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Abstract: In recent years, Artificial Intelligence (AI)-based tools have gained widespread adoption as AI-powered
prompts have become increasingly sophisticated. As a result, the rise of AI-integrated websites has cre-
ated a growing demand for more sophisticated tools to protect devices and networks, especially in light of the
emergence of AI-generated malware. Indeed, numerous studies anticipated the threats posed by this type of
malware and proposed a variety of solutions to address this issue. In this context, most research introducing
generative AI frameworks deals with image-based data, prompting the need to analyze tabular network data.
We propose AAE-DRL, an Intrusion Detection System (IDS) that utilizes generative AI and deep reinforce-
ment learning to replicate and predict intrusion behavior. We demonstrate the advantages and limitations of
combining reconstruction and adversarial learning objectives with Deep Reinforcement Learning (DRL) in
terms of intrusion detection, data generation, and minority sampling. Our approach achieved 89% accuracy,
90% precision, 91% recall, 90% F1-score on the augmented dataset with a 97% Area Under the Curve (AUC).

1 INTRODUCTION
A Network Intrusion Detection System (NIDS) is an
essential part of the security infrastructure in an orga-
nization, designed to safeguard internal networks and
information systems from malicious threats (Sayed
and Taha, 2023). With the rapid growth of digital sys-
tems and interconnected networks, ensuring network
security has become a critical challenge. Intrusions,
such as unauthorized access and malicious activities,
pose severe threats to sensitive data, system integrity,
and availability.

Furthermore, the increase in technological inno-
vation, especially in AI, has driven a demand for
AI-powered websites. Numerous websites began in-
tegrating generative AI features into their business
models to enhance their products and services, such
as implementing bots for customer support and per-
sonalizing content recommendations. In response
to the widespread adoption of generative AI tools,
the sophistication of malware generation has notably
increased with the emergence of AI-powered mal-
ware, showcasing heightened intelligence and the
ability to operate autonomously. In a recent study
by (Gaber et al., 2024), the authors demonstrated that
AI-generated malware can evade traditional analysis

methods due to the inherent opacity of neural network
decision-making processes.

Many research studies have proposed Deep Learn-
ing (DL)-based IDS to address novel threats (Lan-
sky et al., 2021). In particular, adversarial AI
showed promising results in IDS applications, ex-
hibiting proven resilience against sophisticated cyber-
attacks. Algorithms such as Generative Adversar-
ial Networks (GANs) generate diverse network traf-
fic patterns that closely mimic real-world attack vari-
ations, enabling a more robust IDS capable of detect-
ing evolving threats (Chiriac et al., 2025). In this
context, recent studies, including (H. M. Kotb, 2025),
have emphasized the importance of distinguishing be-
tween synthetic and real-world malware for effective
cybersecurity practices. This differentiation impacts
detection methods, threat assessment, and the overall
strategy for combating cyber threats.

Additionally, an IDS relies on dataset quality to
determine detection accuracy and identify false nega-
tives. However, many intrusion detection datasets are
unbalanced due to the inherent nature of network traf-
fic and attack frequency, as most real-world network
traffic is normal, leading to data bias. Reconstruction-
based models, such as Autoencoders and their vari-
ants, showed promising results in learning the under-
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lying distribution of the data and capturing complex
feature interactions, thus generating diverse and real-
istic samples by capturing the latent space structure.

In terms of combining adversarial models with
reconstruction-based models, most studies focused on
image-based data because Autoencoders are inher-
ently unsupervised, which can lead to the preservation
of noise and irrelevant features in the encoded repre-
sentation in tabular data.

In this paper, we introduce AAE-DRL, an IDS
that incorporates a supervised Adversarial Autoen-
coder (AAE) and two Deep Reinforcement Learning
(DRL) algorithms; Twin-delayed Deep Deterministic
Policy Gradient (TD3) and Double Deep Q-Network
(DDQN). AAE-DRL offers a novel solution for gen-
erating tabular intrusion samples and adversarially
predicting the intrusion type.

To the best of our knowledge, AAE-DRL is the
first approach to utilize the capabilities of the orig-
inally proposed AAE and hybrid DRL algorithms
tested on tabular data. We investigate the effective-
ness of our approach based on the following:

• Predicting the type of intrusion using a deep learn-
ing classifier.

