
Prevalence of Security Vulnerabilities in C++ Projects

Thiago Gadelha, Wallisson Freitas, Eduardo Rodrigues,
José Maria Monteiro and Javam Machado

Computer Science Department, Federal University of Ceará, Brazil

Keywords: Security Vulnerabilities, Secure Software Development, Static Code Analysis.

Abstract: One of the most critical tasks for organizations nowadays is to maintain the security of their software products.
Common software vulnerabilities can result in severe security breaches, financial losses, and reputation dete-
rioration. A software security vulnerability can be defined as a flaw in the source code that can be exploited by
an attacker to gain unauthorized access to the software, thereby compromising its behavior and functionality.
Then, detecting and fixing security vulnerabilities in the source code of software systems is one of the most
significant challenges in the field of information security. The Static Application Security Testing (SAST)
tools are capable of statically analyzing the source code, without executing it, to identify security vulnerabil-
ities, bugs, and code smells during the coding phase, when it is relatively inexpensive to detect and resolve
security issues. In this context, this paper proposes an exploratory study of security vulnerabilities in C++
code from very large projects. We analyzed twenty-six worldwide C++ projects and empirically studied the
prevalence of security vulnerabilities. Our results showed that some vulnerabilities occur together. Besides,
some vulnerabilities are more frequent than others. Based on these findings, this paper has the potential to aid
software developers in avoiding future problems during the development of a C++ project.

1 INTRODUCTION

Our daily lives rely on software that performs every-
day tasks, from digital commerce to smart homes and
autonomous driving. It is evident that the increase in
the volume of source code will lead to more security
requirements in programming. In this context, a soft-
ware security vulnerability can be defined as a coding
flaw present in the source code that can be exploited
by an attacker to gain unauthorized access to the soft-
ware, thereby disrupting its behavior and functional-
ity.

Security vulnerabilities are causing significant fi-
nancial losses to businesses and threatening critical
security infrastructures. Therefore, an effective so-
lution is needed to discover and fix vulnerabilities
before private and valuable information is compro-
mised. Consequently, maintaining the security of
software products is one of the most critical tasks
for organizations today, making vulnerability detec-
tion fundamental (Islam et al., 2024).

Detecting software defects after a product has
been deployed forces the company to bear the cost
of repairs, weakens the company’s reputation, and

sometimes involves legal expenses. So, this approach
is costly, challenging, and time-consuming. On the
other hand, detecting and fixing vulnerabilities dur-
ing the development phase, before the introduction
of a product to the market, can save time, effort, and
money (Hussain et al., 2024). Still, manual software
inspection is unfeasible because it is a tedious pro-
cess and may not yield the desired results. To make
the vulnerability detection process more efficient in
terms of time and coverage (number of vulnerabil-
ities detected), automated methods have been pro-
posed (Moyo and Mnkandla, 2020).

Static code analysis scans the entire source code
of a system seeking potential security vulnerabilities.
Thus, it is a way to infer the behavior of a program
without executing it. Additionally, vulnerability de-
tection is performed while the software is still in the
development phase. So, it leads to the detection of
vulnerabilities in the early stages of the software de-
velopment lifecycle. This makes the process of cor-
recting these vulnerabilities easier for the developer,
while also reducing the cost and time required by the
organization to address them.

Static Application Security Testing (SAST) tools

Gadelha, T., Freitas, W., Rodrigues, E., Monteiro, J. M., Machado and J.
Prevalence of Security Vulnerabilities in C++ Projects.
DOI: 10.5220/0013570700003967
In Proceedings of the 14th International Conference on Data Science, Technology and Applications (DATA 2025), pages 567-574
ISBN: 978-989-758-758-0; ISSN: 2184-285X
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

567



analyze a piece of code thereof to identify security is-
sues, including potential flaws, suspicious constructs,
insecure use of APIs, dangerous runtime errors, cod-
ing errors, bad smells and adherence to coding stan-
dards. They automatically scan codebases for com-
mon security issues like injection vulnerabilities, au-
thentication flaws, and insecure data handling prac-
tices (Alqaradaghi and Kozsik, 2024). SAST tools
assist developers in detecting security vulnerabilities
during the coding phase, where it is relatively cheaper
to identify and fix security issues in the source code.
For this reason, SAST tools are becoming increas-
ingly crucial in the software development lifecycle
(Novak et al., 2010).

