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Systematic reviews provide high-quality evidence but require extensive manual screening, making them time-
consuming and costly. Recent advancements in general-purpose large language models (LLMs) have shown
potential for automating this process. Unlike traditional machine learning, LLMs can classify studies based
on natural language instructions without task-specific training data. This systematic review examines existing
approaches that apply LLMs to automate the screening phase. Models used, prompting strategies, and eval-
uation datasets are analyzed, and the reported performance is compared in terms of sensitivity and workload
reduction. While several approaches achieve sensitivity above 95%, none consistently reach the 99% thresh-
old required for replacing human screening. The most effective models use ensemble strategies, calibration
techniques, or advanced prompting rather than relying solely on the latest LLMs. However, generalizability
remains uncertain due to dataset limitations and the absence of standardized benchmarking. Key challenges in
optimizing sensitivity are discussed, and the need for a comprehensive benchmark to enable direct comparison
is emphasized. This review provides an overview of LLM-based screening automation, identifying gaps and
outlining future directions for improving reliability and applicability in evidence synthesis.

1997). However, the rigor of systematic reviews
makes them highly time- and resource-intensive, of-

By synthesizing findings from potentially all rele-
vant studies on a given research question, a Sys-
tematic Review (SR) represents the most reliable re-
search methodology for evidence-based conclusions
(Shekelle et al., 2013). Therefore, SRs play a cru-
cial role in the medical field, guiding decision-making
and shaping clinical practice guidelines (Cook et al.,
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ten taking months or even years to complete.

Systematic reviews typically begin with a broad
database query to ensure comprehensive coverage,
followed by human screening—a particularly time-
consuming stage of the process (Carver et al., 2013).

Despite following a well-defined procedure, au-
tomating the screening phase remains challenging.
Existing methods often fall short of human-level sen-
sitivity and lack generalizability across review do-
mains. Traditional ML approaches can support large-
scale or living SRs, but their effectiveness is limited
by the scarcity of high-quality training data. (Sandner
et al., 2024a)

General-purpose LLMs have shown strong perfor-
mance in classification tasks. Trained on vast text
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corpora, they exhibit human-like reasoning and can
follow natural language instructions to perform clas-
sification without task-specific training. (Zhou et al.,
2024; Carneros-Prado et al., 2023)

For literature screening, eligibility criteria com-
bined with a study’s title and abstract are used as input
to an LLM-based framework, which classifies studies
as included or excluded, emulating human decision-
making.

The key requirement for integrating such tools
into the workflow is minimizing the risk of wrongly
excluding relevant studies, measured by sensitiv-
ity.  While some studies accept 95% sensitiv-
ity (Bramer et al., 2017; Callaghan and Miiller-
Hansen, 2020), Cochrane!—a leading authority in
high-quality SRs—requires 99% sensitivity for tools
replacing human screening (Thomas et al., 2021).

Despite progress in automating literature screen-
ing, fully replacing human screeners remains un-
likely in the near future. Until then, such sys-
tems can be used to pre-filter studies and reduce re-
searchers’ workload—measured by the number of ex-
cluded records, which should be maximized. When
balancing sensitivity and workload reduction, low
sensitivity makes a system unsuitable due to the risk
of missing relevant studies. In contrast, any workload
reduction improves upon manual screening—making
sensitivity the top priority.

Previous research showed promising results with
a 5-tier prompting approach, theoretically applicable
to any SR, though its generalizability is limited due
to the specific reviews used for evaluation (Sandner
et al., 2024b). During this case study, it also be-
came evident that the literature lacks a comprehen-
sive overview of similar methods. This SR addresses
that gap by reviewing the most promising applica-
tions of general-purpose LLMs for literature screen-
ing in evidence synthesis. It summarizes the mod-
els, prompts, and evaluation datasets, compares per-
formance in terms of sensitivity and workload reduc-
tion, and presents additional metrics in the supple-
mentary material. The review addresses the follow-
ing research question: Which studies have investi-
gated the use of general-purpose LLMs to automate
the screening process in systematic literature reviews,
and what insights can be drawn from the most effec-
tive approaches?

