
Cypher by Example: A Visual Query Language for Graph Databases

Kornelije Rabuzin1 a, Maja Cerjan1 b and Martina Šestak2 c
1Department of Theoretical and Applied Foundations of Information Sciences, University of Zagreb,

Faculty of Organization and Informatics, Pavlinska 2, 42000 Varaždin, Croatia
2Information Systems Laboratory, University of Maribor Faculty of Electrical Engineeing and Computer Science,

Koroška cesta 46, 2000 Maribor, Slovenia

Keywords: The Graph Databases, NoSQL, Query by Example, Cypher, Query Languages.

Abstract: Considering the increasing connectivity in data exchange between applications and devices, modern IT
systems need a storage solution capable of handling connections and patterns between entities. Graph
databases emerged as a potential solution in the past decade. Since graph database query language
standardization is ongoing, users interact with graph databases using query languages like Cypher or Gremlin,
supported by modern Graph Database Management Systems (GDBMSs). Despite well-documented syntax,
users with little knowledge of graph databases face a steep learning curve before writing queries on their own
data. This limits interest in implementing graph databases due to the lack of a visual tool for maintenance. To
address this, the paper introduces Cypher by Example, a visual graph query language with an interface and
query patterns for interacting with the database. It presents the basic elements of this query language and
demonstrates its usefulness in two use cases.

1 INTRODUCTION

The rising connection of data across modern IT
systems has made graph databases a popular solution
since they allow first-class relationship entities for
effective pattern-based analysis such as fraud
detection¹. The main obstacle to increased use
remains the absence of a standard query language
similar to SQL. OpenCypher and GSQL and PGQL
and G-CORE make attempts to create a Graph Query
Language (GQL) standard1 but the standard remains
in development.

Until a standard Graph Query Language (GQL)
emerges users of graph databases depend on
languages like Cypher and Gremlin which major
Graph Database Management Systems (GDBMSs)
support. Despite its SQL-like declarative syntax
Cypher experiences widespread adoption yet
developers need to overcome a steep learning curve.
Different researchers have developed alternative

a https://orcid.org/0000-0002-0247-669X
b https://orcid.org/0009-0003-8825-6050
c https://orcid.org/0000-0001-7054-4925
1 More information available at https://www.gqlstandards.

org

query methods which reduce the learning burden of
syntax through their implementation.

The visual querying system known as Query by
Example (QBE) was originally designed for
relational database use. The developers of SQL built
the language to be user-friendly yet the system
became too complicated for average users. Microsoft
Access and other database systems employed QBE as
a query building tool to create visual interfaces for
database interactions.

Based on the QBE visual querying method we
suggest Cypher by Example (CBE) as a visual
language for graph databases. The system transforms
user input queries into Cypher syntax while enabling
users to build graph queries through its graphical
interface.

The main contributions of this paper are:
- Cypher by Example (CBE) presents a visual

query language for graph database operations;

518
Rabuzin, K., Cerjan, M., Šestak and M.
Cypher by Example: A Visual Query Language for Graph Databases.
DOI: 10.5220/0013565400003967
In Proceedings of the 14th International Conference on Data Science, Technology and Applications (DATA 2025), pages 518-525
ISBN: 978-989-758-758-0; ISSN: 2184-285X
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

- The system architecture of CBE includes its
design as well as graph query pattern
implementation;

- A user-friendly graphical user interface (GUI)
enables users to formulate visual graph
queries;

- CBE usability is tested through data insertion
and retrieval case studies.

The paper follows this organization: Section 2
provides an overview of visual query systems that are
relevant to the topic. The paper provides background
information about relational and graph database
querying in Section 3. Section 4 describes the CBE
language. Section 5 showcases CBE implementation
through practical applications. The paper ends with
future work and discussion in Section 6.

2 RELATED WORK

Researchers have proposed various database query
systems together with Visual Query Systems (VQSs).
The paper investigates query formulation since this
continues to be the primary difficulty for unskilled
graph database users.