• Optimizing data generation using deep reinforce-
ment learning.

• Generating real intrusion samples for minority
classes.

We showcase a significant improvement across five
metrics when utilizing AAE-DRL for data augmenta-
tion, demonstrating the role of minority sampling in
predicting rare intrusion variants. These metrics in-
clude: model losses, accuracy, precision, recall, F1-
score and AUC. We also address the assumptions and
limitations of using AAE-DRL as a fully developed
IDS.

The rest of the paper is organized as follows: Sec-
tion 2 provides the mathematical formulations of the
deep learning algorithms used. Section 3 reports re-
lated works and their limitations. Section 4 presents
the design of the empirical study. Section 5 presents
the results and findings. In Section 6, we discuss those
findings and their limitations.

2 BACKGROUND

In this section, we present the mathematical structure
of the deep learning algorithms used in this study.

2.1 Adversarial Autoencoder

In (Makhzani et al., 2015), the authors proposed

Adversarial Autoencoders (AAE), a generative model
with a dual objective; reconstruction of error and ad-
versarial training. Specifically, the encoder functions
as a generator in the adversarial framework. As the
encoder learns to produce a latent representation that
aligns with a predefined prior distribution p(z), the
adversarial network ensures that the aggregated pos-
terior q(z) matches p(z). In this context, the en-
coder/generator ensures that q(z) can fool the discrim-
inator into thinking that the hidden code comes from
p(z). Thus, the aggregated posterior q(z) is defined
as:

q(z) =
∫

x
q(z|x)pd(x)dx (1)

where q(z|x) is the encoding distribution and pd(x) is
the data distribution (Makhzani et al., 2015).

2.2 Twin-delayed Deep Deterministic
Policy Gradient

In (Fujimoto et al., 2018), the authors introduced
Twin-delayed Deep Deterministic Policy Gradient
(TD3) as a variant of Deep Deterministic Policy Gra-
dient. In TD3, the actor is the policy network that
maintains a function µ(s | θµ) specifying the current
policy by deterministically mapping states to an ac-
tion, where θµ are the parameters of the actor net-
work. The critics, on the other hand, are Q-networks
denoted by Q(s,a|θQ), learned using the Bellman
equation. Moreover, policy smoothing is applied by
adding a small amount of random noise to the target
policy.

The actor is updated by maximizing the q-value
estimated by both critics, while the policy network
parameters are updated using a deterministic policy
gradient, which is defined as:

∇φJ(φ) = N−1
∑∇aQθ1(s,a)|a=πφ(s)∇φπφ(s) (2)

where ∇aQθ1(s,a) represent the gradient of the first
critic evaluated at a = πφ(s) (Fujimoto et al., 2018).
The target critic networks θ′ and the policy network
φ′ are both updated by adding a small value to achieve
a soft target network update.

2.3 Double Deep Q-Network

In (van Hasselt et al., 2015), the authors introduced
Double Deep Q-Network (DDQN), an extension of
DQN that addresses overestimation bias in Q-learning
in discrete observation spaces. Accordingly, DDQN
induces an upward bias using the double estimator
method. The target value Y Q

k is defined as:

Y DQNN
k = r+ γQ

(
s′,argmax

a∈A
Q
(
s′,a;θk

)
;θ

−
k

)
(3)
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where r is the reward, γ is the discount factor, Q is the
Q-value function, s′ is the next state, a is the current
action, θk is the current weight and θ

−
k is the weights

of the target network.

3 RELATED WORK

In this section, we highlight the efforts of intrusion
detection using Generative AI.

In (M. Ali and Zhang, 2024), the authors examine
the role of generative intelligence, particularly Gen-
erative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs), in detecting cyber threats and
anomalous network behaviors. This paper is a sur-
vey that discusses several datasets in network intru-
sion detection research, such as NSL-KDD, KDD99,
and IoT-23 and compares key findings from existing
literature, including performance metrics like accu-
racy, false alarm rate, and detection rate reported in
previous studies that used generative models on these
datasets. However, the authors outline several limi-
tations in using generative AI for intrusion detection,
including their susceptibility to adversarial attacks.