Uhttps://www.cochrane.org/

2 METHODOLOGY

The methodology of this SR builds on principles out-
lined in the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guide-
lines (Page et al., 2021) and the Cochrane Hand-
book for Systematic Reviews of Interventions (Hig-
gins et al., 2024), adapted to suit the context of com-
puter science research. In addition, the methodol-
ogy was guided by insights from Carrera-Rivera et al.
(2022)’s guide on conducting a SR in the domain of
computer science research.

2.1 Study Identification

The methodology begins with retrieving relevant
studies from the following academic databases: Eu-
rope PMC (Europe PMC, 2025), Web of Science
(Clarivate, 2025), Embase (Elsevier, 2025), and
Medline-OVID (Wolters Kluwer, 2025). An informa-
tion specialist on the author team developed tailored
search strategies for each database through an itera-
tive process, using seed papers to ensure relevance.
All search strategies are available in the supplemen-
tary material?.

All searches were executed on June 10, 2024. Re-
trieved studies underwent deduplication through Cov-
idence’’s built-in feature.

2.2 Study Selection

Inclusion and exclusion criteria were defined us-
ing the PICO (Population, Intervention, Comparison,
Outcomes) framework, as recommended in the con-
sidered guidelines. English-language studies from
2022 onward were included, while editorials, com-
mentaries, and book chapters were excluded. Eli-
gible studies investigated the use of general-purpose
LLMs for the screening phase of systematic re-
views at either the title-abstract (TiAb) or full-text
level. Studies were excluded if they employed spe-
cialized LLMs (e.g., fine-tuned for review-specific
classification tasks), traditional statistical classifiers,
or decision-support systems requiring human inter-
vention for final decisions. Studies were consid-
ered if they compared LLM-based decisions to hu-
man screening judgments, either retrospectively or
based on data labeled within the study. Exclusion
also applied to studies that did not report sensitivity
or workload reduction and lacked sufficient informa-
tion to calculate these metrics, or failed to disclose the
dataset used for evaluation.

Zhttps://zenodo.org/records/15255994
3https://www.covidence.org/
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Title and abstract screening was conducted using
the free version of Covidence, while the free version
of Rayyan* was utilized for full-text screening. Both
screening phases were performed independently and
in duplicate by two human reviewers. In both phases,
conflicts were resolved through discussion between
the two reviewers.

2.3 Data Extraction and Analysis

Following the full-text screening, articles that met the
eligibility criteria were subject to data extraction, ex-
ecuted by one author using a spreadsheet tool and a
pre-developed extraction sheet.

For citations describing multiple experiments with
varied models or prompts, the focus was placed on
the approach reporting the highest sensitivity. Sup-
plementary experiments were considered if they pro-
vided meaningful insights for comparison with the
main approach or exhibited significant differences
from it.

For each considered experiment, the model used,
as well as detailed information on the prompt, dataset,
and reported performance were extracted. The ap-
plied prompting strategy was recorded, along with the
characteristics exhibited by the prompt Furthermore,
the parameters inserted into the prompt template and
the expected response from the LLM, based on the
instructions provided in the prompt, were extracted.

Literature screening automation is typically eval-
uated on labeled bibliographic records. Extracted
dataset characteristics include the number of reviews,
total records, and records labeled as ’include’. Addi-
tional details include the screening stage at which la-
bels were assigned (title/abstract or full text), whether
labels reflected a blinded consensus by two reviewers,
as well as the dataset domain and public availability.

Performance-related data were also extracted.
Since outcomes are often presented in tables using di-
verse metrics, full tables were collected initially. In
a subsequent step, sensitivity and workload reduction
were extracted or calculated. These two parameters
are reported in this SR based on the following defini-
tions:

Sensitivity, as defined in (1), refers to the ability
of the screening system to correctly identify all rele-
vant studies. It measures the portion of actual posi-
tives (relevant studies) that are correctly identified as
such by the system and is crucial in the given context
as it measures the risk of missing relevant literature.

True Positive

Sensitivity — 1
NSV = rue Positive + False Negative @

“https://www.rayyan.ai/
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Assuming that the LLM-based screening automa-
tion is integrated into the SR workflow as a filtration
step, human experts subsequently have to screen those
records classified as include while those classified as
exclude are no longer subject to the time-consuming
manual screening task. Consequently, the workload
reduction (WR) as defined in (2) is the fraction of pa-
pers excluded by the model.

_ True Negative + False Negative
- N

where N represents the total number of papers.