This paper proposes an exploratory study of se-
curity vulnerabilities in C++ source code from very
large projects. We analyzed twenty-six worldwide
C++ projects and empirically studied the prevalence
of security vulnerabilities. Vulnerability issues were
identified through a static analysis conducted by
Checkmarx1 on the selected projects. The Checkmarx
tool stands out as a leading provider of static applica-
tion security testing solutions (Li et al., 2021). Their
platform offers robust tools for identifying security
vulnerabilities in software code through static code
analysis techniques. We examined the occurrence pat-
terns of the security issues and assessed the degree
of co-occurrence among these issues. Our findings
revealed that certain vulnerabilities tend to occur to-
gether, with some being more prevalent than others.
Leveraging these insights, this paper has the potential
to assist software developers and security experts in
mitigating future problems during the development of
C++ projects.

The remainder of this paper is structured as fol-
lows: Section 2 discusses the main related works.
Section 3 presents the methodology used in this re-
search. In Section 4, the obtained results are ana-
lyzed. Lastly, Section 5 presents the conclusions and
outlines directions for future work.

2 RELATED WORK

The study presented in (Do et al., 2022) explored the
challenges developers face when using SAST tools,
focusing particularly on usability and integration into
development pipelines. This paper underscores that
beyond the technical capacity of these tools, their ac-
ceptance by developers is crucial.

The work in (Nguyen-Duc et al., 2021) explores
the challenges of integrating SAST tools into real-

1https://checkmarx.com/

world e-government software development. It intro-
duces a novel approach where multiple SAST tools
are combined to enhance the detection and analysis
of security vulnerabilities. The authors in (Mehrpour
and LaToza, 2023) focus on the potential of SAST
tools to detect more defects typically identified in
code reviews. The paper reformulates these issues
as rule violations, which allows them to evaluate
whether these violations could be detected by exist-
ing or future SAST tools. Besides, this paper suggests
that SAST tools could detect more defects by support-
ing the creation of project-specific rules and enhanc-
ing their ability to simulate some aspects of human
judgment.

The paper in (Ma et al., 2022) presents a newly de-
veloped Python auditing tool that leverages Abstract
Syntax Tree analysis combined with data flow and
control flow information. A significant contribution is
the design of a plugin architecture that allows easy re-
development or rewriting of specific rules. This flex-
ibility enhances the tool’s ability to adapt to different
coding scenarios and security requirements. It pro-
cesses Python code to identify security vulnerabili-
ties efficiently. The tool includes a set of 70 detec-
tion rules covering common security issues in Python
code. This extensive rule set helps identify a wide
range of vulnerabilities, providing a robust framework
for security auditing.

The article (Fan et al., 2020) presents Big-Vul,
a comprehensive dataset that maps vulnerabilities in
C/C++ code from open-source projects hosted on
GitHub. This dataset was developed to support vul-
nerability detection and remediation research, provid-
ing a solid foundation for training machine learning
models and conducting code analysis. It represents a
significant contribution to the software security com-
munity, offering a structured and information-rich re-
source for developing tools and techniques for ana-
lyzing vulnerabilities in C/C++ code.

This paper instead of trying to detect security vul-
nerabilities, propose a new SAST tool, or analyze
and compare SAST tools, presents an empirical study
of the prevalence of security vulnerabilities in C++
projects. The idea of this research is to obtain use-
ful information, such as correlations and association
rules between security vulnerabilities and clustering
these issues, to aid software developers in avoiding
future problems while developing a C++ project.

3 METHODOLOGY

The methodology used in this research is composed
of four steps. First, we select a set of worldwide C++

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

568



projects, published on public repositories on GitHub.
So, twenty-six worldwide C++ projects were chosen
for further analysis. Next, we collected a set of re-
ports generated by a SAST tool called Checkmarx on
the selected projects. In each execution, Checkmarx
generates a PDF file, containing a report detailing the
found security vulnerabilities. After this, a Python
script was used to process these PDF files (Check-
marx reports) and generate a Security Vulnerabilities
Dataset, which is a spreadsheet with summarized and
aggregated information about the security vulnerabili-
ties found in the selected projects. Finally, we applied
a set of data analysis techniques to the Security Vul-
nerabilities Dataset. In order to favor the use and re-
production of these data analysis techniques, we used
Python scripts and Jupyter Notebooks.