Three research directions for visual query
formulation were identified by Bhowmick Choi and
Li (2017) as the edge-at-a-time method of adding
single edges at a time and the pattern-at-a-time
method of dragging subgraphs and the Query by
Example (QBE) method of using example data for
query formulation. The Query by Example (QBE)
approach functions as the fundamental basis for the
Cypher by Example (CBE) language we propose.

Pabon et al. (2019) presented GraphTQL as a
VQS system that enables filtering operations and
schema transformation. GraphTQL enhances query
formulation but it offers fewer operators than CBE
does because it provides extensive query
functionality.

AutoG represents a visual query auto-completion
framework that Yi along with Choi and Bhowmick
and Xu (2016) created. The system includes three
main components which are a user interface for input
and server-side data indexing and query suggestion
functionality. AutoG makes usability better but the
system fails to demonstrate the process of converting
visual queries into executable Cypher queries.

DAVINCI represents a visual interface which
Zhang and his team (2015) developed for
constructing subgraph queries. The system extracts
patterns from existing graph data before offering the
extracted subgraph patterns for user selection.

VISAGE represents a system that Pienta et al. (2016,
2017) developed for pattern-based querying along
with wildcards and logical operators and GUI-based
query construction through a complete client-server
system.

Bhowmick, Choi, and Zhou (2013) developed the
VOGUE framework by integrating query formulation
directly with processing through action-aware
indexing which reduces system delays.

Jin et al. (2011) developed GBLENDER as a
system which refreshes query results in real-time
while users construct queries. GBLENDER creates
index structures for subgraph elements to execute
query matches through interactive GUI-based
operations.

Sharma (2020) presents a hybrid method by
showing how GQL syntax enables SQL query
translation into graph queries. The early-stage
research demonstrates the requirement for an SQL-
like graph database query language standard.

The majority of systems focus on visual query
formulation yet they restrict their approach to
property graph-specific QBE-like methods. Our
proposed CBE language targets this specific gap
which remains unaddressed.

3 RELATION AND GRAPH
DATABASES: SQL, QBE AND
CYPHER

Relational databases dominate the market as the
leading data management technology since their
inception. The Query by Example (QBE) language
joins SQL as one of the main methods for database
querying operations. Zloof (1977) defines QBE as "a
high-level database management language which
offers a uniform and simple method to query, modify,
create and manage relational databases." The system
focuses on making query construction accessible to
users who do not understand database principles or
syntax.

Through visual tools QBE creates interfaces that
follow the user's cognitive patterns during the query
process. The system divides database components
into two groups: constant elements derived from the
database structure and remain unalterable (such as
table names and column names) and example
elements that users modify to specify their search
criteria (such as particular column values). The
interface structure enables users to illustrate their
desired outcomes while the system creates the
corresponding query syntax.

Cypher by Example: A Visual Query Language for Graph Databases

519

Relational databases can be queried by using the
Query by Example (QBE) language which functions
as a SQL alternative to simplify database interactions.
Users can create queries in QBE by adding example
values to construct their queries instead of writing
SQL syntax.

Microsoft Access demonstrates this approach.
Users can obtain course information with their
prerequisites by creating multiple copies of the
"courses" table during visual query construction to
specify required attributes. This approach eliminates
the requirement for intricate SQL syntax involving
multiple joins because Figure 1 demonstrates this
process.
The process of building a QBE query for courses and
their prerequisites reaches its second level (Figure 1.)

Figure 1: Query formulation for courses and their
prerequisites in QBE – the second hierarchy level.

SQL syntax becomes excessively difficult for
untrained users to manage as query complexity
reaches deeper course hierarchy levels. Recursive
queries or nested joins are often required. QBE retains
its easy-to-use nature because users can increase the
number of visible elements without needing to
modify SQL syntax manually. Unstructured and
semi-structured data sources including application
logs and IoT outputs have increased in popularity thus
making fixed-schema databases impractical during
recent years. The market transition toward NoSQL
technologies occurred because of graph databases
which provide flexible schemas through alternative
query languages.

