
A Comparative Study of ML Approaches for Detecting AI-Generated
Essays

Mihai Nechita and Madalina Raschip a

”Alexandru Ioan Cuza” University of Iasi, Romania

Keywords: AI-Generated Text Detection, LLM, Transformers, DeBERTa, Zero-Shot Learning, NLP, Explainability.

Abstract: Recent advancements in generative AI introduced a significant challenge to academic credibility and integrity.
The current paper presents a comprehensive study of traditional machine learning methods and complex neu-
ral network models such as recurrent neural networks and Transformer-based models to detect AI-generated
essays. A two-step training of the Transformer-based model was proposed. The aim of the pretraining step
is to move the general language model closer to our problem. The models used obtain a good AUC score for
classification, outperforming the SOTA zero-shot detection approaches. The results show that Transformer
architectures not only outperform other methods on the validation datasets but also exhibit increased robust-
ness across different sampling parameters. The generalization to new datasets as well as the performance of
the models at a small level of FPR was evaluated. In order to enhance transparency, the explainability of the
proposed models through the LIME and SHAP approaches was explored.

1 INTRODUCTION

The rapid development of AI systems in recent years
produced models capable of generating content al-
most indistinguishable from human created ones.
While such instruments are key to increasing pro-
ductivity by automating some of the repetitive tasks,
excessive usage can undermine the proper develop-
ment of human creativity and critical thinking, es-
sential aspects in education. In the academic set-
ting, the increasing prevalence of students using ar-
tificial intelligence for their home assignments raises
concerns about the authenticity and integrity of their
work, which may not be entirely original, although
appearing as such.

Although GPT-3 (Brown et al., 2020) was made
publicly available in 2021, only after releasing its
chatbot SaaS variant a year later, we saw a surge in
popularity, indicating that specialized knowledge was
a limiting factor for broad adoption. Open models
such as LLama (Touvron et al., 2023), Mistral (Jiang
et al., 2023), Phi (Gunasekar et al., 2023) offer vari-
ants that can run in inference mode on most edge
devices. The development of quantization methods
(Dettmers et al., 2024) further reduced hardware re-
quirements, making it easier to deploy personal AI as-

a https://orcid.org/0000-0003-0020-636X

sistants. It is now easier than ever to interact with and
get a response from a Large Language Model (LLM),
with some users preferring it over Google.

In recent years, large language models have taken
over the Natural Language Processing (NLP) space,
replacing previous recurrent neural network archi-
tectures and encoder-only Transformers like BERT
(Bidirectional Encoder Representation from Trans-
formers) (Kenton, 2019) on a wide range of applica-
tions. One such task where LLMs particularly excel
is Question Answering and Text generation, due to
the increased number of parameters and larger con-
text window. To put things in perspective, while the
original BERT had a window of 512 tokens, with later
developments bringing that number to 2048 tokens,
LLMs such as GPT-4 now reach 32768 token win-
dows. The increased context window allows them to
fully process longer documents and generate long se-
quences with a lower risk of hallucination.

As such, it is essential to develop reliable systems
capable of identifying and signaling misuse with great
accuracy, in order to protect the credibility and in-
tegrity of academic institutions.

In this work, we are comparing multiple ap-
proaches for detecting generated content, from clas-
sical approaches based on statistical models that can
run solely on the CPU to more complex architectures
such as recurrent neural networks and Transformers

144
Nechita, M., Raschip and M.
A Comparative Study of ML Approaches for Detecting AI-Generated Essays.
DOI: 10.5220/0013570200003967
In Proceedings of the 14th International Conference on Data Science, Technology and Applications (DATA 2025), pages 144-155
ISBN: 978-989-758-758-0; ISSN: 2184-285X
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

(Vaswani et al., 2017) that require dedicated hardware
and are considerably more expensive to run. By com-
paring these models, we aim to identify the most effi-
cient model that could be applied on a larger scale.
Another element of novelty brought by the current
work is the two-stage training process used for De-
BERTa, which is introduced to obtain a more effective
classification. The model is not trained directly on the
essays dataset but first on a large corpus of human-
written and AI-generated texts, for a small number of
iterations. Moreover, the comparison of the classi-
cal approaches against zero-shot learning approaches
yielded some interesting observations. To shed some
light inside black-box models like artificial neural net-
works, we explored explainability approaches such as
LIME (Local Interpretable Model-Agnostic Explana-
tions) (Ribeiro et al., 2016) and SHAP (SHapley Ad-
ditive exPlanations) (Lundberg and Lee, 2017).

The remaining paper is organized as follows: af-
ter discussing some of the related work (Section 2),
we present some theoretical aspects of the techniques
utilized in this article (Section 3). The following
sections focus on describing our methodology in ap-
proaching the problem (Section 4) and the experimen-
tal setup with the obtained results (Section 5). We ex-
plore the interpretability in Section 6. Section 7 con-
cludes the paper with a summary, information about
future work, and an acknowledgment of our limita-
tions.

2 RELATED WORK

In the last few years, after the release of powerful
LLMs, an increase in the detection of AI-written con-
tent has been noticeable. Multiple approaches, start-
ing from statistical methods to actual complex neural
networks, were proposed to detect AI generated texts.
A survey on the detection of LLMs-generated content
is given in (Yang et al., 2023).