3.1 Selecting C++ Projects

First, we searched for large and significant C++
projects, published on public repositories on github.
Our projects were selected based on 3 criteria: i)
the period of time in which the project is under de-
velopment; ii) the projects should have at least 70%
of their code written in C/C++; and the number of
commits, which actually are real code enhancement
like new features or code refactoring, on the projects
repository. Following the previously defined criteria,
twenty-six public C++ projects were chosen for fur-
ther analysis. The links to all these projects are avail-
able in the GitHub repository of this work2.

3.2 Collecting Checkmarx Reports

In this step, we collect a set of reports from Check-
marx for the selected projects. Checkmarx vulnera-
bility reports include a detailed and categorized series
of security flaws identified during static code analy-
sis. The report extensively describes these vulnerabil-
ities, typically encompassing details on their identi-
fication, examples of problematic code, potential im-
pact on application security, and specific recommen-
dations for correction. In our analysis, we considered
26 Checkmarx reports. The Checkmarx’s documen-
tation identifies 367 types of security vulnerabilities.
However, in the analyzed project’s reports, only 79
vulnerabilities were automatically identified, which
are presented in Table 1.

2https://github.com/jmmfilho/psv

3.3 Building the C++ Security
Vulnerabilities Dataset

Each PDF file generated previously contains a very
large number of security vulnerabilities. For example,
one of these files has 6,844 security vulnerabilities.
So, it is not suitable to extract the data in each PDF
file in a manual way. For this reason, we developed
a Python script that processes these PDF files (con-
taining Checkmarx reports) and generates a Security
Vulnerabilities Dataset, which is a spreadsheet with
summarized and aggregated information about the se-
curity vulnerabilities found in the selected projects in
an automated way. This dataset was used in the data
analysis methods.

For each of the projects, the commits correspond-
ing to the quartiles were selected so that there is cov-
erage of the code development, and a more detailed
analysis can be carried out. The records were grouped
based on the project and commit hash so that vul-
nerabilities were counted on the commit hash. As
a software development scenario is being analyzed,
there may be rows whose vulnerability count may be
the same, as projects may not have had new secu-
rity issues between commits. Thus, these lines can
be configured as redundancy since the count of these
lines can be based on code snippets that have not been
changed. To solve this problem in our analysis, neigh-
boring lines whose count is entirely equal to the orig-
inal line were removed for each project.

3.4 Analyzing the Security
Vulnerabilities Dataset

Data analysis is conducted for both quantitative and
qualitative data. This is done to extract relevant in-
formation and knowledge regarding the data’s con-
text. This exploratory case study employed various
data analysis techniques, such as descriptive statis-
tics, correlation analysis, association rule learning,
and clustering algorithms. Thus, in this step, we ap-
plied a set of data analysis techniques to the Secu-
rity Vulnerabilities Dataset. To favor the use and
reproduction of these data analysis techniques, we
used Python libraries that allow reproducibility, like
mlxtend (Raschka, 2018) and scikit-learn (Pedregosa
et al., 2011). This step aimed to understand the preva-
lence of vulnerabilities and the existing relationships
among them.

3.4.1 Quantitative Analysis

Quantitative analysis used descriptive statistics meth-
ods to explore the prevalence of security vulnerabili-