In (Alabsi et al., 2023), the authors proposed an
IDS that leveraged a Conditional Tabular Genera-
tive Adversarial Network (CTGAN) to detect attacks
in IoT environments and generate synthetic network
traffic data to address dataset imbalance. The authors
tested on 100,000 records from the Bot-IoT dataset,
focusing on the 10 key features. By utilizing the syn-
thetic data generated by CTGAN, the study describes
training multiple machine learning and deep learning
classifiers, including Logistic Regression (LR), Naive
Bayes (NB) and Gated Recurrent Units (GRUs). Ac-
cordingly, LSTM achieves the highest detection accu-
racy of 99.4%, precision of 96.6%, recall of 100% and
F1 measure of 99.6%. These results might suggest
overfitting, especially with a 100% recall. Moreover,
condition algorithms, such as CTGAN, rely on prede-
fined rules and signatures, limiting their effectiveness
against unknown threats.

In (Zhao et al., 2021), the authors introduced
attackGAN; an improved adversarial attack model
based on Wasserstein GAN by adding the feedback
of IDS. The authors considered shallow Machine
Learning (ML) and Deep Neural Networks (DNN).
For benchmarking, the authors considered Fast Gra-
dient Sign Method (FGSM), Project Gradient De-
scent (PGD), CW attack (CW) and GAN-based algo-
rithms. Using the NSL-KDD dataset, this approach
achieved a success rate of 81.37% and an evasion
rate of 87.18%, outperforming the GAN-based mod-
els. Nonetheless, the paper notes some existing meth-

ods do not preserve network traffic features, which
leads to invalid traffic data that could be detected by
the IDS.

4 EMPIRICAL STUDY

In this section, we describe the process of generating
synthetic data and predicting types of intrusion us-
ing AAE-DRL. Figure 1 illustrates the overall setup
of our approach, starting from data preparation, data
generation using AAE, then minority sampling and
data augmentation using DRL-integrated AAE. Fur-
thermore, we detail our supervised AAE approach in
Figure 2.

4.1 Dataset Description

In this subsection, we consider the UNSW-NB15
dataset to assess the performance of our approach,
mainly, the dataset’s train and test partition (Moustafa
and Slay, 2015). The authors in the Cyber Range
Lab of UNSW Canberra created raw network pack-
ets of the UNSW-NB15 dataset using the IXIA Per-
fectStorm tool to generate a hybrid of real modern
normal activities and synthetic contemporary attack
behaviors. This dataset includes nine types of at-
tacks: Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms. By
developing twelve algorithms for the data collected
by Argus and Bro-IDS tools, the authors generated
2,540,044 records and 49 features and classes, stored
in four CSV files. Moreover, the authors configured
a partition from the dataset into a train partition and
a test partition. The number of records in the train-
ing set is 175,341 and the testing set is 82,332. We
follow the standard process of data cleaning and scal-
ing, where we drop null values, encode categorical
features using LabelEncoder, and scale continuous
features using MinMaxScaler according to the value
range in the dataset; exclusively positive. Moreover,
we keep the 30 most important features, determined
using Recursive Feature Elimination (RFE).

4.2 Data Generation

In this subsection, we explain the role of the AAE
component in reconstructing the original data using
its decoder. We build our AAE with Linear layers and
ReLU activation functions, given the data distribution
and range; non-linear and exclusively positive. The
overall setup of our AAE follows the original design
proposed by the authors in (Makhzani et al., 2015),
except for the following:

A Hybrid Approach to Improve the Intrusion Detection Systems Using Generative Artificial Intelligence and Deep Reinforcement Learning

469



Figure 1: The general setup of our proposed approach.

Figure 2: The supervised adversarial autoencoder approach.

• The discriminator uses an attention mechanism to
prioritize relevant features

• The decoder’s final activation function layer is
customized according to the feature type; Recti-
fied Linear Unit (ReLU) if continuous, SoftMax
if multi-class, and Sigmoid if binary. The de-
coder’s loss function is also customized; Mean
Squared Error (MSE), Cross-Entropy (CE) and
Binary Cross-Entropy (BCE) if continuous, multi-
class and binary, respectively. These modifica-
tions effectively constrain the decoder to operate
within a specific range.