WR

)

3 RESULTS

This chapter presents the outcomes of the SR. It be-
gins with the study selection process and the identi-
fied approaches. Then, it describes how sensitivity
and workload reduction were extracted. Finally, it
compares the selected screening automation solutions
by methodology, outlines the evaluation datasets, and
summarizes the results. Additionally, the supplemen-
tary material® provides comprehensive details, in-
cluding the complete extracted data and links to the
datasets used in the cited studies.

3.1 Selection of Screening Automation
Approaches

The study selection process is depicted in the Fig-
ure 1. Out of 280 unique retrieved studies, 256 have
been excluded in the TiAb screening phase. Out of
the remaining 24 papers, 19 were retrieved as full text.
After full-text screening 12 studies turned out to fulfill
the defined eligibility criteria and have therefore been
subject of data extraction. For one of the 12 publica-
tions, we identified a numerical inconsistency which
resulted in excluding the paper as detailed in 3.2.

All selected papers proposed approaches for au-
tomating SR screening with general-purpose LLMs
and benchmarked their performance against human
decisions.

Most papers did not only describe one experiment
but compared multiple prompting strategies, models,
or datasets, reporting results separately. In this SR,
each study is represented by the approach with the
highest sensitivity. If the selected approach was tested
on several datasets, efforts were made to calculate the
average result across all datasets.

To account for methodological variations, results
from three studies were reported with multiple cases

>https://zenodo.org/records/15255994
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[ Identification of studies via databases and registers ]

Records removed before screening:
Duplicate records removed (n=97)
Records marked as ineligible by

automation tools (n=0)
Records removed for other
reasons (n=0)

)
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—
4
)
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—
4
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° Studies included in review (n=12)
§ Reports of included studies (n=11%)
©
=
—

Records excluded (n=256)

|—>| Reports not retrieved (n=5)
|—> Reports excluded:

Wrong Intervention (n=6)
Wrong Outcome (n=1)
Total: 7

Figure 1: PRISMA flowchart for the identification and selection of studies according to (Page et al., 2021); *As outlined in
3.2, one of the 12 selected study was subsequently excluded due to inconsistencies in the reported numbers.

where different experimental setups provided valu-
able insights for comparison. Cai et al. (2023) re-
ports both a single-shot approach and two multi-
shot approaches. To allow for a direct comparison,
the single-shot approach and the better-performing
multi-shot approach were selected. Akinseloyin et al.
(2024) models the screening task as a relevance rank-
ing problem, where only the top k% papers are re-
tained for human review. For this study, results
based on two different threshold settings were in-
cluded to reflect variations in the ranking-based ap-
proach. Cao et al. (2024) evaluated seven prompt
strategies using title and abstract information, and six
using full-text. To represent both categories, the best-
performing strategy from each was included. Conse-
quently, the subsequent sections summaries and dis-
cusses 14 approaches out of 8 publications and 3 pre-
prints.

3.2 Mathematical Inference

While sensitivity is typically reported directly, work-
load reduction is discussed in most papers but defined
inconsistently. Furthermore, several papers did not
report these metrics across all considered datasets.
Therefore, additional calculations were required be-

yond the standard data extraction procedure.

Fortunately, in addition to sensitivity, performance
metrics such as specificity, accuracy, precision, F1-
score, F3-score, and positive/negative predictive val-
ues were reported. Combined with the total number
of records and the number of ground-truth inclusions,
these metrics enabled mathematical inference to de-
termine true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). From these
values, sensitivity and workload reduction across all
considered data records were derived.

The numerical values required for these calcula-
tions were either directly reported in the publications
or obtained from supplementary materials (e.g., data,
code, documentation) and references describing the
datasets used. Additionally, when necessary, the au-
thors were contacted to provide further information.
These inferences were made in accordance with the
reported data and to the best of our knowledge, with
all details transparently documented in the supple-
mentary material®.

For one of the 12 publications, a numerical incon-
sistency in these calculations could not be resolved.
Consequently, despite meeting the predefined eligi-
bility criteria, this publication was retrospectively ex-

Shttps://zenodo.org/records/15255994
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cluded.

3.3 Models and Prompts

Table 1 presents an overview of the models used and
outlines the prompting strategy applied in selected
screening automation approaches, which is subse-
quently detailed.