Prevalence of Security Vulnerabilities in C++ Projects

569



Table 1: Checkmarx Vulnerabilities Identified in the Selected Projects.
ID Vulnerability ID Vulnerability
1 Arithmetic Operation On Boolean 41 Incorrect Permission Assignment For Critical Resources
2 Buffer Improper Index Access 42 Information Exposure Through Comments
3 Buffer Overflow AddressOfLocalVarReturned 43 Insecure Temporary File
4 Buffer Overflow LongString 44 Insufficiently Protected Credentials
5 Buffer Overflow Unbounded Buffer 45 Integer Overflow
6 Buffer Overflow Unbounded Format 46 Leaving Temporary Files
7 Buffer Overflow Wrong Buffer Size 47 Memory Leak
8 Buffer Overflow cin 48 MemoryFree on StackVariable
9 CGI Reflected XSS 49 NULL Pointer Dereference
10 CGI Stored XSS 50 Off by One Error
11 Cleartext Transmission Of Sensitive Information 51 PBKDF2 Insufficient Iteration Count
12 Command Injection 52 Path Traversal
13 Comparison Timing Attack 53 Personal Information Without Encryption
14 Creation of chroot Jail without Changing Working Directory 54 Plaintext Storage Of A Password
15 Dangerous Functions 55 Privacy Violation
16 Divide By Zero 56 Process Control
17 DoS by Sleep 57 Reliance on DNS Lookups in a Decision
18 Double Free 58 Resource Injection
19 Encoding Used Instead of Encryption 59 Stored Command Injection
20 Environment Injection 60 Symmetric Encryption Insecure Predictable Key
21 Exposure of System Data to Unauthorized Control Sphere 61 Symmetric Encryption Insecure Static Key
22 Float Overflow 62 TOCTOU
23 Format String Attack 63 Type Conversion Error
24 Hardcoded Absolute Path 64 Unchecked Array Index
25 Hardcoded password in Connection String 65 Unchecked Return Value
26 Hashing Length Extension Attack 66 Uncontrolled Recursion
27 Heap Inspection 67 Unreleased Resource Leak
28 Heuristic 2nd Order Buffer Overflow malloc 68 Use After Free
29 Heuristic 2nd Order Buffer Overflow read 69 Use Of Deprecated Class
30 Heuristic 2nd Order SQL Injection 70 Use Of Hardcoded Password
31 Heuristic Buffer Improper Index Access 71 Use Of Weak Hashing Primitive
32 Heuristic Buffer Overflow malloc 72 Use of Hard coded Cryptographic Key
33 Heuristic Buffer Overflow read 73 Use of Insufficiently Random Values
34 Improper Exception Handling 74 Use of Obsolete Functions
35 Improper Null Termination 75 Use of Sizeof On a Pointer Type
36 Improper Resource Access Authorization 76 Use of Uninitialized Variable
37 Improper Resource Shutdown or Release 77 Use of a One Way Hash without a Salt
38 Inadequate Encryption Strength 78 Weak Randomness Biased Random Sample
39 Inadequate Pointer Validation 79 Wrong Memory Allocation
40 Inconsistent Implementations

ties. The focus was on identifying the most common
vulnerabilities and their categories.

3.4.2 Correlation Between Vulnerabilities

A correlation coefficient quantifies the degree to
which two variables vary together, indicating their re-
lationship’s strength and direction. Spearman’s rank
correlation coefficient assesses the monotonic rela-
tionship between two continuous or ordinal variables.
This non-parametric test does not assume a specific
data distribution (McCrum-Gardner, 2008). So, this
study employed Spearman’s rank correlation coef-
ficient at a significance level of 0.05 to assess the
statistical correlation between each pair of security
vulnerabilities. Our correlation analysis incorporates
both qualitative and quantitative approaches. Initially,
we filtered out correlation coefficient estimates that
lacked statistical significance (ρ-value ≥ 0.05). Sub-
sequently, we examined strong correlations based on
the scale proposed in (Berger and Guo, 2014) and
sought explanations based on our domain knowledge.

3.4.3 Association Rules Learning

Association rule learning seeks to discover relation-
ships among data records (items) that demonstrate
statistical correlations. The main goal is to identify
item subsets whose occurrence is associated with the
presence of another item within the same transaction.
Apriori (Agrawal and Srikant, 1994) is a prominent
technique in association rule learning widely applied
in market basket analysis, cross-marketing, and un-
derstanding customer buying patterns. This study em-
ployed association rule learning to uncover associa-
tions among vulnerabilities.