• Our AAE is supervised, hence, the decoder inputs
the encoded vector as well as the one-hot encoded
labels.

• We add a gradient penalty to the discriminator to
avoid mode collapse.

Finally, our trained decoder generates data by inter-
polating between data points in the latent space, al-
lowing our AAE to return unlabeled samples to the
classifier.

4.3 Minority Sampling

In this subsection, we describe the process of solv-
ing data imbalance with minority sampling. First,
we implement a semi-supervised learning technique

called pseudo labeling, where we use the TabNet
classifier for pre-training on the supervised (original)
dataset and then for predicting labels on the unsuper-
vised (synthetic) dataset. Rather than using the pre-
trained version from the ”pytorch tabnet” library, we
clone another implementation1 in order to change the
BatchNorm1D layers in the classifier’s architecture
to LayerNorm, as the classifier will be in evaluation
mode when implemented in the DRL environment.

Second, we implement TD3 and DDQN hybrid,
where we integrate our DDQN into our TD3’s critic
network. The reason behind using both algorithms is
that TD3 and DDQN have in common the structure;
two target networks to mitigate bias overestimation,
except that TD3 is exclusively used for continuous
action spaces and DDQN for discrete action spaces.
The workflow of the DRL environment is as follows:

1. The latent vector is optimized according to the ac-
tion space.

2. The AAE’s decoder inputs the optimized latent
vector and outputs new samples as input.

3. The AAE’s encoder/generator inputs the decoded
samples and generates a new latent vector.

4. The AAE’s discriminator inputs the encoded vec-
tor and calculates the reward.

5. The TabNet classifier inputs the normalized de-
coded samples and calculates the reward as well.

6. Both rewards are joined; the coefficients of the
discriminator and the classifier are set to 0.4 and
0.2, respectively.

Lastly, yet significantly, we force minority sampling
by adjusting the weights to favor minority classes
when calculating the classifier reward. Thus, our
DRL algorithm processes the synthetic data to create
a new balanced dataset. We perform pseudo-labeling
on the DRL-generated dataset using our classifier, the
final supervised dataset is then used to augment our

1https://github.com/sourabhdattawad/TabNet
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original training data. Subsequently, we train our
AAE again on the expanded training set to compare
the effect of data augmentation.

5 RESULTS

In this section, we present the results of our approach
and compare them to similar studies.

5.1 Class Imbalance

In this subsection, we explain the motivation behind
manually balancing classes.

We discover severe data imbalance favoring nor-
mal behavior in the train and test partitions. Thus,
we add more samples, mainly representing malicious
intrusion, from the four main UNSW-NB15 datasets.
We also add 677,785 benign samples to adjust the
malicious-to-benign ratio.

Additionally, we noticed that the three majority
classes in ”attack cat” represent 97.47% of the total
sample size. Therefore, we join labels according to
their description and define four classes labeled “Mal-
ware and Low-level Attacks”, “Generic”, “Exploits”
and “Normal”, the first class being the minority class,
representing 10% of the data. Therefore, the final
dataset contains 616,606 samples, 30 features and 1
target; ”attack cat”.

5.2 Comparative Research

To the best of our knowledge, we are the first to test
the mentioned models and algorithms on tabular data;
thus, we consider approaches tested on image-based
data.

Concretely, we chose the following two ap-
proaches because of the similarity in architecture:
combining an adversarial model and a reconstruction
model with a DRL algorithm.

In (Abbasian et al., 2023), the authors developed
RL-Controlled GAN; an approach to image-to-image
translation that combined an AutoEncoder, a Gen-
erative Adversarial Network, a DL classifier, and a
Twin Delayed Deep Deterministic Policy Gradient as
a backpropagator. The authors provided us with the
source code.

In (Fuhl et al., 2020), the authors introduced an
approach for eye-tracking data manipulation while
protecting user privacy, combining an AutoEncoder
and a Double Deep Q-Network (DDQN) as well as
two main DL classifiers (A and B) which also repre-
sent one of the DDQN agents, named ”classification
agent”.

5.3 Benchmark Classification

We assess all approaches using the following shallow
ML classifiers: Random Forest (RF), Extreme Gradi-
ent Boosting (XGB), Gradient Boosting (GB), and K-
Nearest Neighbor (KNN). We use the described clas-
sifiers to evaluate the synthetic data using 5 metrics:
accuracy, precision, recall, F1-score, and AUC, and
compare results before and after data augmentation
performed on the training set.