The property graph data model serves as the core
data model in graph databases which provide both
structure and adaptability in data representation.
Angles (2018) defines a property graph formally
through the tuple PG=(N,E,η,λ,ν), where:

- N ⊆ O represents a finite set of objects called
nodes;

- E ⊆ O represents a finite set of objects called
edges;

- η : E → N ×N is a total function that assigns an
ordered pair of nodes to each edge;

- λ : N ∪E → P(L) is a partial function that
assigns a finite set of labels to each node or
edge object;

- ν : (N ∪ E) × K → V is a partial function that
assigns a value to a property of a node or edge
object

A property graph contains nodes and edges that
both receive labels and optional key-value properties
which describe their features.

The property graph schema, as described by
Angles (2018), is a formal construct used to define
valid structures within a property graph. It is
represented as a tuple PGS = (LN,LE,β,δ), where:

- LN ∈ L is a finite set of labels representing node
types;

- LE ∈ L is a finite set of labels representing
edge types, where LN∩LE =∅;

- β : (LN ∪LE)×P → T is a partial function that
defines the properties for node and edge types,
and the data types of the corresponding values;

- δ : (LN,LN) → SET+(TE) is a partial function
that defines the edge types allowed between a
given pair of node types.

This model serves as the basis for graph modelling
yet maintains flexibility through the absence of rigid
structural constraints that relational schemas enforce.
Šestak et al. (2021) introduce advanced features
including integrity constraints and validation rules
that this schema enables through extensions. Most
graph databases enable users to interact with property
graphs through query languages that include Cypher
and Gremlin. The declarative syntax of Cypher
enables users who understand SQL to easily use this
language for graph queries. GQL is expected to
become the future standardized Graph Query
Language which will be based on Cypher. The
procedural nature of Gremlin makes it suitable for
detailed graph traversal operations but it demands
advanced knowledge of the domain. Rabuzin,
Maleković and Šestak (2016) have introduced a QBE-
like method for using Gremlin. The research
demonstrates our visual query interface through
Cypher. Our Cypher by Example (CBE) system
enables users to create graph queries through visual
methods instead of manual Cypher query writing and
automatically converts these queries into Cypher
syntax. This method enables easier learning while
maintaining the complete power of graph querying
capabilities.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

520

4 CYPHER BY EXAMPLE

In this section, we propose and describe the Cypher
by Example visual query language for graph
databases. We describe the system architecture of
CBE followed by a visual syntax of the CBE language
and supported operators, as well as how those
operators map to the underlying Cypher queries to be
executed within a graph database.

4.1 System Architecture of the CBE
Language

The Cypher by Example (CBE) system implements a
client-server system which includes graphical user
interface components on the client side and server
components that interact with the Neo4j graph
database. The client contains a data-driven Graphical
User Interface (GUI) which enables users to both
create and display queries as shown in Figure 2.

Figure 2: System architecture of the CBE language.

The Search module retrieves graph database
metadata (node and edge labels and properties) which
allows the GUI to update its interface dynamically.
The Query Preprocessor transforms the user's visual
query into a structured JSON object before sending it
to the server for parsing.

The Search Processor component on the server
retrieves metadata by running basic Cypher MATCH
queries against the Neo4j database. The Query Parser
takes user-generated JSON queries before sending

them to the Cypher Translator for conversion into
executable Cypher syntax. The Neo4j Module
executes the final query through the Neo4jClient
library for.NET. The GUI displays results after the
architecture receives them from the database
execution.

The system used ASP.NET for web application
development with Neo4j v3.5 as the database
platform and the following sections will provide
additional implementation details.

4.2 Supported Graph Query Patterns
in the CBE Language

The CBE language enables users to execute basic
visual query patterns which directly translate to
Cypher queries. Users can use these patterns to
perform data insertion and updates and data retrieval
operations on graph databases through the interface
without needing to write code. The query process
begins with retrieving node labels and edge types and
properties which then fills the visual interface for
additional query development.