While several selected studies tested multiple
LLMs, the best performance was reported with GPT-
3.5-turbo in 6 out of 11. The approach described in
Guo et al. (2024) switched to GPT-4 when the context
length of GPT-3.5-turbo was exceeded. Notably, none
of the papers favoring GPT-3.5-turbo compared it to
GPT-4. Furthermore, four papers reported best results
by utilizing GPT-4, the most advanced OpenAl model
at the time of search execution.

In two studies, the best results were achieved us-
ing ensemble models that combined the results of
more than one LLM. Li et al. (2024) employed La-
tent Class Analysis (LCA) (McCutcheon, 1987) based
on responses from GPT-4, GPT-3.5, and LLaMA-2
to determine the screening decisions. Wang et al.
(2024) utilized two LLaMA-2 models (7b-ins and
13b-ins) along with the language model BioBERT.
The model outcomes were fused using CombSUM
(Fox and Shaw, 1994).

All applied prompting approaches instruct the
LLM to screen one specific study at a time. While
eight follow a single-shot approach, five split the task
into more than one prompt, utilizing a multi-prompt
approach.

The approach described in Tran et al. (2023) re-
quires the eligibility criteria to be provided in PICOS
format. For each PICOS category (Population, In-
tervention, Comparison, Outcome, Study Design) an
individual request is sent to the LLM. Similarly, Cai
et al. (2023) sends individual requests for each eligi-
bility criterion. In both approaches, a record is ex-
cluded if any of the criteria are violated.

Spillias et al. (2024) executed three repeated calls
to the same LLM, each complemented by a random
context string. The final decision was made based on
a voting strategy. It was reported that this approach
improved the quality of screening beyond what could
be achieved by optimizing OpenAl’s temperature pa-
rameter.

A multi-prompt approach to enable efficient full-
text screening was applied by Khraisha et al. (2024).
The full text is divided into segments, which are sub-
sequently provided to the LLLM, and the process stops
if all criteria are met.

Akinseloyin et al. (2024) introduced a framework
for screening automation that first utilizes the LLM
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to transform eligibility criteria into multiple yes/no
questions. Each question is then sent in a separate
prompt, expecting a free-text response. The sentiment
of these responses is analyzed using a BART model,
resulting in a likelihood score of the response being
positive. Additionally, the cosine similarity between
the question and the abstract is computed. The final
question score is calculated by averaging the senti-
ment score with the cosine similarity. To calculate the
paper’s final score, the average of all question scores
is first computed, which is then further averaged with
the cosine similarity between all eligibility criteria
and the abstract. Finally, all studies are ranked in de-
scending order based on their final score, with the top
k% classified as "include” and the rest as “exclude.”

As the LLM is instructed to assess a record’s rele-
vance to an SR, corresponding information must be
provided in the prompt. Typically, human screen-
ers base their decisions on the title, abstract, and
eligibility criteria, which was reflected in most ap-
proaches. Wang et al. (2024) provided only the re-
view title but no criteria, while others included the
review title, topic, or objective in addition to the cri-
teria. Khraisha et al. (2024) and Cao et al. (2024)
(ISO-Screen-Prompt) also considered the full text to
inform the LLM’s decision.

Although all frameworks output a binary classi-
fication ("included’ or ’excluded’), they differ in the
expected LLM response format. Nine approaches
prompt the LLM to reply with one of two specified
keywords. Of these, two require additional reason-
ing insights in the response. Li et al. (2024) expects
the LLM to return a binary decision for each crite-
rion along with reasoning for the decision. Spillias
et al. (2024) expects the LLM to reason about the ini-
tial decision, reflect on it, make a final decision, and
then provide reasoning again. Cai et al. (2023) allows
the LLM to respond with one of three terms: ’yes,
‘no,” or 'not sure.” To increase sensitivity, responses
of "not sure’ are considered as ’include’ decisions. Is-
saiy et al. (2024) expects the LLM to respond with a
rating from one to five. Subsequently, papers rated as
three to five are treated as ’include’ decisions, while
those rated one or two are considered “exclude’ deci-
sions.

Prompt phrasing significantly influences the
model’s reasoning and decisions. Many prompts
use roleplay, casting the LLM as a researcher or
reviewer to simulate human judgment. Others ap-
ply Chain of Thought (CoT) prompting, guiding the
model through reasoning steps before a final decision.
Both techniques aim to enhance performance through
deeper, more consistent reasoning. Notably, Cao et al.
(2024)’s ISO-Screen Prompt uses ’instruction repeti-
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Table 1: Summary of Employed Models and Prompting Strategies, Including Key Characteristics of Screening Automation Methods: References in bold indicate approaches
that achieve a sensitivity above 95%; Differences between approaches originating from the same study are underlined.