5.3.1 Benchmark Classification Evaluated on
the Unaugmented Dataset

Table 1 presents the results of the benchmark clas-
sification on the synthetic data reconstructed by our
decoder compared to the data reconstructed by the re-
search studies described above. AAE-DRL reported
86% accuracy, 81% precision, 75% recall, and 94%
AUC across almost all classifiers with a 1% inter-
val, meanwhile F1-score ranges from 70% to 74%,
compared to 39% accuracy, 27% precision, 26% re-
call, 19% F1-score and 53% AUC, reported by RL-
Controlled GAN and a reported 51% accuracy, 52%
precision, 39% recall 38% F1-score and 72% AUC by
AE+DQN.

5.3.2 Benchmark Classification Evaluated on
the Augmented Dataset

In Table 1, we showcase the results of adding data
augmentation generated by our decoder, similarly
comparing it with other research studies using their
respective decoders. AAE-DRL showed significant
improvement, especially in the precision and recall
metrics, which increased by 10% and 12% respec-
tively, compared to the 9% and 2% increase reported
by RL-Controlled GAN, as well as a 10% increase
and a 4% decrease in AE+DQN. However, AE+DQN
reported an increase of up to 90% and 89% in pre-
cision and recall in the weighted average, which ex-
plains the high accuracy and displays the problem of
data imbalance.

5.3.3 Effect of Data Augmentation on Minority
Class

Before data augmentation, the minority class (“Mal-
ware and Low-level Attacks”) achieved 58% to 98%
precision, 4% to 63% recall, and 7% to 74% F1-
score, suggesting that some of the benchmark clas-
sifiers struggled with identifying false negatives, as
presented in Table 2. After data augmentation, the
precision did not change, however, the recall and the
F1-score increased to 72-75% and 83-84%, respec-
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Table 1: Benchmark classification results.

Unaugmented data Augmented data
Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

A
A

E
-D

R
L RF 0.86 0.81 0.74 0.72 0.94 0.89 0.90 0.91 0.90 0.97

XGB 0.86 0.81 0.75 0.73 0.94 0.89 0.90 0.90 0.89 0.97
GB 0.86 0.80 0.74 0.70 0.94 0.89 0.90 0.91 0.90 0.97
KNN 0.86 0.81 0.75 0.74 0.94 0.89 0.90 0.91 0.90 0.97

R
L

-G
A

N RF 0.39 0.27 0.25 0.14 0.51 0.34 0.36 0.26 0.16 0.54
XGB 0.39 0.26 0.26 0.19 0.53 0.35 0.34 0.28 0.21 0.55
GB 0.39 0.10 0.25 0.14 0.50 0.34 0.33 0.26 0.17 0.52
KNN 0.36 0.23 0.25 0.21 0.50 0.30 0.25 0.25 0.23 0.50

A
E

+D
Q

N RF 0.51 0.52 0.37 0.35 0.67 0.91 0.59 0.35 0.39 0.74
XGB 0.50 0.43 0.39 0.38 0.72 0.91 0.62 0.33 0.37 0.72
GB 0.46 0.40 0.33 0.30 0.64 0.89 0.52 0.30 0.32 0.66
KNN 0.37 0.28 0.26 0.23 0.52 0.87 0.35 0.26 0.25 0.66

Table 2: Benchmark classification results of the minority
class before and after data augmentation.

Unaugmented data Augmented data
Precision Recall Precision Recall

RF 0.62 0.08 0.98 0.72
XGB 0.64 0.11 0.98 0.72
GB 0.58 0.04 0.96 0.73
KNN 0.64 0.13 0.95 0.75

tively, suggesting the effect of minority sampling us-
ing AAE-DRL.

5.4 Approach Losses

In Table 3, we present the losses reported by the gen-
erator, the discriminator, the classifier, and the DRL
reward, or in this case, punishment.

5.4.1 Adversarial Training Losses

AAE is trained for 101 epochs with a training batch
size of 32, performing evaluation every 10 epochs us-
ing a batch size of 64 for the validation set. Then, we
test our AAE with the testing set.

