. In terms of future work, a natural
next step is to apply and evaluate the concepts pre-
sented in this paper on real-world architectures. A
suitable candidate is the relatively young RISC-V In-
struction Set Architecture (ISA) (Waterman et al.,
2011; Waterman et al., 2016), as it is an open stan-
dard. Efficient design space exploration and eval-
uation can be achieved using simulation techniques
such as SystemC/TLM (IEEE 1666 (noa, 2023))
based virtual prototyping (De Schutter, 2014; Leu-
pers et al., 2012). The very capable open source
RISC-V VP++ (Schlägl et al., 2024a; Schlägl et al.,
2024b; Schlägl and Große, 2025) is, being consid-
ered for this. A promising direction for future work
is exploring hybrid architectures where cryptographic
constraints apply selectively to security-critical code
regions (e.g., cryptographic routines or authentication
logic), while non-critical code executes on traditional
out-of-order pipelines. Such an approach could bal-

ance performance and security, leveraging hardware/-
software co-design to isolate sensitive computations
within cryptographically enforced boundaries.
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lingsson, Ú., Lozano, L., and Pike, G. (2014). En-
forcing Forward-Edge Control-Flow integrity in GCC
& LLVM. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 941–955, San Diego,
CA. USENIX Association.

Tsoutsos, N. G. and Maniatakos, M. (2014). HEROIC:
Homomorphically EncRypted One Instruction Com-
puter. In 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1–6. ISSN:
1558-1101.

Wang, X., Chen, H., Jia, Z., Zeldovich, N., and Kaashoek,
M. F. (2012). Improving integer security for systems
with KINT. In 10th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 12),
pages 163–177, Hollywood, CA. USENIX Associa-
tion.

Waterman, A., Lee, Y., Avizienis, R., Patterson, D. A., and
Asanovic, K. (2016). The risc-v instruction set manual
volume ii: Privileged architecture version 1.7. EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-129.

Waterman, A., Lee, Y., Patterson, D. A., and Asanovic, K.
(2011). The risc-v instruction set manual, volume i:
Base user-level isa. eecs department. University of
California.

Werner, M., Unterluggauer, T., Schaffenrath, D., and Man-
gard, S. (2018). Sponge-Based Control-Flow Protec-
tion for IoT Devices: 2018 IEEE European Sympo-
sium on Security and Privacy. 2018 IEEE European
Symposium on Security and Privacy. Publisher: IEEE.

Zahur, S. and Evans, D. (2015). Obliv-c: A language for
extensible data-oblivious computation. Cryptology
ePrint Archive, Paper 2015/1153.

Zahur, S., Rosulek, M., and Evans, D. (2015). Two Halves
Make a Whole. In Advances in Cryptology - EU-
ROCRYPT 2015, pages 220–250, Berlin, Heidelberg.
Springer.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

246