Retrieve Node/Edge Metadata

This pattern retrieves the graph structure which
includes node and edge labels together with their
properties before enabling any additional patterns.
Users choose their preferred label through a
dropdown selection which reveals properties for
modification or filtering in a table.
MATCH p=(n)-[e]-()
RETURN DISTINCT LABELS(n) AS
node_labels,
PROPERTIES(n) AS node_properties,
TYPE(e) AS edge_types, PROPERTIES(e) AS
edge_properties

Insert/Update Nodes and Edges

The system enables users to perform both node and
edge insertions as well as updates for single nodes or
entire paths that include edges. The system enables
users to enter properties in any order because it does
not enforce a predefined schema structure. The
Cypher MERGE command serves both node and edge
insertions to maintain data consistency and prevent
duplicate entries.
Example for a single node:
MERGE (n:NodeLabel {property_name:
"value"}) RETURN n

Query Nodes and Edges

Users can use these patterns to retrieve graph
elements through adaptable retrieval criteria. Users

Cypher by Example: A Visual Query Language for Graph Databases

521

can perform the following operations in both
scenarios:

- Set filter conditions (e.g., =, <, >),
- Include/exclude properties from the result,
- Sort results, and
- Limit the number of returned records.

Example for querying a node:
MATCH (n:NodeLabel)
WHERE n.property_name = "value"
RETURN n.property_name
ORDER BY n.property_name ASC
LIMIT 10

For path queries between nodes:
MATCH (n1:NodeLabel)-[e1:EdgeType]-
>(n2:NodeLabel)
WHERE n1.property_name = "value"
RETURN n1, e1, n2
ORDER BY n1.property_name
LIMIT 10

The fundamental graph query patterns described here
serve as the foundation for complex graph operations
which receive detailed explanation through practical
examples in the following section.

5 CASE STUDY

In this section, we demonstrate the usefulness and the
applicability of the proposed CBE language on two
use cases, which both include the application of graph
query patterns explained in Section 4.2. For the case
study, we prepared a sample graph database
containing data about users, books and their authors,
as well as users’ book borrowings. Throughout the
use cases, we showcase the usage of the CBE
graphical interface when adding data to and retrieving
data from the Neo4j graph database.

5.1 Overview of the CBE Prototype
Interface

Before showcasing the implementation of selected
graph query patterns in practical use cases, we
provide a brief overview of the CBE GUI elements,
which the user uses to visually formulate graph
database queries. The architecture of the CBE
language presented in Section 4.1 was implemented
as a web application consisting of client- and server-
side modules. A simplified overview of the main
elements of the CBE GUI is depicted in Figure 3.

The interface consists of three major segments:
1. Graph query patterns list - a menu with listed

supported graph query patterns for query
formulation;

2. Query formulation editor - a surface, which can
be used to add new graph elements (nodes or
edges) to the query path. Once added to the
editor, the user selects the node label or edge
type from a dropdown list available for each
element;

3. Query parametrization table - a table, that the
user fills to parametrize the query by using
different options to adjust specific node or edge
property values (Show, Sort, Criteria or Limit).

Figure 3: A mockup overview of the CBE GUI elements.

5.2 Use Case 1: Creating Nodes and
Edges

The first use case demonstrates how to use the CBE
language to insert a node and an edge into the graph
database.

To create a new User node, the user selects the
desired node label from a dropdown list (Figure 4).

Figure 4: An example of inserting a User node into the
database via the CBE interface.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

522

The Retrieve node metadata pattern then
populates the table with available properties. After
entering values for fields like Firstname and
Lastname, the user executes the query.

On the backend, the Neo4j module—built using
the Neo4jClient library for .NET—translates the
user's input into a Cypher MERGE query and
executes it against the database.

Next, to create a WROTE relationship between
two nodes (e.g., Author and Book), the user adds both
node types and the edge type to the query editor
(Figure 5).

Figure 5: An example of adding a WROTE edge between
two nodes.

After setting relevant properties (e.g., author name,
book title), the query is executed. If either node
doesn't exist, it is created alongside the connecting
edge (Figure 6).

Figure 6: A new WROTE edge is added into the database.