Support and confidence are essential metrics in as-
sociation rule learning. Support measures the relative
frequency with which a particular itemset appears in
the dataset. Higher support values indicate more fre-
quent occurrences, thereby suggesting that the itemset
may represent a meaningful association. Confidence,
on the other hand, assesses the reliability of an associ-
ation rule by estimating the conditional probability of
item Y appearing in a transaction, given that item X is
already present. A high confidence value suggests a
strong likelihood that item Y co-occurs with item X,
thus indicating the rule’s predictive effectiveness.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

570



3.4.4 Clustering

Clustering techniques were employed to identify
groups of security issues based on their occurrence
frequencies across multiple projects, aiming to ex-
plore potential relationships among different types of
vulnerabilities. This study applied three clustering al-
gorithms: K-Means, Agglomerative Clustering, and
Affinity Propagation. The use of multiple techniques
enabled comparative analysis of the results, consider-
ing the distinct characteristics of each method in han-
dling unlabeled datasets. Furthermore, a domain ex-
pert was consulted to qualitatively validate the clus-
tering outcomes.

4 RESULTS AND DISCUSSION

We explored the nature of C++ security vulnerabil-
ities in very large software projects through the fol-
lowing research questions (RQs):

• RQ1: How often are security vulnerabilities in
real C++ projects?

• RQ2: Is there evidence of a significant correlation
between different vulnerabilities identified in the
analysis?

• RQ3: Are there security vulnerabilities that occur
together in real C++ projects?

• RQ4: Is it possible to find groups of vulnerabili-
ties that occur together in real C++ projects?

We focus on real-world applications according to
the criteria presented in section 3.1. Each project has
a specific purpose and/or complexity, meaning that
the size and potential errors that may occur are inher-
ent to the project. Moreover, bug resolution will de-
pend on the community engaged in the project and the
difficulty of addressing them. This choice was made
to encompass different projects utilizing C++ to pro-
vide more comprehensive coverage.

A Jupyter Notebook was created to present the re-
sults and allow reproduction of the experiments car-
ried out. Next, we will present the experiments per-
formed to evaluate the research questions.

4.1 Quantitative Analysis

Figure 1 presents the total number of vulnerabilities
identified in all projects analyzed. As can be seen,
Memory Leak, Dangerous Functions, Unchecked
Return Value, Use of Uninitialized Variables, and
Unchecked Array Index are the vulnerabilities with
the most occurrences reported by the Checkmarx tool.

The large number of memory leaks present in the
C++ projects evaluated occurred due to the pointer
features offered by the language. These features al-
low the developer to allocate memory manually and
manage that memory using pointers, which are vari-
ables that hold memory addresses. In this scenario,
a memory leak can occur if a pointer is not correctly
freed at the right moment or if an exception occurs
between a memory allocation and deallocation.

The second most prevalent vulnerability, danger-
ous functions, relates to functions that require cau-
tion when used, especially in source codes that also
present the third, fourth, and fifth most common vul-
nerabilities: Unchecked Return Value, Use of Unini-
tialized Variable, and Unchecked Array Index. These
dangerous functions often lack proper bounds check-
ing and error handling, making them susceptible to
flaws such as buffer overflows, memory corruption,
and undefined behavior. Additionally, the large pres-
ence of these five vulnerabilities suggests that the
code review process is weak and does not adhere to
standard security patterns.

4.2 Correlation Between Vulnerabilities

In exploring the research question concerning cor-
related vulnerabilities in software development, it is
hypothesized that a significant correlation exists be-
tween pairs of vulnerabilities within the Dataset (H1).
Conversely, the null hypothesis (H0) suggests no cor-
relation between these vulnerabilities. Due to the
non-normal distribution of variables in the Dataset,
Pearson’s coefficient is unsuitable for testing hypoth-
esis H1. Therefore, an alternative correlation test ap-
proach recommended in (Bagheri and Gasevic, 2011)
was chosen instead.

An analysis was conducted to examine strongly
correlated features to determine potential relation-
ships among them. Given the abundance of strongly
correlated Security Vulnerabilities, the decision was
made only to list those with correlation coefficients
exceeding 0.75. Table 2 presents these correlations.

