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Abstract: This paper presents a novel performance evaluation of five key lightweight hash functions on an ATxmega128
microcontroller, using our E-RANK metric as a composite metric that integrates execution speed, memory
footprint, and energy efficiency into a unified and balanced ranking. We leverage hardware-specific profiling
techniques, where counter registers are accessed directly on the microcontroller to measure execution speed
and analyze RAM and ROM footprints post-compilation to determine memory usage. Energy consumption
is measured using the ChipWhisperer FPGA toolkit, capturing voltage traces via an oscilloscope probe. Our
evaluations provide new insights into the trade-offs inherent in each lightweight hash function, providing
guidance on which one is most suitable for various application-specific constraints.

1 INTRODUCTION

Cryptographic hash functions are essential compo-
nents in many security mechanisms. They provide
data integrity, verify authenticity, and prevent repu-
diation. Traditional hash functions are, however, not
optimized for resource-constrained devices, such as
those commonly used in Internet of Thing (IoT) and
RFID applications. As an alternative, many spe-
cialized Lightweight Hash Functions (LWHFs), like
PHOTON (Guo et al., 2011) and SPONGENT (Huang
et al., 2021), have been proposed and standardized un-
der ISO/IEC 29192-5 for use in resource-constrained
environments.

In 2019, NIST called for the standardization of
lightweight cryptographic algorithms, receiving 57
submissions for consideration. Among the sub-
missions, many cryptographic algorithms included
their associated LWHFs, including the winner AS-
CON (Dobraunig et al., 2021). The NIST re-
ports on lightweight cryptographic algorithms include
software implementation results for the NIST stan-
dardized LWHFs, evaluating execution time, mem-
ory footprint, and power consumption on ARM
Cortex-M4, ESP32, and AVR ATmega328P (Tu-
ran et al., 2019; Turan et al., 2021; Turan et al.,
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2023). However, these benchmarking results lack
fine-grained power profiling, trade-off analysis be-
tween performance and cost, and performance tun-
ing for specific embedded platforms. Others (Win-
darta et al., 2022) have provided a comparative anal-
ysis of NIST LWHFs but compile results obtained
through different methodologies without ensuring di-
rect comparability or focusing on hardware imple-
mentations (Khan et al., 2023) without providing a
unified benchmarking approach to standardize perfor-
mance comparisons.

In this paper, we benchmark the LWHFs from the
five finalists in the NIST lightweight cryptography
standardization process, evaluating their performance
based on Cycles per Byte (CPB), RAM and ROM
footprint, and energy consumption. Our experimen-
tal setup includes a novel hardware profiling approach
that combines the NewAE ChipWhisperer platform
with an ATxmega128 microcontroller. This setup en-
ables high-resolution power analysis and energy pro-
filing, making it possible to accurately measure the
computational efficiency of each LWHF. We use our
novel E-RANK metrics to assess and compare the
overall efficiency of the LWHFs, which balances the
tradeoff between the various measurement types. Our
measurements show that the selected LWHFs have
different performance characteristics, and the selec-
tion of which one to use is highly application depen-
dent.
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Table 1: Comparison of the structure of finalist LWHFs from the NIST lightweight cryptography competition.

LWHF Internal Parameters Structure (Sponge Construction) Output Hash

Rate
(bits)

State
(bits)

Capacity
(bits)

Permutation
Round

Structure
Rounds (bits)

ASCON 64 320 256 Ascon-p SPN 12/8 256
PHOTON-Beetle 32 256 224 PHOTON AES-like SPN 12 256

Xoodyak 128 384 256 Xoodoo
SPN with ARX

based Plane Diffusion
12 256

SPARKLE 128 384 256 SPARKLE-384 ARX-based SPN var 256
ISAP var 320 / 400 var Ascon-p / Keccak-p[400] SPN var 256

2 BACKGROUND

This section provides an overview of the five NIST
lightweight cryptography finalists that we study in
this paper, summarized in Table 1. Note that all are
based on a Sponge construction approach.