Table 3 shows the testing losses of the genera-
tor and discriminator without data augmentation at
14.2% and 43.0%, compared to 54.5% and 156.8%
generator loss and 68.4% and 36.3% discriminator
loss for RL-Controlled GAN and AE+DQN, respec-
tively.

We notice that the authors of AE+DQN consid-
ered the AE as a generator and classification agent as
a discriminator

5.4.2 Classifier Loss

As mentioned, we train TabNet on the original data
for 51 epochs with a batch size of 32, performing

evaluation every 10 epochs using a batch size of 64.
After generating a balanced dataset with the DRL al-
gorithm, TabNet is evaluated for a second time, where
we predict pseudo labels. Moreover, we use CE loss
in both cases as well as a confidence level for each
label generated. Similarly, we test TabNet’s perfor-
mance with the test set.

Table 3 showcases TabNet classifier loss, which
achieved 29.1% on the test set, compared to 34.6%
and 36.3% reported by the classifiers implemented
in RL-Controlled GAN and AE+DQN, respectively.
Moreover, the confidence level for each pseudo la-
bel generated ranged from 49% to 90% and averaged
84%, suggesting the accuracy of the model classifier
in predicting labels.

5.4.3 RL Reward/Punishment

We set the start time step for exploitation to 50 and
the total (maximum) time steps to 4000, as well as
the frequency of policy updates to 1000. The train-
ing batch size is set to 32 where we perform evalu-
ation every 400 episodes on the validation set. The
maximum time step and the training batch size con-
trol the dataset shape, as the DRL-enhanced decoder
outputs 128,000 samples. Furthermore, the critic net-
work utilizes MSE loss, as for the rewards, we com-
bine the classifier prediction with the discriminator
output, where we use CE and BCE, respectively.

Consequently, we iterate through 100 epochs and
64 batches in the test set. We also compute the en-
coded representation of the previous state and cur-
rent state, yielding both states in a tuple. As shown
in Table 3, AAE-DRL achieved 22.0% testing loss,
compared to 217.0% and 6.7% testing loss in RL-
Controlled GAN and AE+DQN, respectively.
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Table 3: Approach losses.

Generator loss Discriminator loss Classifier loss DRL reward
AAE-DRL 0.142 0.430 0.291 0.238
RL Controlled GAN 0.545 0.684 0.376 2.170
AE+DQN 1.568 0.363 0.363* 0.067

6 DISCUSSION AND THREATS
TO VALIDITY

In this section, we discuss the advantages of applying
our approach and its limitations.

6.1 Discussion

In this subsection, we highlight the efficiency of our
approach in detecting AI-generated intrusion.

The recall metric in intrusion detection systems
(IDS) is crucial because it measures the false negative
ratio. False negatives are particularly concerning be-
cause they allow real intrusions to go undetected, po-
tentially leading to significant security breaches and
data loss.
Our analysis shows that data augmentation signifi-
cantly impacted detection accuracy and other metrics,
especially recall.

In early training trials, our AAE experienced
mode collapse, a common problem in GANs, where
the model was stuck in the local minima because the
generator is focusing on producing a limited set of
data patterns. Therefore, we add a gradient penalty to
our discriminator loss to encourage our generator to
generate diverse samples.
However, AAE-DRL remains susceptible to mode
collapse with extended training; specifically, we ob-
served that our AAE consistently stagnates around the
60th epoch. We note that we deliberately maintained
the original architecture and penalty parameters to en-
sure a fair comparison.
Furthermore, we observed that the DRL algorithm
continues to generate samples primarily for the ”Ex-
ploits” majority class while neglecting the ”Generic”
minority class. This behavior indicates mode col-
lapse, which is further explained by the unchanged
recall results presented in Table 4. Therefore, we will
deeply investigate methods on how to adapt model
complexity and regularization techniques, namely the
gradient penalty, to the dataset size, as well as opti-
mizing the minority sampling technique.

On another note, we use shallow machine learn-
ing algorithms as benchmarks for several reasons, in-
cluding practicality, interpretability, and avoiding re-
dundancy, as the TabNet classifier can also provide
detection accuracy.