The correlation coefficient between vulnerabili-
ties 15 and 35 is 0.83. Dangerous functions may
not properly handle strings that lack correct termi-
nation, potentially leading to unexpected behavior
and security vulnerabilities through memory exploita-
tion. Besides, vulnerability 15 is strongly correlated
with vulnerability 74, with a correlation coefficient of
0.90. Using dangerous functions combined with dep-
recated functions can create unpredictable scenarios
and security loopholes, as deprecated functions may
have known vulnerabilities that are not adequately ad-
dressed by dangerous functions.

Prevalence of Security Vulnerabilities in C++ Projects

571



0 1 2 3 4 5
·104

Memory Leak
Dangerous Functions

Unchecked Return Value
Use of Uninitialized Variable

Unchecked Array Index
Improper Resource Access Authorization

NULL Pointer Dereference
Use of Obsolete Functions

Double Free
TOCTOU

Use After Free
Improper Null Termination

Exposure of System Data to Unauthorized Control Sphere
Divide By Zero

MemoryFree on StackVariable

36,353
18,727

14,594
11,924
11,678

9,075
7,439

5,285
3,116
3,043
2,902

1,962
1,517
1,419
1,379

Quantity of occurrences

Figure 1: Top 15 Most Frequently Identified Security Vulnerabilities.

Table 2: Vulnerabilities with Correlation Coefficient
Greater than 0.75.

Vulnerability ID Corr. Coef. >0.75
15 35, 74
26 42
30 32
35 74
36 41, 62, 74
38 42, 71
39 59
41 62
60 61
62 65
64 76
73 78

It can be inferred from examining the correlation
between vulnerabilities 26 and 42 that information
left in comments within the source code can provide
clues that may enable hash length extension attacks,
compromising data integrity.

Examining the correlation between vulnerabilities
30 and 32, this can be explained as follows: second-
order SQL injections can be used to exploit buffer
overflow, which could compromise data integrity or
availability.

The correlation coefficient between vulnerabili-
ties 35 and 74 is 0.84. Deprecated functions may
lack the necessary controls and validations to handle
and/or return strings with incorrect termination, creat-
ing security vulnerabilities that malicious agents can
exploit.

Vulnerabilities 36 and 41 can be correlated be-
cause they are related to access critical resources. In
this scenario, inadequate authorization for resource
access and improper permission assignment can allow
unauthorized users to access critical resources.

4.3 Association Rules Learning

The correlation analysis revealed the statistical re-
lationships among vulnerabilities, but whether cer-
tain security issues co-occur frequently in real-world
projects remains to be seen. To answer this ques-
tion, the Apriori algorithm implemented in the mlx-
tend Python library was employed to discover associ-
ation rules. Setting a support threshold of 80% the
analysis identified pairs of frequently co-occurring
vulnerabilities. Additionally, it pinpointed those most
commonly reported across projects, highlighting their
direct association with prevalent vulnerabilities across
all projects evaluated. These findings are detailed in
Table 3. Based on these results, we concluded that
Vulnerabilities 15, 62, 64, 65, 74 tend to occur in most
projects.

Table 3: Association Rules Results - Support 80%.

Security Issues Support
(15) 0.88
(62) 0.84
(64) 0.87
(65) 0.94
(74) 0.82

(15, 64) 0.84
(15, 65) 0.87
(62, 65) 0.82
(64, 65) 0.87
(65, 74) 0.81

(15, 64, 65) 0.84

The subsequent step involves deriving trust-based
association rules. The same library mentioned for the
previous step was used to achieve this, establishing a
confidence limit set at 90%. The results of this analy-
sis are presented in Table 4.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

572



Table 4: Association Rules - Confidence 90 %.