ASCON (Dobraunig et al., 2021) uses a 320-bit
internal state, a 64-bit rate for input, and a 256-bit
capacity for cryptographic strength. During initializa-
tion, a predefined IV is loaded, and a 12-round Ascon-
p permutation is applied. Messages are processed in
64-bit blocks, XORed into the rate, followed by an 8
or 12-round permutation. Once all input is processed,
a final 12-round permutation occurs before extracting
the digest. For longer outputs, extra squeezing rounds
are done.

PHOTON-Beetle (Bao et al., 2021) utilizes a
sponge construction based on the PHOTON-256 per-
mutation. The hash function has a 256-bit inter-
nal state, split into 32-bit rate and 224-bit capac-
ity, balancing speed and security. During initializa-
tion, the state is set to zero, and the first 128-bit in-
put block is absorbed. The absorption phase pro-
cesses the message in 32-bit blocks, each XORed
with the rate portion, followed by 12 rounds of the
PHOTON-256 permutation, which includes four core
operations: AddConstant, SubCells (4-bit S-box),
ShiftRows, and MixColumnSerial, ensuring diffusion
and cryptographic strength. The squeezing phase de-
rives the final hash output by applying another round
of PHOTON-256 and extracting two 128-bit parts
from the state.

Xoodyak (Daemen et al., 2020) function is based
on the Xoodoo permutation. Its internal state con-
sists of 384 bits, split into 128 bits for the rate and
256 bits for capacity. Xoodyak employs a duplex
sponge structure for hashing and authenticated en-
cryption. Initialization sets the internal state to zero.
During absorption, input blocks XOR with the state’s
rate portion, followed by 12 rounds of the Xoodoo
permutation, which involves bitwise mixing, a non-

linear layer, and diffusion transformations. Finally, in
the squeezing phase, the hash output is taken from the
state, with an option for extendable output length.

ESCH (Beierle et al., 2020) is based on a sponge
construction and features an Addition-Rotation-XOR
(ARX) design. ESCH processes messages itera-
tively, padding and absorbing them into an internal
state before transforming them via SPARKLE-384
(Esch256) or SPARKLE-512 (Esch384). These per-
mutations use the Alzette ARX-box, a lightweight
cryptographic primitive that ensures non-linearity and
diffusion while remaining efficient in constrained en-
vironments. The internal state undergoes multiple
transformation rounds, combining modular addition,
bitwise rotation, and XOR operations to enhance se-
curity. After absorbing all input data, a finalization
step produces the 256-bit output (Esch256) or 384-bit
output (Esch384).

ISAP (Dobraunig et al., 2017) employs a sponge-
based construction approach, using Ascon-p or
Keccak-p[400] permutation. The hash function fea-
tures an iterative permutation structure where input is
absorbed into a fixed-size internal state, processed via
multiple rounds of the chosen permutation, and then
squeezed to generate the final hash. The state begins
with a predefined value. Input blocks are XORed into
the state’s rate portion during absorption, followed by
a permutation round for diffusion. Finalization ap-
plies extra rounds before output extraction.

3 RESEARCH METHODOLOGY

3.1 Measurements

To obtain precise CPB, RAM, ROM, and energy
consumption measurements, we are using the open-
source ChipWhisperer1 platform by NewAE Tech-
nology. ChipWhisperer is a suite of hardware and

1https://www.newae.com/chipwhisperer
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software tools created to find security vulnerabili-
ties in embedded systems. Its modular structure
enables the integration of specialized modules, en-
abling precise measurements and advanced crypto-
graphic testing. The Chipwhisperer uses features such
as high-precision oscilloscope integration, triggering
mechanisms, and clock-glitching capabilities. The
ChipWhisperer-lite variant of the toolkit consists of
a capture board and a target board.