DetectGPT (Mitchell et al., 2023) analyzes the
likelihood landscape of text within the same lan-
guage model that may have generated it. This de-
tection method uses differences in log-probabilities
after applying various perturbations, such as rewrit-
ing some phrases using a Transformer-based model.
Another similar approach is GPTZero (Tian and Cui,
2023), which uses the sequence perplexity to distin-
guish AI content from human-written text under the
assumption that human writing exhibits greater ran-
domness. AI-generated content typically has lower
perplexity. Another scoring metric used is burstiness,
which assesses whether repeated tokens are likely
to appear in proximity to each other. A classifier-

based approach that uses a suite of NLP features,
n-gram features, topic modeling features, and vari-
ous readability scores is described in (Nguyen et al.,
2023). The performance of different classes of de-
tectors, including watermarking-based (Kirchenbauer
et al., 2023), neural network based, zero-shot based,
and retrieval-based detectors, is analyzed in (Sadasi-
van et al., 2023). The study raised concerns about the
reliability of these detection methods.

Detecting AI-generated essays is more challeng-
ing than plagiarism detection since it is impossible to
identify the ”original” content. The widespread avail-
ability of SaaS platforms such as ChatGPT 1, com-
bined with their writing capabilities, often surpass-
ing those of an average student, has significantly in-
creased the difficulty of this problem. Two zero-shot
methods, Ghostbuster (Verma et al., 2024) and Binoc-
ulars (Hans et al., 2024), are among the current SOTA
approaches for detecting AI-generated content such
as essays. Ghostbuster uses language model proba-
bilities to distinguish between human-written and AI-
generated content. It identifies statistical inconsisten-
cies that emerge in AI-generated text. Binoculars, on
the other hand, employs a contrastive approach by
comparing the target text against human-written and
AI-generated text distributions. It examines features
such as perplexity and cross-perplexity to determine
whether the text is AI-generated.

3 THEORETICAL ASPECTS

3.1 Word Embeddings

To enable a model to process textual information, it
must first be transformed into numerical vectors.

TF-IDF (Term Frequency-Inverse Document Fre-
quency) (Joachims, 1997) measures the importance of
a word t in a document d from a collection of docu-
ments D, adjusted by how frequent the term is in gen-
eral. It is defined by a two-part formula. The first
part, term frequency, measures the relative frequency
of term t in document d. The second part, inverse doc-
ument frequency, measures how common or rare the
term is across the document corpus D. A high TF-IDF
value indicates that the term appears frequently in the
given document while being relatively infrequent in
the rest of the corpus.

Word2Vec (Mikolov et al., 2013) is a self-
supervised, shallow neural network designed to cap-
ture the similarities and semantic analogies between

1Introducing ChatGPT, https://openai.com/index/chatg
pt/

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

145

different words. The training process learns condi-
tional probabilities of a target word given its context.

While the previously described approaches use
word-level tokenization, Byte Pair Encodings (BPE)
(Sennrich et al., 2015) operates at the character level,
recursively merging the most frequent pairs of con-
secutive tokens and replacing them in the vocabulary.
This process is repeated until the desired vocabulary
size is achieved. WordPiece (Kenton, 2019) is simi-
lar to BPE, with the primary difference being in the
merging algorithm. Instead of merging the most fre-
quent token pairs, it computes a score by also taking
into account the individual frequency of the two com-
ponents. This way the approach prevents merging in-
dividual tokens that appear very often throughout the
corpus.

3.2 Recurrent Neural Networks

Multi-layer perceptrons struggle to handle temporal
dependencies in sequential data because they consider
data points as independent. They cannot process se-
quences of varying length and are limited in capturing
long-term dependencies.

Recurrent Neural Networks (RNNs) come as a so-
lution to these issues: instead of modeling the prob-
ability of token xt at time step t as P(xt |xt−1, ...,x1),
they use a latent hidden space ht−1 that compresses
the information such that

P(xt |xt−1, ...,x1)≈ P(xt |ht−1)

.
Long short-term memory (LSTM) (Hochreiter

and Schmidhuber, 1997) networks are a type of recur-
rent neural networks in which the recurrent node is re-
placed by a memory cell containing an internal state.
LSTM introduce the concept of gated hidden states
to mitigate the vanishing gradient problem. These
gates act as mechanisms that dictate to what degree
the hidden states should be updated with new infor-
mation and the amount of old information that should
be discarded. LSTMs use three distinct types of gates,
namely the input gate, the forget gate, and the output
gate. The amount of information that is taken into ac-
count is governed by the input gate, while the amount
that is forgotten is controlled by the forget gate.

Gated Recurrent Units (GRU) (Dey and Salem,
2017) are easier to compute and often achieve compa-
rable results with LSTMs. The difference lies in the
type of gates used, namely GRU uses only two types
of gates, the reset and update gates. The reset gate de-
termines how much of the past information to forget,
while the update gate controls how much of the previ-
ous memory to keep. Reset gates allow GRU to cap-

ture short-term dependencies, while update gates help
in detecting long-term dependencies in sequences.

3.3 Transformers

Since their introduction in the famous Attention Is All
You Need paper (Vaswani et al., 2017), Transform-
ers have revolutionized the natural language process-
ing field by expanding on the attention mechanism
(Bahdanau et al., 2016). They follow an encoder-
decoder architecture and offer better parallelism via
attention, compared to traditional RNNs which pro-
cess sequences in order. The key components of a
Transformer are given below.