The interface also allows adding more than one edge
in a single interaction, enabling the creation of full
graph paths between multiple nodes (Figure 7).

Figure 7: An example of the two edges into the database.

These examples confirm that the CBE interface
enables intuitive insertion of both nodes and
relationships in the graph database through a visual
workflow.

5.3 Use Case 2: Querying Nodes and
Edges

After inserting nodes and edges into the database the
CBE interface can be used to query the data visually
following the QBE philosophy. Users will specify
example values of the elements they wish to retrieve
and will also set display parameters, sorting, filtering
and result limits. In order to demonstrate the "Query
a single node" pattern, assume that the user wants to
retrieve User nodes. First, the user chooses the User
label in the query editor. Then, the Retrieve
node/edge metadata pattern populates the table with
the properties that are available. The user chooses to
display the Firstname and Lastname properties, sorts
the Firstname property in ascending order, sets a
result limit of 4, and then runs the query (Figure 8).

Figure 8: An example formulation of a query on a single
node.

The interface generates the following Cypher query:
IEnumerable<User> result =
Neo4jDb.Instance.Client.Cypher
 .Match("(u:User)")
 .Return(u => u.As<User>())
 .OrderBy("u.Firstname")
 .Limit(4)
 .Results.ToList<User>();

The result is a table of four users, sorted and filtered
according to the parameters (Figure 9).

Cypher by Example: A Visual Query Language for Graph Databases

523

Figure 9: The results of the query for retrieving for users
from the database.

Further, the user can specify filter criteria. For
example, to return users with the first name "Anna"
or "John", values are entered in the Criteria and Or
fields of the Firstname row (Figure 10).

Figure 10: An example formulation of a query on a single
node with filtering criteria.

This adjusts the query as follows:
IEnumerable<User> result =
Neo4jDb.Instance.Client.Cypher
 .Match("(u:User)")
 .Where((User u) => u.Firstname ==
"Anna")
 .OrWhere((User u) => u.Firstname ==
"John")
 .Return(u => u.As<User>())
 .OrderBy("u.Firstname")
 .Limit(4)
 .Results.ToList<User>();

The edge querying pattern works similarly. For
instance, to get users who borrowed books, the user
will choose the User, Book, and BORROWED labels
in the query editor. The metadata query will fill in the
properties for each element. The user will apply filters
to Firstname, choose display options for both nodes
and the edge (e.g., Date borrowed), and also choose
to limit results to 5. The corresponding query is:
IEnumerable<Object> result =
Neo4jDb.Instance.Client.Cypher

 .Match("(user:User)-[r:BORROWED]-
>(book:Book)")
 .Where((User user) => user.Firstname
== "Anna")
 .OrWhere((User user) => user.Firstname
== "John")
 .Return((user, book, r) => new {
 User = user.As<User>(),
 Book = book.As<Book>(),
 R = r.As<BORROWED>()
 })
 .OrderBy("user.Firstname")
 .Limit(5)
 .Results.ToList<Object>();

The result displays users and their corresponding
borrowings (Figure 12), and the full formulation
process is illustrated in Figure 11.

Figure 11: An example formulation of a query on an edge
between two nodes.

Figure 12: The results of the query for retrieving book
borrowings from users named "John" or "Anna".

These examples show that the CBE interface allows
users to visually formulate both node and edge
queries in the same way as QBE, with real-time
Cypher translation and execution against the graph
database.

6 CONCLUSION

In this paper, a novel Cypher by Example (CBE)
visual graph querying language was proposed. The
proposed language follows the design principles of
the Query by Example (QBE) language approach,