Prompt Prompt Prompt Prompt
Reference Model Strategy Parameters Return Characteristic
Ensamble
(LLaMA2-7b-ins, Single- Review Title, Title, Binary, Extracted LLM .
(Wang et al., 2024) LLaMAZ2-13b-ins, Shot Abstract Confidence Score Instruction based
BioBERT)
(Cao et al., 2024) - Single- Review Objectives, Title, .
Abstract Screen Prompt GPT-4 Shot Abstract, Eligibility Criteria Binary Roleplay
(Cao et al., 2024) - GPT-4 Single- Review Objectives, Bi Roleplay, Repetition
ISO Screen Prompt ) Shot Eligibility Criteria, full-text tnary of Instruction
Question Generation: Question roﬂm.co?
. . . I 5 Yes/No Questions
. . Multi- Eligibility Criteria . -
(Akinseloyin et al., 2024) GPT-3.5-Turbo . e, Question Answering: Roleplay
Shot Question Answering: .2
Review Title, Abstract, Question Answer of Question in
’ ’ Natural Text
Sinele- Title, Abstract, Reference
(Issaiy et al., 2024) GPT-3.5-Turbo & Type, Date, Eligibility Score from 1 to 5 Instruction Based
Shot e
Criteria (PICOS)
! Review Topic, Binary (Final Decision),
(Li et al., 2024) Ensamble (GPT-4, |~ Single- Title, Abstract, Eligibility Binary (for each Criteria), | Chain of Thought
GPT-3.5, LLaMA-2) Shot by .
Criteria Overall Reasoning
Multi- Title, Abstract, Eligibility . .
(Tran et al., 2023) GPT-3.5-Turbo Shot Criteria (PICOS) Binary Chain of Thought
Binary (Initial Decision),
. d . Reasoning, Roleplay,
(Spillias et al., 2024) GPT-3.5-Turbo Mw% wwsaomwmﬁmw e%m%wm:ﬁ, Reflection, Chain of Thought,
g y Binary (Final Decision), Random String
Reasoning
Single- Title, Abstract, Eligibility .
v ! k
(Guo et al., 2024) GPT-3.5-Turbo Shot Criteria Binary Roleplay
. Single- Review Title, Title, Abstract, . .
(Gargari et al., 2024) GPT-3.5-Turbo Shot Eligibility Criteria Binary Instruction Based
. Roleplay, extensive
(Khraisha et al., 2024) GPT-4 Multi- Hu:t..ﬂ wx.ﬁ momﬂomr Binary instruction on
Shot Eligibility Criteria e .
eligibility critera
(Cai et al., 2023) - Single- Title, Abstract, .
Instruction Prompt GPT-4 Shot Eligibility Criteria Binary Roleplay
(Cai et al., 2023) - Multi- Title, Abstract, Binary + not sure”,
Single Criterion GPT-4 Shot Eligibility Criteria Reasoning Roleplay

513



DATA 2025 - 14th International Conference on Data Science, Technology and Applications

tion,” placing the task description before and after the
full text—Ilikely reinforcing focus and improving per-
formance.

3.4 Evaluation and Performance
Comparison

Each screening automation approach was evaluated
by benchmarking against human screening decisions.
Therefore, labeled datasets were considered as ground
truth and compared with the final binary decision of
each approach. Table 2 describes the datasets on
which the given approaches were tested and reports
their classification performance.

The size and variety of the used datasets indi-
cate the generalizability of the reported results. Ap-
plied datasets focus on different areas within the med-
ical domain ranging from pharmacology intervention
studies to social health qualitative studies. The only
exception is the dataset used by Spillias et al. (2024),
which covers data from a single SR on Community-
Based Fisheries Management. This dataset is also the
only one where the ground truth annotation was exe-
cuted by a single screener, whereas all other datasets
are based on double-blind screening or annotations
from even more human reviewers.