Self-Attention

The idea behind attention is that token embeddings
should vary depending on the context. To achieve
this, three matrices Q, K, and V which represent dif-
ferent projections of the same input, are used. The
query represents what the model is looking for in the
sentence, and the key-value pair acts like a lookup ta-
ble. The attention mechanism that Transformers use
is the scaled dot-product attention, a variant of self-
attention, i.e. the keys and values are the same. The
formula used is given below:

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V

where dk is the length of keys and queries.

Multi-Head Attention

Rather than performing a single attention on query
and key-value pairs, linear projections are used to re-
duce the dimensionality to smaller values and do mul-
tiple attention passes at the same time, increasing par-
allelism. The outputs of the smaller attention blocks
are concatenated, and a weighted sum produces the
final output. In terms of performance, it is similar to
running the attention on the entire input, but with a
much lower computational cost.

Positional Encoding

In order to preserve information about the order of the
tokens, the inputs pass through a positional encoding
layer which adds positional embeddings described by
sine and cosine functions.

The Transformer-based model used in the current
paper is DeBERTaV3, a BERT-like model. BERT

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

146

(Kenton, 2019) uses only the encoder part from Trans-
former which is trained in a self supervised fashion
with two strategies.

1. Masked Language Modelling: For this objective,
around 15% of words in each sequence are re-
placed by a [MASK] token. The model has to pre-
dict the hidden token using the other tokens in the
sequence.

2. Next Sentence Prediction: In the training process,
the model receives pairs of sentences, and it has
to predict whether the second sentence follows the
former in the original document.

The output of the [CLS] token is used for a classi-
fication task.

DeBERTa (He et al., 2021b) comes with two ma-
jor improvements: a new attention mechanism called
disentangled attention, and it incorporates absolute
positioning in the decoder layer. Disentangled atten-
tion aims to separate the content embedding informa-
tion from the positional embedding, each word now
carrying two separate vectors. The attention weights
are calculated using disentangled matrices and are
equal to the sum of content-to-content, content-to-
position, position-to-content, and position-to-position
attention scores.

In DeBERTaV3 (He et al., 2021a), the masked lan-
guage modeling task is replaced with a more efficient
one, token detection.

4 METHODOLOGY

In this section, we describe the model architectures
used for detection.

4.1 CPU Models

Model choices were limited to XGBoost, Logistic
Regression, and SGDClassifier due to memory con-
straints. The embeddings used were TF-IDF and BPE
tokenizers like WordPiece.

4.2 RNN

In our experiments, we used two RNN architectures
based on LSTM and GRU. We chose a bidirectional
architecture with various numbers of stacked layers
and embedding sizes for the RNN based models. The
long context of 1024 tokens is approaching the limit
of LSTM layers due to using sigmoid and tanh activa-
tion functions. When training from scratch, the gra-
dient sometimes vanishes, making optimization chal-
lenging.

Figure 1 showcases the architecture of a BiLSTM
model which uses word2vec as text embedding with
the number of hidden units of 256.

Figure 1: A BiLSTM architecture with 2 LSTM heads.

We experimented with different architectures and
embeddings. We tested with a 32,000 vocabulary
sized BPE tokenizer but also pretrained Word2Vec,
GloVe, and FastText embeddings which ended up per-
forming better than training our own embedding layer.

4.3 DeBERTaV3

For the Transformer-based models, we resorted to De-
BERTaV3 as it’s battle proven in the realm of se-
quence classification. The architecture used for the
classification task consists of a pretrained DeBERTa
model with a trainable classifier added to the final
layer.

While not very helpful for smaller models, big
pretrained models such as DeBERTa can show a sig-
nificant performance boost from adding a pretraining
step. In addition, it also helps large pretrained mod-
els get closer to the domain problem without overfit-
ting on the smaller fine-tuning dataset. The two-stage
training process used is described below.

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

147

1. First we bring the general model closer to our do-
main problem by training for one epoch on the
“pretrain” corpus.

2. Finally, we fine-tune the model using our essay
corpus.

Figure 2 shows explicitly the AUC scores depend-
ing on the training strategy. Experiments showed bet-
ter results when performing a two-stage training pro-
cess.

Figure 2: DeBERTa AUC scores depending on the training
strategy.

We tried both, fully fine-tuning the pretrained
model and using a LoRA (Hu et al., 2021) adapter
approach. However, while training steps were faster
with LoRA, convergence was slower, requiring multi-
ple epochs to achieve comparable results. The results
are presented in the experimental results section only
for the classical fine-tuning approach.

5 EXPERIMENTAL RESULTS

This section presents the datasets used, experimental
settings and results.

5.1 Datasets

Two major datasets were used, each with a specific
purpose, inspired by the recent LLM - Detect AI Gen-
erated Text Kaggle Competition (King et al., 2023).

5.1.1 Pretraining Corpus

The ”pretraining” corpus 2 was generated by the
second-place winner of the competition by sampling
texts from the SlimPajama (Soboleva et al., 2023)
dataset. This was done by selecting random se-
quences of 1024 tokens and prompting LLMs to gen-

2daigtdataandcode, https://www.kaggle.com/datasets/
wowfattie/daigtpretraindata/versions/5

Figure 3: A random SlimPajama text sequence alongside a
LLM-generated continuation and its human counterpart.

erate the next 1024 tokens (Figure 3). The real contin-
uation ends up in the human-written pile and the LLM
counterpart in the AI-generated one. This method
allows us to generate an unlimited amount of AI-
generated content, while also having a human-written
example within the same context.