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

524

which has already been used for years as an
alternative graphical query language for relational
databases. The strong point of the QBE approach is
its ability to present inexperienced users with a clear
and simple graphical interface for query formulation,
thus eliminating the need for a deep understanding of
the underlying query language syntax. Our proposed
CBE language follows the same thought, and
provides a visual graph querying interface for graph
database practitioners with little or no knowledge of
the Cypher query language syntax or the graph
database technology in general. However, unlike
other visual graph querying approaches introduced so
far, the CBE language follows the QBE design
principles strictly, and allows users to adjust graph
query parameters in more detail. We described the
system architecture of the proposed CBE language,
and discussed the currently supported graph query
patterns, which can be used to formulate queries via
the CBE language interface. Furthermore, we
performed a case study on two use cases to
demonstrate the usability of the proposed CBE
language for inserting and querying nodes and edges
in graph databases. As part of our future work, we
plan to extend the list of supported graph query
patterns to more complex graph structures such as
subgraphs as well as other operators for managing
different graph database structures (e.g. adding new
node labels and edge types, deleting nodes/edges,
creating indexes, triggers, stored procedures, etc.).
We will also continue our work on improving the
visual interface by integrating an appropriate auto-
complete framework to additionally simplify the
query formulation process for the user.

ACKNOWLEDGMENTS

This work was funded by the Slovenian Research Agency
(Research Core Funding No. P2-0057).

REFERENCES

Angles, R. (2018). The Property Graph Database Model. In
Proceedings of AMW 2018.

Bhowmick, S. S., & Choi, B. (2022). Data-driven visual
query interfaces for graphs: Past, present, and (near)
future. In Proceedings of the 2022 International
Conference on Management of Data (pp. 2441–2447).
ACM.

Bhowmick, S. S., Choi, B., & Li, C. (2017). Graph querying
meets HCI: State of the art and future directions. In
Proceedings of the 2017 ACM International

Conference on Management of Data (pp. 1731–1736).
ACM.

Bhowmick, S. S., Choi, B., & Zhou, S. (2013). Vogue:
Towards a visual interaction-aware graph query
processing framework. In Proceedings of CIDR 2013.

Jin, C., Bhowmick, S. S., Xiao, X., Choi, B., & Zhou, S.
(2011). Gblender: Visual subgraph query formulation
meets query processing. In Proceedings of the 2011
ACM SIGMOD International Conference on
Management of Data (pp. 1327–1330). ACM.

Pabon, M. C., Millan, M., Roncancio, C., & Collazos, C. A.
(2019). Graphtql: A visual query system for graph
databases. Journal of Computer Languages, 51, 97–
111.

Pienta, R., Hohman, F., Tamersoy, A., Endert, A., Navathe,
S., Tong, H., & Chau, D. H. (2017). Visual graph query
construction and refinement. In Proceedings of the
2017 ACM International Conference on Management
of Data (pp. 1587–1590). ACM.

Pienta, R., Tamersoy, A., Endert, A., Navathe, S., Tong, H.,
& Chau, D. H. (2016). Visage: Interactive visual graph
querying. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (pp. 272–
279). ACM.

Rabuzin, K., Maleković, M., & Sestak, M. (2016). Gremlin
by example. In Proceedings of the International
Conference on Advances in Big Data Analytics (pp.
144–149).

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph
databases: New opportunities for connected data.
O’Reilly Media, Inc.

Sestak, M., Heričko, M., Družovec, T. W., & Turkanović,
M. (2021). Applying k-vertex cardinality constraints on
a neo4j graph database. Future Generation Computer
Systems, 115, 459–474.

Sharma, C. (2020). Flux: From SQL to GQL query
translation tool. In Proceedings of the 2020 35th
IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 1379–1381). IEEE.

Yi, P., Choi, B., Bhowmick, S. S., & Xu, J. (2016). Autog:
A visual query autocompletion framework for graph
databases. Proceedings of the VLDB Endowment,
9(13), 1505–1508.

Zhang, J., Bhowmick, S. S., Nguyen, H. H., Choi, B., &
Zhu, F. (2015). Davinci: Data-driven visual interface
construction for subgraph search in graph databases. In
Proceedings of the 2015 IEEE 31st International
Conference on Data Engineering (pp. 1500–1503).
IEEE.

Zloof, M. M. (1977). Query-by-example: A data base
language. IBM Systems Journal, 16(4), 324–343.

Cypher by Example: A Visual Query Language for Graph Databases

525