The capture board consists of an Xilinx Spartan-
6 LX9 FPGA, an ARM Cortex-M3 (ATSAM3U2C)
microcontroller, an AD9215 BRUZ-105 Analog-to-
Digital converter (ADC), and an AD8331ARQZ
Low-Noise Amplifier (LNA). The FPGA serves as
the core processing unit responsible for data ac-
quisition and clock synchronization. The ARM
Cortex-M3 manages USB communication between
ChipWhisperer and a host PC to provide command
execution and communication protocols. In our
case, we use the Universal Asynchronous Receiver-
Transmitter (UART) to program the target board and
send trigger signals. The LNA amplifies weak power
traces from the target board before forwarding them to
the ADC, offering an adjustable gain from 0 to 55 dB.

In our experimental setup, we are using an
ATxmega128 microcontroller as our target board,
mounted on a Universal Feature Observation (UFO)
board, which provides a standardized interface for
power, clock, and data connections. The oscillo-
scope probe connects the capture board and the UFO
Board, capturing voltage glitches upon triggering.
The FPGA on the capture board controls and synchro-
nizes the oscilloscope.

3.2 Experiment Overview

Our experiment consists of three main stages.

Stage 1: Firmware Development. The firmware
development for the target board is carried out in the
C language, with the LWHF implementations sourced
from the NIST website. A base C program is devel-
oped to enable simple serial communication with the
ChipWhisperer Python API, enabling trigger signal
handling and the execution of specific hash functions.
The selected LWHFs are integrated into the base C
program through macros, allowing for a flexible se-
lection of different algorithms during compilation.

The firmware compilation process utilizes the
AVR-GCC compiler, incorporating compiler flags for
object files and macros that specify the hash function
name and variant. During compilation, the C imple-
mentation files of the chosen LWHFs are translated
into object files, which are then linked together to

generate the .elf and .map files. The .elf is then
converted to .hex file for flashing on the target. Also,
the compiler is configured to generate .su files for
each object file, providing stack usage. Finally, the
ChipWhisperer Python API uses the generated .hex
file to program the ATxmega128 target device.

Stage 2: Target Flashing. The ChipWhisperer cap-
ture board is initialized by configuring the scope and
setting its key parameters, including gain, sample
rate, trigger settings, and clock sources. Once the
scope is initialized, the selected Programmer is used
to flash the compiled .hex file onto the ATxmega128
target board. After flashing, the firmware is verified
and debugged.

Stage 3: Evaluation Metrics Measurement. This
stage involves initializing and configuring simple se-
rial communication and the scope, which are then
used to initialize the target device by linking it with
the scope and serial interface. Once the initialization
is complete, the system determines the specific per-
formance metric to be measured, selecting from RAM
usage, ROM usage, CPB, or energy consumption.

3.3 Evaluation Metrics

The performance metrics used for benchmarking the
selected LWHFs are as follows.

Cycles per Byte (CPB): represents the number
of processor cycles required to process each byte
of input data. The CPB measurement is con-
ducted using a hardware-specific technique that uti-
lizes the TCC0.CTRLA register (Control Register for
Timer/Counter C0) on the ATxmega128 target board.
It is responsible for configuring the clock source and
prescaler settings.

To measure execution cycles, the TCC0.CTRLA
register is initialized to zero at the start of the hashing
operation, and as the selected LWHF processes the in-
put data, the timer records the total clock cycles con-
sumed. At the end of the hashing process, the register
is accessed to retrieve the final cycle count, which is
then divided by the number of input bytes to compute
the CPB value. The calculated CPB is transmitted to
the host system via simple serial communication.

RAM: is determined by summing the initialized
and uninitialized global/static variables along with the
stack memory utilized by the LWHF. The initialized
(.data) and uninitialized (.bss) segments are ex-
tracted from the .map file, which is generated dur-
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ing the linking stage of compilation using AVR-GCC.
Also, both dynamic and static stack usage are ob-
tained from the .su file, which is created during the
compilation of each object file, provides a detailed
breakdown of memory allocation.