The corpus is evenly distributed with around 500k
examples for each class. The LLMs used for genera-
tion were LLama2 7B, Open Llama 3B, 7B and 13B,
Mistral v1 7B, Phi-2 7B, Yi-6b and Falcon 7B.

This pretraining corpus was chosen because it al-
ready aggregates publicly shared datasets from the
competition and contains the least amount of AI-
generated gibberish. Moreover, the methodology can
be applied to any human-written dataset to obtain AI-
generated counterparts.

The ”pretraining” corpus was used only by the De-
BERTa model, as the two-step approach had a nega-
tive effect on less complex architectures.

5.1.2 Fine-Tuning Corpus

The fine-tuning corpus (Biswas et al., 2024) is based
on Persuade 2.0 (Crossley et al., 2023) which is a
25,000 argumentative essays produced by 6th-12th
grade students on 15 assignments. The assignment
prompts were used to generate diverse responses by
prompting various LLMs (Llama, Falcon, Mistral,
Mixtral, GPT-3.5, GPT-4, Claude, Cohere, Gemini,
PaLM) with varying sampling parameters, such as
topk, topp, and temperature.

Additionally, data from Ghostbuster (Verma et al.,
2024) was incorporated. The resulting dataset con-
sists of 167,446 curated examples, with a generated-
to-human ratio of approximately 3:1 (see Table 1).

We split the combined dataset with a 90:10 ratio to
create our training and validation sets. The valida-
tion dataset was used for early-stopping and thresh-
old setting. In order to assess the ability to general-
ize outside of the training environment, we randomly
selected an entire assignment (Car-free cities) with
14,000 entries and kept it as a holdout test set.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

148

Table 1: Fine-tuning corpus assignment distribution.

Assignment Human Generated Total
Car-free cities 3349 10636 13985
A Cowboy Who
Rode the Waves

1991 9937 11928

Cell phones at
school

1959 5770 7729

Community service 1818 5505 7323
Distance learning 2558 5918 8476
Does the electoral
college work?

3261 10732 13993

Driverless cars 2360 11276 13636
Exploring Venus 2342 11638 13980
Facial action coding
system

2683 11307 13990

Grades for
extracurricular
activities

1993 5232 7225

Mandatory
extracurricular
activities

1994 6546 8540

Phones and driving 1375 4535 5910
Seeking multiple
opinions

1881 6233 8114

Summer projects 1921 5719 7640
The Face on Mars 2147 10654 12801
ghostbuster essays 977 3122 4099
ghostbuster news 981 2999 3980
ghostbuster writing
prompts

1022 3075 4097

36612 130834 167446

5.2 Linguistic Features

We analyzed the linguistic characteristics that distin-
guish AI-generated texts from human-written texts.
Specifically, we examined vocabulary features such as
average word length, vocabulary size, and word den-
sity, as well as sentiment analysis features and stylis-
tic features, including repetitiveness and readability.
The features computed for the Car-free cities assign-
ment are shown in Table 2.

In agreement with previous studies (Muñoz-Ortiz
et al., 2024), human-written texts exhibit a more di-
verse vocabulary but tend to be shorter in length. Un-
like humans, LLMs tend to be more neutral than hu-
mans and lack emotional expression. Lexical diver-
sity scores are lower in human-written texts. Ad-
ditionally, readability scores are higher for human-
written texts, suggesting the use of simpler sentence
structures.

5.3 Experimental Settings

For the classical approaches, we mainly experimented
with different vocabulary sizes and the N-gram range.

The RNN models were trained using Adam
for 20 epochs. We employed EarlyStopping on

the validation loss with a patience of 3 to pre-
vent overfitting. Experiments showed that replacing
Cross Entropy Loss with Focal Loss improved the
model’s ability to generalize on the holdout set.

The Transformer models use the official pre-
trained weights as base, and the randomly initialized
classifier head was trained for one epoch per dataset
in the two-stage training approach.

5.4 Baseline

In order to have a more accurate assessment, we
compared our results with existing zero-shot methods
used to solve the classification problem. Binoculars
(Hans et al., 2024) was used as our baseline, as it
claims superior performance compared to other popu-
lar methods such as Ghostbuster (Verma et al., 2024),
DetectGPT (Mitchell et al., 2023), and GPTZero
(Tian and Cui, 2023). Their approach builds on the
idea behind Ghostbuster of using other LLM’s log-
probabilites as features. While Ghostbuster constructs
features through arithmetic operations on token prob-
abilities, Binoculars follows a simpler approach. It
uses the ratio between the model’s perplexity and an-
other metric called cross-perplexity.

The authors of Binoculars used the same dataset
as Ghostbuster, which is part of our corpus. Results
were generated using their original choice of LLMs,
Falcon-7B and Falcon-7B-Instruct.

5.5 Validation and Test Results

Table 3 presents the Area under the ROC Curve
(AUC) scores for the top-performing models on each
category, evaluated on the validation and holdout test
(represented by Car-free cities) sets.

Naming convention for the RNNs follows the
nomenclature:

{model} {embed} {# s t a c k e d } { h i d s i z e } .

We used a similar convention for the classical ML
models, except for the last two values, which repre-
sent the minimum and maximum n-grams.