Only two datasets consist of data from more than
10 SRs, and only five encompass more than 10,000
records. Especially noteworthy are the datasets used
by (Wang et al., 2024), who conducted experiments
on datasets released as part of CLEF TAR from 2017
to 2019 (Kanoulas et al., 2017, 2018, 2019). Together,
these datasets contain data from more than 100 SRs,
encompassing over 600,000 records. When interpret-
ing these numbers and the associated performance,
note that Wang et al. (2024) applied a leave-one-out
calibration approach. In other words, data from all but
one review were used to calibrate the threshold, and
the remaining review was used for validation. Conse-
quently, the threshold was fine-tuned for each review
rather than determined universally. Nevertheless, the
approach was evaluated on the complete dataset.

Performance varies significantly, even though
the approaches follow similar principles. Six ap-
proaches reported a sensitivity above 95%, which
is a commonly applied target (Bramer et al., 2017;
Callaghan and Miiller-Hansen, 2020). As advised by
the Cochrane Information Retrieval Methods Group
(IRMG), systems designed to reduce the manual
screening workload for high-quality SRs must be cal-
ibrated to a sensitivity greater than 99% to replace hu-
man screening (Thomas et al., 2021). However, none
of the considered approaches consistently reached
this value across the considered datasets. Workload
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reduction, defined as the fraction of papers excluded
by the system and consequently not requiring hu-
man screening, varied from 29% to almost 100%.
Approaches that achieved a sensitivity above 95%
reached workload reductions ranging from 48% to
79%.

4 DISCUSSION

This section aims to highlight the factors underlying
strong outcomes and identify commonalities among
the studies that contributed to the field by reporting
on approaches that lacked sufficient sensitivity. Given
that the experiments across the selected studies were
evaluated on different datasets, direct comparisons are
not possible, and any conclusions drawn in this sec-
tion require further validation. For comparisons of
the reported approaches with similar ones evaluated
on the same dataset, please refer to the cited papers.

While the suitability of approaches with a sensi-
tivity of 95% for replacing human screening remains
a topic of discussion and highly depends on the use
case, lower sensitivities are widely considered insuffi-
cient. In this context, both approaches utilizing an en-
semble model (Wang et al., 2024; Li et al., 2024) and
those incorporating calibration, either based on next-
token likelihood (Wang et al., 2024) or by expecting
the model to provide a score (Issaiy et al., 2024), have
been observed to achieve this threshold. The frame-
work introduced by Akinseloyin et al. (2024) demon-
strated that incorporating similarity scores improves
performance which resulted in achieved this threshold
as well. Experiments conducted by Cao et al. (2024)
may have achieved their strong results due to the use
of GPT-4, the most advanced model among those con-
sidered, combined with exhaustive prompt engineer-
ing. Interestingly, their experiments also suggest that
incorporating the full text does not lead to further im-
provements in performance. To further increase sensi-
tivity toward meeting Cochrane’s requirement of 99%
(Thomas et al., 2021), combining these approaches is
a promising direction for future work.

Furthermore, it is noteworthy that the approach by
Wang et al. (2024), which utilized LLaMA-2 models
instead of more advanced ones and employed a rela-
tively simple prompt design, achieved the highest sen-
sitivity along with a substantial workload reduction of
72%. Considering that the prompt did not include any
eligibility criteria and the LLM assessed record rele-
vance solely based on the review title, it can be hy-
pothesized that eligibility criteria, designed to guide
human screeners, may be interpreted by LLMs either
too strictly or as too complex to process effectively.
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Table 2: Characteristics of Evaluation Datasets and Reported Performance of included screening automation approaches:
Ground truth column indicates wether human annotation from the Title and Abstract (TiAb) or the full-text (FT) screening
phase were considered as gold-standard; The table is Sorted by decreasing sensitivity.