Table 4: Benchmark classification results of the ”Generic”
class before and after data augmentation.

Unaugmented data Augmented data
Precision Recall Precision Recall

RF 0.88 1.00 0.89 1.00
XGB 0.88 1.00 0.89 1.00
GB 0.88 1.00 0.89 0.99
KNN 0.88 1.00 0.89 1.00

6.2 Threats to Validity

In this subsection, we discuss the threats to the va-
lidity of our approach following a set of guidelines
(Wohlin et al., 2012).

Threats to Construct Validity: we identify vari-
ables correlated to the labels, however, we are not able
to conclude that correlated variables directly cause a
change to target or each other. Furthermore, we im-
plement the gradient penalty with a coefficient of 0.2
(less than 1), thus weakening the Lipschitz constraint
and breaking the theoretical grounding of adversarial
training. The purpose of choosing this coefficient is to
balance the AAE losses, as the discriminator becomes
over-penalized if the coefficient is greater than 0.5.
Moreover, we convert Conv2D layers and Conv2DT
layers to Linear layers + activation function in the
comparative research studies in order to test it on tab-
ular data.
We highlight the fact that the results described in Sec-
tion 5 may vary depending on trials due to the stochas-
tic nature of the training process. To mitigate this
threat, we conducted multiple runs with different ran-
dom seeds and reported their average performance.

Threats to Internal Validity: the results described
also depend on the resources available. Specifically,
the version mismatch between the CUDA toolkit and
Pytorch resulted in training instability. Resource lim-
itations also affect the size of the augmented data as
well as the number of neurons in the comparative
studies when converting layers.

Threats to Conclusion Validity: in the introduc-
tion section, we highlight the role of adversarial learn-
ing in providing insights into neural network behav-
ior, however, they do not completely resolve inter-
pretability challenges.

Threats to External Validity: we utilize the
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UNSW-NB15 dataset, released in 2015, which is con-
sidered outdated. The reason for choosing this dataset
is its size (high sample size and manageable feature
size) compared to other datasets in the same field.

Threats to Replicability: in this study, we de-
scribed the process of implementing AAE-DRL. The
corresponding code is available on GitHub2 along
with a step-by-step guide to reproduce our approach
and the comparative approaches mentioned in the re-
sults section.

7 CONCLUSION AND FUTURE
WORK

In this paper, we have investigated the role of AI-
powered intrusion detection in enhancing the accu-
racy and efficiency of detecting cyber threats. We
have benchmarked our results against state-of-the-art
(SOTA) models using four shallow ML classifiers.
Our approach showcased the advantages and limita-
tions of generating synthetic data. Our main findings
are summarized as follows:

• Our supervised attention-based AAE has outper-
formed SOTA models in detecting and generating
data using real-world data.

• Adapting reinforcement learning to address class
imbalance improved recall performance by 17%,
minimizing the likelihood of false negatives.

• Despite promising results, challenges such as
mode collapse and improving classification pre-
diction remain. Addressing these issues is cru-
cial for deploying generative AI-based intrusion
detection in real-world environments.
For future work, we will focus on updating the in-

put dataset with more contemporary examples and au-
tomating the process of identifying minority classes.

While AI-driven network intrusion detection
holds the potential to transform intrusion detection
systems, ongoing advancements and thorough evalu-
ations are essential to ensure its resilience against the
evolving landscape of cyber threats.

ACKNOWLEDGMENT

The authors thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), the
Mathematics of Information Technology and Com-
plex Systems (MITACS) and the Desjardins Group
(Mouvement Desjardins) for their financial support.

2https://github.com/anonymousForStudy/AAE-DRL

REFERENCES

Abbasian, M., Rajabzadeh, T., Moradipari, A., Aqajari, S.
A. H., Lu, H., and Rahmani, A. (2023). Controlling
the latent space of gans through reinforcement learn-
ing: A case study on task-based image-to-image trans-
lation.

Alabsi, B. A., Anbar, M., and Rihan, S. D. A. (2023). Con-
ditional tabular generative adversarial based intrusion
detection system for detecting ddos and dos attacks on
the internet of things networks. Sensors, 23:1–20.

Chiriac, B.-N., Anton, F.-D., Ionit, ă, A.-D., and Vasilică,
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