ROM: is determined by adding the memory occu-
pied by the program code (.text) and constant data
(.rodata). The .map file, generated during the link-
ing stage of compilation, provides a detailed memory
map of the program code and constant data, allowing
precise measurement of the total ROM footprint.

Energy: is measured using ChipWhisperer’s API
function cw.capture trace, which returns an array
of instantaneous voltage samples acquired through the
ADC when a high-to-low trigger signal is detected
from the target device. The obtained samples are nor-
malized values in the range -0.5 to 0.5 and must be
converted into actual voltages for energy calculations.
Given a raw ADC voltage sample Vraw, as returned by
the API, the ADC reference voltage Vref, and the gain
Gamp of the amplifier applied to the signal before dig-
itization, the actual voltage Vactual is given as follows.

Vactual =Vraw × Vref

Gamp
(1)

Given the shunt resistance Rshunt and the supply
voltage Vsup, Ohm’s Law gives us the instantaneous
power as follows.

Ptrace = Itrace ×Vsup =
Vactual

Rshunt
×Vsup (2)

Because the ADC normalized samples may end up
negative due to signal oscillations or AC coupling ef-
fects, we use the Root Mean Square (RMS) power of
a trace to obtain average power and ensure precise en-
ergy calculations. Given N samples, the output RMS
power Prms of a trace is given as follows.

Prms =

√
1
N

N

∑
i=1

P2
trace,i (3)

The time taken by the microcontroller to execute
a hash function is given by Texec = C/ fclk, where C
represents the total number of cycles utilized during
the execution of the hash function, and fclk denotes
the clock frequency of the microcontroller. This gives
us the energy consumption E as a function of power
and time as follows.

E = Prms ×Texec =
Prms ×C

fclk
(4)
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Figure 1: Execution speed (CPB) of selected LWHFs.
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Figure 2: RAM usage of selected LWHFs.

E-RANK: is our improved variant of the RANK
metric (Beaulieu et al., 2015) that combines execution
time, memory footprint, and energy consumption into
a single metric. Although the RANK metric has pre-
viously been used as a performance trade-off metric to
evaluate execution efficiency relative to resource con-
sumption, it does not account for power dissipation.
Our modified version incorporates energy consump-
tion, as shown in Equation 5.

E-RANK =
109/CPB

(ROM+2×RAM)×E
(5)

4 RESULTS AND ANALYSIS

The measured execution speeds, in terms of CPB,
are shown in Figure 1. We found that ESCH runs
fastest, followed by PHOTON-Beetle, Xoodyak, and
ASCON. ISAP demonstrates the highest execution
time by a large margin.

For memory consumption, ASCON exhibits the
smallest RAM footprint followed by ISAP and
PHOTON-Beetle, as can be seen in Figure 2. ESCH,
with Xoodyak closely trailing, has the highest RAM
usage. ROM usage is shown in Figure 3. PHOTON-
Beetle requires the least ROM, followed by ASCON
and Xoodyak, while ISAP and ESCH have the highest
ROM allocation.

The measured energy consumption is shown in
Figure 4. Each data point is the mean of 10 runs, and
the plotted error bars indicate insignificant variability
across executions. The figure highlights that ESCH
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Figure 3: ROM usage of selected LWHFs.
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Figure 4: Energy consumption of selected LWHFs.

and PHOTON-Beetle are the most energy-efficient
LWHFs, while ISAP registers the highest energy con-
sumption. ASCON and Xoodyak have a moderate
and similar level of energy consumption, with only
a slight difference.

The calculated E-RANK is plotted in Figure 5. As
can be seen in the figure, PHOTON-Beetle outper-
forms all other candidates, followed by ESCH. AS-
CON and Xoodyak are positioned in the middle with
a slight difference in their E-Rank. On the lower end,
ISAP has the lowest E-RANK values.