The logistic regression and the BiGRU model
achieve good results on the validation dataset, but per-
form slightly worse on the holdout data. The best per-
forming results on both datasets are obtained by the
DeBERTa model with two-step training. One of the
reasons the DeBERTa model outperforms the others is
its training approach. In the first phase, we ”special-
ize” the model for identifying AI-generated content.
Even though we use a small number of iterations for
the first phase, this ensures that the vector space is
more effective for representing the data.

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

149

Table 2: Linguistic features for Car-free cities assignment.

avg word length vocab size word density empathy lexical div readab
human 4.532 170.153 21.483 0.00119 0.431 56.613

generated 4.621 167.831 21.778 0.00112 0.454 52.087

Table 3: AUC scores on validation and holdout test set broken down by assignment for top performing classifiers in each
category.

Assignment Binoculars LogReg-BPE-(1,3)gram BiGRU-Word2Vec-1-256 DebertaV3-both
Holdout test (Car-free cities) 0.7724 0.8952 0.8716 0.9948
All validation 0.6754 0.9576 0.9714 0.9957
A Cowboy Who Rode the Waves 0.6725 0.9400 0.9598 0.9905
Cell phones at school 0.5271 0.9481 0.9652 0.9994
Community service 0.6010 0.9577 0.9702 0.9968
Distance learning 0.7144 0.9626 0.9748 0.9988
Does the electoral college work? 0.7363 0.9552 0.9683 0.9941
Driverless cars 0.6438 0.9504 0.9727 0.9916
Exploring Venus 0.6865 0.9594 0.9695 0.9930
Facial action coding system 0.7103 0.9448 0.9717 0.9962
Grades for extracurricular activities 0.5375 0.9504 0.9695 0.9998
Mandatory extracurricular activities 0.6195 0.9675 0.9804 0.9960
Phones and driving 0.5873 0.9695 0.9764 0.9968
Seeking multiple opinions 0.5926 0.9621 0.9672 0.9956
Summer projects 0.6267 0.9682 0.9827 0.9977
The Face on Mars 0.6753 0.9511 0.9594 0.9936
ghostbuster essays 0.9979 0.9944 0.9825 1
ghostbuster news 0.9863 0.9979 0.9963 0.9996
ghostbuster writingprompts 0.9935 0.9933 0.9823 1

The performance of Binoculars varies by a signif-
icant degree depending on the text source, indicating
that Zero-shot methods might not maintain their ex-
pected performance across different datasets. While a
slight drop in holdout AUC is observed for our mod-
els, it is less pronounced.

TPR @ FPR

While relevant, AUC-ROC provides only a high-level
overview of the model’s performance. In our case,
false positives have serious consequences, so adjust-
ing the threshold to ensure a low FPR is essential. Fig-
ure 4 illustrates the TPR achieved at different FPR
levels on a logarithmic scale on the validation and
holdout test sets. Binoculars enforces an FPR of
10−4; however, such a low rate turns out to be unfea-
sible for our corpus. Using their low FPR threshold,
the method achieved a value of 5×10−3 on our data,
while the TPR dropped to 0.35, far from their reported
0.99. This might indicate that zero-shot methods are
susceptible to corpus specific patterns. For methods
that use other LLMs logprobs as a proxy, the similar-
ity between the chosen LLM and the one that gener-
ated the sequence could be important.

To compare performance at the same level of FPR,
we set our models’ thresholds using the validation
dataset at an FPR of 5× 10−3, which was achieved
by Binoculars. Table 4 summarizes the performance

in terms of AUC, TPR, FPR, and F1 score for the top
five models per architecture type on both validation
and holdout test sets (the full table is provided in Ap-
pendix 7.2). The results are presented in sorted order
of their F1 score on the validation dataset. We ob-
serve that the DeBERTa variations maintain their po-
sition as the top performers across all metrics, even on
the holdout set. Other models, while outperforming
the baseline Binoculars, show a significant increase in
the FPR on the test data. Table 4 indicates that better
performance is obtained when using a larger hidden
size for the RNN models, as all of the top five vari-
ants use a hidden size of 256. In terms of the choice
of RNN unit, results appear to slightly favor the sim-
pler GRU. Using a deeper RNN architecture has di-
minishing returns, if any, 4 out of the 5 top perform-
ing RNN architectures only use a single bidirectional
layer. The choice is inconclusive in terms of pre-
trained embedding types, both word2vec and fasttext
are close in terms of validation AUC and the differ-
ences on the test set may be attributed to other choices
in the model’s architecture.

Effects of Nucleus Sampling

While varying nucleus sampling parameters (Holtz-
man et al., 2020) promotes diversity in generated con-
tent, it does not appear to affect DeBERTa’s discrim-
inative power, as shown in Figure 5. However, this

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

150

Figure 4: TPR at different levels of FPR on a logarithmic scale. X marks the threshold set at 5×10−3 validation FPR.