Rule Precedent
Support

Consequent
Support

Rule
Support Confidence Lift Conviction

(64) ⇒ (15) 0.87 0.88 0.84 0.96 1.08 2.62
(15) ⇒ (64) 0.88 0.87 0.84 0.94 1.08 2.3
(65) ⇒ (15) 0.94 0.88 0.87 0.93 1.05 1.61
(15) ⇒ (65) 0.88 0.94 0.87 0.99 1.05 5.31
(62) ⇒ (65) 0.84 0.94 0.82 0.98 1.04 2.51
(65) ⇒ (64) 0.94 0.87 0.87 0.93 1.06 1.75
(64) ⇒ (65) 0.87 0.94 0.87 1.00 1.06 inf
(74) ⇒ (65) 0.82 0.94 0.81 0.99 1.05 4.90

(15, 65) ⇒ (64) 0.87 0.87 0.84 0.96 1.09 2.84
(64, 65) ⇒ (15) 0.87 0.88 0.84 0.96 1.08 2.62
(15, 64) ⇒ (65) 0.84 0.94 0.84 1.00 1.06 inf
(15) ⇒ (64, 65) 0.88 0.87 0.84 0.95 1.08 2.30
(64) ⇒ (15, 65) 0.87 0.87 0.84 0.96 1.09 2.84

4.4 Clustering

This study investigated the potential for identifying
groups of security vulnerabilities that occur together.
Given the unknown number of underlying clusters,
Affinity Propagation was employed as an initial clus-
tering method. This technique automatically deter-
mines the optimal number of clusters, which in this
case was eighteen. Next, K-means and Hierarchical
Agglomerative Clustering were applied to validate the
initial clustering and assess consistency. The num-
ber of clusters in these methods was set to eighteen to
align with the Affinity Propagation results. The clus-
ters generated by the 3 algorithms differ slightly from
each other. For analysis purposes, Hierarchical Ag-
glomerative Clustering clusters will be used. Follow-
ing the clustering process, a Cybersecurity specialist
analyzed the resulting groupings to identify any rela-
tionships with Vulnerabilities within each cluster.

This analysis revealed the following about Clus-
ter 1: the lack of index boundary checks for an ar-
ray and the use of uninitialized variables can result
in unexpected behavior and the possibility of unin-
tended memory read-and-write operations, compro-
mising the integrity of a system’s data.

Examining Cluster 2, this association can be ex-
plained as follows: the use of dangerous functions
combined with deprecated functions can create unpre-
dictable scenarios and security vulnerabilities, as dep-
recated functions may have known vulnerabilities that
are not properly addressed by dangerous functions.

Cluster 5 can indicate that both vulnerabilities oc-
cur when there are issues with memory deallocation.
A Use After Free may occur when attempting to use a
stack memory area that a memory function has freed.
The Use After Free would occur in this scenario due
to a MemoryFree on a StackVariable.

Examining Cluster 6, it can be seen that the com-

Table 5: Hierarchical Agglomerative Clustering Results.

Cluster ID Vulnerabilities ID
1 64, 76
2 15, 74
3 1, 16, 63, 66

4

2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 19,
20, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33,
38, 39, 40, 42, 43, 44, 46, 50, 51, 53, 54,
55, 56, 57, 59, 60, 61, 67, 69, 70, 71, 72,

77, 79
5 48, 68
6 3, 52, 58
7 41, 62
8 6, 31
9 27, 34, 37

10 49
11 65
12 21
13 73, 78
14 35, 75
15 36
16 45
17 47
18 18

bination of these vulnerabilities can allow a mali-
cious agent to access sensitive files, manipulate sys-
tem memory, and execute malicious commands.

Examining Cluster 7, this association can be ex-
plained as follows: incorrect permission assignment
for access to critical resources in a system with TOC-
TOU vulnerabilities can allow attackers to access or
modify these resources in an unauthorized manner be-
tween the check and use.

Furthermore, some clusters contained a single
Vulnerability, implying a higher degree of speci-
ficity for these issues and a lower likelihood of co-
occurrence with other Vulnerabilities.