A comparative analysis of the LWHFs based on
execution efficiency, memory footprint, energy con-
sumption, and overall efficiency (i.e., E-RANK) can
be found in Figure 6. Here, we normalize each met-
ric to a common scale to prevent any single one
from dominating the radar chart visualization. CPB
is normalized by dividing the highest CPB value by
each LWHF’s CPB, ensuring faster execution yields
a higher score. Energy, RAM, and ROM are nor-
malized using their respective minimum values, so
lower resource consumption translates to a higher nor-
malized score. Since lower values for CPB, energy
consumption, RAM, and ROM indicate better perfor-
mance, these metrics are inverted and appropriately
scaled. E-RANK is a positive metric, so it is scaled
by dividing each value by the highest observed value.

From Figure 6, we observe clear trade-offs, cor-
relations, and dominant trends among the bench-
marked LWHFs. The ESCH LWHF offers the fastest
execution speed and least energy consumption, but
has higher RAM and ROM usage. ASCON and
PHOTON-Beetle consume low memory footprints
with moderate energy consumption and execution
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Figure 5: Calculated E-RANK of selected LWHFs (Higher
values indicate better overall trade-off performance).
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Figure 6: Multi-metric comparison of selected LWHFs.

speed. Xoodyak consumes moderate amounts of en-
ergy, execution speed, and RAM, but its RAM usage
is higher than that of ASCON, PHOTON-Beetle, and
ISAP. In addition, ISAP exhibits the highest CPB, en-
ergy, and ROM, highlighting its design as a security-
focused function rather than one aimed at efficiency.
This highlights a key trade-off: faster execution gen-
erally demands more memory, and designs that prior-
itize security execute slowly.

Among evaluated LWHFs, the best overall bal-
ance among speed, energy, and memory efficiency is
achieved by PHOTON-Beetle, which has the highest
E-RANK. PHOTON-Beetle is followed by ESCH due
to its highest execution speed and lowest energy re-
quirement. Although ESCH boasts a high execution
speed, its E-RANK lies after PHOTON-Beetle be-
cause of its increased memory requirements. ASCON
has a low memory requirement, but lies in third place
in terms of E-RANK due to its low execution speed
and moderate level of energy consumption. Xoodyak
has a lower E-RANK because it offers a mix of mod-
erate energy efficiency and execution speed, requir-
ing more RAM than ASCON and PHOTON-Beetle.
ISAP ranks the lowest in E-RANK, indicating that its
focus on security comes at a trade-off, as explained
earlier.
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Table 2: Application-specific suitability of LWHFs.

Application Recommended LWHF

Low-Power
(Battery-powered, energy-efficient)

ESCH

Memory-Constrained
(Limited ROM/RAM availability)

PHOTON-Beetle
ASCON

High-Speed Execution
(Real-time, high-throughput processing)

ESCH

Security critical
(Robust against side-channel attacks)

ISAP

As is clear from Figure 6, there is not a single op-
timal LWHF for every scenario. This suggests that
the choice of hash function is based on the specific
application requirements. Also, different microcon-
troller (MCU) architectures impact the choice of an
appropriate LWHF for real-world deployments. Ta-
ble 2 outlines the most suitable LWHFs for various
application scenarios best suited for each use case.

5 CONCLUSION

This paper presents a comprehensive benchmarking
of the five finalist LWHFs from the NIST standard-
ization process using the ChipWhisperer platform
with an ATxmega128 microcontroller as the target.
We evaluate key performance metrics including CPB,
RAM usage, ROM footprint, and energy consump-
tion, using hardware-specific profiling and optimized
compilation techniques that ensure precise and re-
liable measurements. Our measurements reveal in-
herent trade-offs among the different LWHFs, where
achieving faster execution often comes at the cost of
higher memory and energy consumption. This em-
phasizes that the selection of an optimal LWHF is
highly application-dependent.
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