Table 4: Metrics on the validation and holdout test sets using thresholds computed at 5× 10−3 validation FPR sorted by
Validation F1.

classifier val roc val tpr val f1 test roc test tpr test fpr test f1 test f1 rank
transformer deberta3 both 0.9959 0.9203 0.9578 0.9947 0.8367 0.0003 0.9110 1
transformer deberta3 finetune only 0.9902 0.8336 0.9087 0.9895 0.7406 0.0006 0.8509 2
rnn gru word2vec 1 256 0.9714 0.6868 0.8136 0.8716 0.6949 0.1197 0.8022 3
rnn gru fasttext 2 256 0.9662 0.6688 0.8009 0.8992 0.5896 0.0260 0.7380 6
rnn gru fasttext 1 256 0.9723 0.6610 0.7952 0.8957 0.6101 0.0427 0.7516 5
rnn lstm word2vec 1 256 0.9731 0.6425 0.7817 0.8760 0.5773 0.0421 0.7259 7
rnn lstm glove 1 256 0.9637 0.6299 0.7723 0.8761 0.6587 0.0806 0.7823 4
cpu logreg bpe 1 3 0.9576 0.6285 0.7712 0.8952 0.4982 0.0078 0.6640 8
cpu sgd bpe 1 3 0.9548 0.6050 0.7532 0.8960 0.4582 0.0054 0.6277 9
cpu xgb bpe 1 1 0.9344 0.5309 0.6929 0.8200 0.3574 0.0272 0.5233 12
cpu sgd bpe 1 1 0.9396 0.5160 0.6801 0.8570 0.4496 0.0161 0.6182 10
cpu sgd bpe 3 5 0.9319 0.4683 0.6372 0.8629 0.3410 0.0026 0.5082 13
baseline binoculars 0.6754 0.3533 0.5215 0.7724 0.4031 0.0012 0.5744 11
transformer deberta3 pretrain only 0.8711 0.0000 0.0000 0.9408 0.0000 0.0000 0.0000 14

is not the case for Binoculars, a pattern emerges at
higher values of these parameters, completely evad-
ing detection in some instances. This highlights the
inherent limitations of zero-shot methods with re-
gard to style biases. In the presence of higher top-p
and temperature values, which increase the genera-
tive model’s creativity, Binoculars incorrectly flagged
generated text as human written.

6 EXPLAINABILITY

Since deep models often behave like black-boxes,
we explored whether known explainability techniques
can shed some light into why an observation might be
positively classified or not. In addition, the explana-
tions of the predictions can help justify decisions and
assist teachers in providing personalized feedback, for
example.

To this end, LIME and SHAP, two widely used
model-agnostic approaches were applied. LIME

(Local Interpretable Model-agnostic Explanations)
(Ribeiro et al., 2016) is designed to explain individual
predictions of a black-box model. It first generates
perturbed samples and computes their predictions us-
ing the model and then a simple interpretable model is
trained on the newly generated dataset. Hence, LIME
provides local interpretability. The simple model’s
weights represent feature importance scores.

SHAP (Shapley Additive exPlanations (Lundberg
and Lee, 2017)) uses a concept borrowed from coop-
erative game theory, i.e. the Shapley values to quan-
tify the contribution of the features to a prediction.
The technique computes the Shapley values by con-
sidering different combinations of input features and
then it assesses their impact on the model’s output.

While analyzing the corpus of false positives, we
identified a noisy observation consisting of a repeated
sentence, which we used for our explainability exper-
iments.

Figure 6 presents SHAP values for the DeBER-
TaV3 classifier on the noisy observation before and
after cleaning. Since SHAP is not supported for

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

151

Figure 5: Effect on DeBERTaV3 and Binoculars predicted probabilities by varying nucleus sampling parameters on generated
observations.

RNNs, we instead generated LIME explanations on
the same texts. They are shown in Figure 7.

Figure 6: SHAP values for DeBERTaV3 on a noisy obser-
vation before and after correction.

In both cases, cleaning the noisy observation led
to a decrease in the predicted probability, dropping
below the threshold for the RNN model. Regarding
the contribution of specific words, the two techniques
show different behaviors, except for ”Automobiles”
which is hinting towards the AI generated class in
both representations.

7 CONCLUSIONS

The problem of detection of AI-generated text is
analyzed in this paper. Various machine learning
approaches have been proposed to distinguish be-

tween human-written and AI-generated text. SOTA
approaches were used for comparison. While tra-
ditional ML methods struggle to capture the subtle
differences between human and AI generated text,
medium-sized language models maintain their ex-
pected performance even on unseen data. Zero-shot
approaches, such as Ghostbuster and Binoculars, per-
form well on their original data, but fail to main-
tain their TPR on new data. However, their FPR re-
mained relatively small and consistent throughout the
datasets. We also analyzed the impact of varying nu-
cleus sampling parameters. The predicted confidence
of Binoculars appears to be impacted by these param-
eters, which was not the case for the DeBERTa model.
With enough data, Transformer models seem to be-
come invariant to such perturbations in generated text.

Future work will focus on maintaining a strict
FPR on unseen data, while at the same time achiev-
ing a reasonable TPR. For a detection system to be
deployed in a production scenario, its performance
needs to be closely monitored to ensure trustworthy
predictions. While in the case of plagiarism, one
could validate suspicions by finding the original work
that was copied, generated content is impossible to
confirm without external mechanisms such as water-
marking (Kirchenbauer et al., 2023). The current
study focused only on evaluating different approaches
on shorter text sequences. However, the final solution
should scale to longer documents, either by ensam-
bling predictions on a sliding context window or us-
ing model architectures that inherently scale to longer
sequences.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

152

Figure 7: LIME of the top performing RNN model on a noisy observation before and after correction.

7.1 Limitations

We conclude with some limitations of our study.
Firstly, the evaluated models have a maximum context
window of 1024 tokens which limits the real world
applicability of this research. Moreover, our dataset
consists of sequences ranging from 500 to 2000 to-
kens. Combined with potential biases in the genera-
tion process, this could lead to a significant data dis-
tribution shift when applied to real-world examples.