Prevalence of Security Vulnerabilities in C++ Projects

573



5 CONCLUSION

This paper presents an exploratory study of security
vulnerabilities in C++ source code from very large
projects. We analyzed twenty-six worldwide C++
projects and empirically studied the prevalence of se-
curity vulnerabilities. From this exploratory study we
have answered four research questions (RQs). RQ1
- How often are code vulnerabilities in real C++
projects? Some vulnerabilities are more frequent
than others. Besides, some vulnerabilities were not
found in the selected projects. RQ2 - Are there sig-
nificant correlations between pairs of vulnerabilities?
Our results showed that many pairs of vulnerabili-
ties have high correlation coefficients, over 0.6. RQ3
- Are there code vulnerabilities that occur together
in real C++ projects? We have explored the Apri-
ori algorithm and found some interesting association
rules, which indicate that there are code vulnerabil-
ities that occur together. RQ4 - Is possible to find
groups of vulnerabilities that occur together in real
C++ projects? We found two 13 clusters of code vul-
nerabilities. Leveraging these insights, this paper has
the potential to assist software developers and secu-
rity experts in mitigating future problems during the
development of C++ projects. In future work, we in-
tend to investigate the occurrence of false positives
and negatives in security reports. Moreover, we will
use machine learning techniques to predict code vul-
nerabilities.

ACKNOWLEDGMENTS

This work was partially funded by Lenovo as part of
its R&D investment under the Information Technol-
ogy Law. The authors would like to thank LSBD/UFC
for the partial funding of this research.

REFERENCES

Agrawal, R. S. and Srikant, R. (1994). R. fast algorithms for
mining association rules. In Proceedings of the 20th
International Conference on Very Large Data Bases,
VLDB, pages 487–499.

Alqaradaghi, M. and Kozsik, T. (2024). Comprehensive
evaluation of static analysis tools for their perfor-
mance in finding vulnerabilities in java code. IEEE
Access.

Bagheri, E. and Gasevic, D. (2011). Assessing the maintain-
ability of software product line feature models using
structural metrics. Software Quality Journal, 19:579–
612.

Berger, T. and Guo, J. (2014). Towards system analysis
with variability model metrics. In Proceedings of the
8th International Workshop on Variability Modelling
of Software-Intensive Systems, pages 1–8.

Do, L. N. Q., Wright, J. R., and Ali, K. (2022). Why do
software developers use static analysis tools? A user-
centered study of developer needs and motivations.
IEEE Trans. Software Eng., 48(3):835–847.

Fan, J., Li, Y., Wang, S., and Nguyen, T. N. (2020).
Ac/c++ code vulnerability dataset with code changes
and cve summaries. In Proceedings of the 17th inter-
national conference on mining software repositories,
pages 508–512.

Hussain, S., Anwaar, H., Sultan, K., Mahmud, U., Farooqui,
S., Karamat, T., and Toure, I. K. (2024). Mitigating
software vulnerabilities through secure software de-
velopment with a policy-driven waterfall model. Jour-
nal of Engineering, 2024(1):9962691.

Islam, N. T., Karkevandi, M. B., and Najafirad, P. (2024).
Code security vulnerability repair using reinforcement
learning with large language models. arXiv preprint
arXiv:2401.07031.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. (2021).
Sysevr: A framework for using deep learning to detect
software vulnerabilities. IEEE Transactions on De-
pendable and Secure Computing, 19(4):2244–2258.

Ma, L., Yang, H., Xu, J., Yang, Z., Lao, Q., and Yuan, D.
(2022). Code analysis with static application security
testing for python program. J. Signal Process. Syst.,
94(11):1169–1182.

McCrum-Gardner, E. (2008). Which is the correct statistical
test to use? British Journal of Oral and Maxillofacial
Surgery, 46(1):38–41.

Mehrpour, S. and LaToza, T. D. (2023). Can static analysis
tools find more defects? Empir. Softw. Eng., 28(1):5.

Moyo, S. and Mnkandla, E. (2020). A novel lightweight
solo software development methodology with opti-
mum security practices. IEEE Access, 8:33735–
33747.

Nguyen-Duc, A., Do, M. V., Hong, Q. L., Khac, K. N., and
Quang, A. N. (2021). On the adoption of static anal-
ysis for software security assessment-a case study of
an open-source e-government project. Comput. Secur.,
111:102470.

Novak, J., Krajnc, A., et al. (2010). Taxonomy of static code
analysis tools. In The 33rd international convention
MIPRO, pages 418–422. IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Raschka, S. (2018). Mlxtend: Providing machine learning
and data science utilities and extensions to python’s
scientific computing stack. Journal of open source
software, 3(24):638.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

574