Dataset Results
No. of No. of No. of  Ground . Workload
Reference . Sensitivity R
Reviews Records Includes Truth Reduction

(Wang et al., 2024) 128 657,980 10,524  TiAb 97% 72%
(Caoet al,, 2024) - 10 4000 779 TiAb 97% 70%
Abstract Screen Prompt
(Cao et al,, 2024) - 10 3230 487  TiAb 96% 79%
ISO Screen Prompt
(Akinseloyin et al., 2024) - 31 76,025 1710 TiAb 96% 50%
top 50%
(Issaiy et al., 2024) 6 1180 148 TiAb 95 % 48 %
(Li et al., 2024) 3 505 205 FT 95% 60%
(Tran et al., 2023) 5 22,666 1485 TiAb 91% 29%
(Spillias et al., 2024) 1 1098 101 TiAb 85% 88%
(Akinseloyin et al., 2024) - 31 76,025 1710 TiAb 80% 80%
top 20%
(Guo et al., 2024) 6 24,845 538 TiAb 76% 90%
(Gargari et al., 2024) 1 330 13 FT 62% 99%
(Khraisha et al., 2024) 1 150 39 FT 57% 73%
EghE 4 400 40  TiAb 51% 79%
Instruction Prompt
(Caietal., 2023) - 4 400 40  TiAb 41% 89%
Single Criterion

As a result, this misinterpretation may lead to incor-
rect exclusions. Therefore, further analysis on how
to effectively instruct the LLM and determine which
information it should consider when making inclu-
sion/exclusion decisions would be a highly relevant
contribution for future work.

The calibration approach applied by Wang et al.
(2024) was based on reviews that closely resembled
the one used for evaluation, and similar performance
might not be achieved in use cases with less similar
reviews. In theory, applying this approach on a more
general dataset should enable similar sensitivity due
to the calibration. However, this may come at the cost
of a significant decrease in workload reduction.

From studies that resulted in lower sensitivity, it
can be concluded that solely relying on a model with
high reasoning capabilities, such as GPT-4, is not
sufficient. Furthermore, evaluating candidate stud-
ies for each criterion separately does not necessar-

ily improve sensitivity, nor does providing full texts
as segmented inputs in subsequent prompts. There-
fore, while multi-shot approaches significantly in-
crease computing costs, they offer no notable advan-
tages. However, lower sensitivity may also be influ-
enced by factors such as the specific dataset used and
the complexity of the underlying SRs.

Considering that most studies conducted their
evaluations on a relatively small number of records,
with data originating from a limited set of reviews or
highly similar reviews, it is difficult to argue that sim-
ilar sensitivity would be achieved in real-world ap-
plications. However, to the best of our knowledge,
no clear guidelines have been established for evaluat-
ing screening automation solutions to determine their
trustworthiness as a replacement for human screen-
ing. To enable direct comparison and gain trust from
the evidence synthesis community, a standardized
benchmark should be established, along with clear re-
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quirements for performance evaluation. This bench-
mark should not be restricted to a specific type of SR
and should be as extensive as possible in terms of both
the number of SRs contributing data and the number
of candidate studies included. The datasets used in
the studies considered in this review could serve as a
valid foundation for developing such a benchmark.

S CONCLUSION

This SR provides a comprehensive overview of exist-
ing approaches that leverage general-purpose LLMs
for automating literature screening in evidence syn-
thesis. By summarizing models, prompts, and eval-
uation datasets, as well as comparing their sensitiv-
ity and workload reduction, this review highlights key
trends and challenges in the field.

The findings indicate that achieving high sensitiv-
ity remains a primary challenge, particularly given
Cochrane’s recommended threshold of 99% for re-
liable automation. While some approaches, such as
ensemble models and those incorporating calibration
mechanisms, reached sensitivity levels above 95%,
no single method consistently met the highest stan-
dard. Notably, the approach resulting in the high-
est sensitivity utilized LLaMA-2 models combined
with a rather simple prompt design, demonstrating
that complex solutions not always be necessary for
strong performance. However, the generalizability of
presented results remains uncertain, as evaluation was
conducted on either relatively small datasets or after
fine-tuning based on highly similar reviews.

Additionally, findings suggest that solely relying
on advanced reasoning capabilities of models like
GPT-4, segmenting full texts, or evaluating each el-
igibility criterion separately does not necessarily en-
hance sensitivity. Instead, future research should
explore combining effective techniques, optimizing
prompt design, and expanding dataset diversity to im-
prove performance.

A key limitation in current research is the absence
of a standardized benchmark for evaluating screen-
ing automation, which complicates the assessment of
effectiveness. Establishing a benchmark with well-
defined performance criteria is essential to enhance
transparency and credibility within the evidence syn-
thesis community. This benchmark should incorpo-
rate a diverse set of SRs and large datasets to enable
rigorous and reproducible comparisons across differ-
ent approaches. The datasets analyzed in this review
could serve as a foundation for such an initiative.
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