Secondly, the large number of architecture vari-
ants examined in this paper made it difficult to per-
form comprehensive hyperparameter tuning. This
issue is alleviated to some degree by the fact that
our best performing models, mainly the Transformer-
based approaches, have a reduced sensibility to hy-
perparameter choice.

Lastly, in the interest of reproducibility, all the
experiments were run in an environment with 32GB
RAM and 16GB GPU VRAM, matching the spec-
ifications of free hardware offered by major cloud
providers. However, without hardware constraints,
we could train larger models and improve our dataset
with content generated by more powerful LLMs.

7.2 Ethical Considerations

The dataset is based on the public Persuade 2.0 corpus
which is anonymized and doesn’t include any gender
or racial information, nor is to our knowledge biased
against any minority. Any third party dataset that was
used is cited in the references.

REFERENCES

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural ma-
chine translation by jointly learning to align and trans-
late. arXiv preprint arXiv:1409.0473.

Biswas, R., Bamba, U., and Broad, N. (2024). Llm - detect
ai datamix (version 1).

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., and Askell, A. (2020). Language models
are few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Crossley, S., Baffour, P., Tian, Y., Franklin, A., Benner, M.,
and Boser, U. (2023). A large-scale corpus for assess-
ing written argumentation: Persuade 2.0. Available at
SSRN 4795747.

Dettmers, T., Pagnoni, A., and Holtzman, A. & Zettle-
moyer, L. (2024). Qlora: Efficient finetuning of quan-
tized llms. Advances in Neural Information Process-
ing Systems, 36.

Dey, R. and Salem, F. (2017). Gate-variants of gated re-
current unit (gru) neural networks. In In 2017 IEEE
60th international midwest symposium on circuits and
systems (MWSCAS), IEEE, pages 1597–1600.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Del Giorno, A., Gopi, S., and Li, Y. (2023). Textbooks
are all you need. arXiv preprint arXiv:2306.11644.

Hans, A., Schwarzschild, A., Cherepanova, V., Kazemi,
H., Saha, A., and Goldblum, M. & Goldstein, T.
(2024). Spotting llms with binoculars: Zero-shot
detection of machine-generated text. arXiv preprint
arXiv:2401.12070.

He, P., Gao, J., and Chen, W. (2021a). Debertav3: Im-
proving deberta using electra-style pre-training with
gradient-disentangled embedding sharing. arXiv
preprint arXiv:2111.09543.

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

153

He, P., Liu, X., Gao, J., and Chen, W. (2021b). Deberta:
Decoding-enhanced bert with disentangled attention.
arXiv preprint arXiv:2006.03654.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
(2020). The curious case of neural text degeneration.
arXiv preprint arXiv:1904.09751.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., and Chen, W. (2021). Lora: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. D. L., and Sayed, W. E.
(2023). Mistral 7b. arXiv preprint arXiv:2310.06825.

Joachims, T. (1997). A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. In ICML,
97:143–151.

Kenton, J. D. M. W. C. & Toutanova, L. K. (2019).
Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint
arXiv:1810.04805.

King, J., Baffour, P., Crossley, S., Holbrook, R., and
Demkin, M. (2023). Llm - detect ai generated text.
Kaggle.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. (2023). A watermark for large lan-
guage models. In In International Conference on Ma-
chine Learning PMLR, pages 17061–17084.

Lundberg, S. M. and Lee, S. I. (2017). A unified approach to
interpreting model predictions. In NIPS’17: Proceed-
ings of the 31st International Conference on Neural
Information Processing Systems, pages 4768–4777.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.

Mitchell, E., Lee, Y., Khazatsky, A., and Manning, C. D.
& Finn, C. (2023). Detectgpt: Zero-shot machine-
generated text detection using probability curvature.
In In International Conference on Machine Learning
PMLR, pages 24950–24962.

Muñoz-Ortiz, A., Gómez-Rodrı́guez, C., and Vilares, D.
(2024). Contrasting linguistic patterns in human and
llm-generated news text. Artificial Intelligence Re-
view, 57(10):265.

Nguyen, T., Hatua, A., and Sung, A. (2023). How to detect
ai-generated texts? In In IEEE 14th Annual Ubiqui-
tous Computing, Electronics & Mobile Communica-
tion Conference (UEMCON), IEEE.

Ribeiro, M. T., Singh, S., and Guestrin., C. (2016). ”
why should i trust you?” explaining the predictions
of any classifier. In In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge dis-
covery and data mining, pages 1135–1144.

Sadasivan, V. S., Kumar, A., Balasubramanian, S., and
Wang, W. & Feizi, S. (2023). Can ai-generated text be
reliably detected? arXiv preprint arXiv:2303.11156.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural
machine translation of rare words with subword units.
arXiv preprint arXiv:1508.07909.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J., Hes-
tness, J., and Dey, N. (2023). Slimpajama: A 627b
token cleaned and deduplicated version of redpajama.

Tian, E. and Cui, A. (2023). Gptzero: Towards detection
of ai-generated text using zero-shot and supervised
methods.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M. A., Lacroix, T., and Lample, G. (2023). Llama:
Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A., and Kaiser, L. & Polosukhin, I. (2017).
Attention is all you need. Advances in neural informa-
tion processing systems, 30.

Verma, V., Fleisig, E., and Tomlin, N. & Klein, D. (2024).
Ghostbuster: Detecting text ghostwritten by large lan-
guage models. arXiv preprint arXiv:2305.15047.

Yang, X., Pan, L., Zhao, X., Chen, H., Petzold, L., and
Wang, W. Y. & Cheng, W. (2023). A survey on
detection of llms-generated content. arXiv preprint
arXiv:2310.15654.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

154

APPENDIX

Table 5: Metrics for all models on validation and holdout test set using thresholds computed at 5×10−3 validation FPR.
classifier val roc val tpr val f1 test roc test tpr test fpr test f1 val f1 rank test f1 rank

transformer deberta3 both 0.99586 0.92029 0.95781 0.99473 0.83669 0.00030 0.91104 1 1
transformer deberta3 finetune only 0.99024 0.83364 0.90873 0.98946 0.74060 0.00060 0.85088 2 2
rnn gru word2vec 1 256 0.97135 0.68682 0.81363 0.87155 0.69490 0.11974 0.80215 3 3
rnn gru fasttext 2 256 0.96621 0.66883 0.80085 0.89919 0.58960 0.02598 0.73803 4 9
rnn gru fasttext 1 256 0.97231 0.66098 0.79519 0.89566 0.61010 0.04270 0.75156 5 8
rnn lstm word2vec 1 256 0.97306 0.64253 0.78167 0.87598 0.57729 0.04210 0.72590 6 10
rnn lstm glove 1 256 0.96370 0.62993 0.77226 0.87609 0.65871 0.08062 0.78227 7 5
cpu logreg bpe 1 3 0.95762 0.62847 0.77116 0.89521 0.49821 0.00776 0.66399 8 15
rnn gru word2vec 1 128 0.96241 0.62692 0.76999 0.84911 0.63736 0.11227 0.76207 9 7
rnn gru glove 2 256 0.95125 0.61760 0.76292 0.87197 0.56450 0.04598 0.71502 10 11
rnn lstm fasttext 2 256 0.95351 0.60747 0.75512 0.87224 0.48562 0.02001 0.65100 11 19
cpu sgd bpe 1 3 0.95478 0.60500 0.75321 0.89599 0.45816 0.00538 0.62768 12 22
rnn gru glove 1 256 0.95938 0.59989 0.74923 0.85557 0.64517 0.09555 0.77023 13 6
rnn lstm glove 2 256 0.95974 0.59560 0.74587 0.85514 0.55030 0.05882 0.70155 14 13
cpu xgb bpe 1 1 nlp 0.94313 0.59551 0.74580 0.84806 0.40767 0.00866 0.57810 15 24
rnn lstm glove 1 128 0.95072 0.57469 0.72923 0.83838 0.56628 0.06360 0.71396 16 12
rnn lstm fasttext 1 128 0.94275 0.57442 0.72901 0.90279 0.49276 0.00478 0.65954 17 17
rnn gru fasttext 1 128 0.95356 0.57423 0.72886 0.89374 0.48185 0.01254 0.64861 18 20
rnn gru glove 1 128 0.95360 0.56364 0.72026 0.85779 0.67102 0.12601 0.78450 19 4
rnn lstm fasttext 1 256 0.95511 0.55771 0.71539 0.88964 0.49539 0.01344 0.66069 20 16
rnn lstm word2vec 1 128 0.95616 0.54931 0.70843 0.83992 0.53902 0.06718 0.69097 21 14
cpu xgb bpe 1 1 0.93442 0.53086 0.69289 0.81997 0.35737 0.02717 0.52327 22 26
rnn gru word2vec 2 256 0.95256 0.52995 0.69211 0.86797 0.48928 0.02150 0.65410 23 18
cpu sgd bpe 1 1 0.93962 0.51598 0.68007 0.85698 0.44961 0.01612 0.61815 24 23
rnn lstm word2vec 2 256 0.95201 0.51342 0.67784 0.83767 0.46644 0.02508 0.63274 25 21
cpu lightgbm bpe 1 1 nlp 0.91537 0.49160 0.65851 0.82959 0.31478 0.00119 0.47870 26 29
cpu sgd bpe 3 5 0.93193 0.46832 0.63726 0.86291 0.34101 0.00269 0.50827 27 28
cpu lightgbm bpe 1 1 0.90742 0.45773 0.62737 0.81559 0.26034 0.00299 0.41282 28 32
cpu logreg bpe 1 1 0.92862 0.42348 0.59439 0.83127 0.35182 0.00896 0.51943 29 27
baseline binoculars 0.67542 0.35327 0.52153 0.77242 0.40307 0.00119 0.57440 30 25
cpu multinb bpe 3 5 0.90596 0.33747 0.50409 0.75496 0.27304 0.00000 0.42895 31 31
cpu multinb bpe 1 1 0.85244 0.25265 0.40291 0.75866 0.29504 0.00418 0.45518 32 30
cpu logreg bpe 1 1 nlp 0.66155 0.05807 0.10962 0.69065 0.04128 0.00090 0.07926 33 33
cpu sgd bpe 1 1 nlp 0.49959 0.00000 0.00000 0.50051 0.00000 0.00000 0.00000 34 34
transformer deberta3 pretrain only 0.87106 0.00000 0.00000 0.94077 0.00000 0.00000 0.00000 34 34

A Comparative Study of ML Approaches for Detecting AI-Generated Essays

155

