
Dataset Watermarking Using the Discrete Wavelet Transform

Mike P. Raave1 a, Devriş İşler2,3 b and Zekeriya Erkin1 c

1Cyber Security Group, Delft University of Technology, Van Mourik Broekmanweg, Delft, The Netherlands
2IMDEA Networks Institute, Madrid, Spain

3Universidad Carlos III de Madrid, Madrid, Spain

Keywords: Watermarking, Data Ownership, Discrete Wavelet Transform.

Abstract: In this work, we focus on watermarking time series datasets and explore one of the techniques known from
audio-watermarking, namely Discrete Wavelet Transform (DWT) based watermarking, to investigate its ef-
fectiveness. We adapt (Attari and A. Shirazi, 2018) and embed a bit stream into a time series dataset by
calculating the DWT coefficients and modifying their magnitudes for embedding. Our experimental results
on two real-world datasets show good robustness against a small range of data modification attacks but lack
capability in larger-scale attacks. We believe that our work could initiate a new research direction on dataset
watermarking using well-known techniques from signal processing.

1 INTRODUCTION

Watermarking is a well-known technique for protect-
ing data ownership upon unauthorized distribution.
Watermarking generally consists of two main algo-
rithms: 1) embedding; and 2) extraction. Embed-
ding allows an owner to embed a watermark into a
form of data using a watermarking secret (e.g., a se-
cret bit string) and produces a watermarked version
of the data without degrading the data utility signif-
icantly (e.g., minimizing the amount of distortion on
median and average). In extraction, the owner proves
its ownership of a suspected dataset, even if the data is
modified, by reconstructing, or extracting, the embed-
ded watermark. When the watermark is successfully
extracted, the owner can prove the ownership by ver-
ifying their watermark.

Watermarking has been well-studied in the con-
text of multimedia data (Malanowska et al., 2024),
database (Rani and Halder, 2022; Panah et al., 2016)
, and other type of datasets (İşler et al., 2024).
Although media watermarking, e.g. image, au-
dio, is more advanced than non-media watermarking,
there are only a few studies analyzing the implica-
tions of media watermarking on non-media real-world
datasets. For example, (Pham et al., 2017) attempt to

a https://orcid.org/0009-0003-0751-3773
b https://orcid.org/0000-0003-4895-8827
c https://orcid.org/0000-0001-8932-4703

watermark medical time-series datasets using DWT-
based watermarking. They deploy an ML model to
retrieve a watermark formed as a binary image em-
bedded into the dataset. Due to its use case, i.e., more
effective diagnoses, the reconstruction of medical sig-
nals is vital. Therefore, their approach is not directly
applicable to other time series applications. (Mae-
sen et al., 2023), on the other hand, watermark ma-
chine learning datasets by applying singular value de-
composition based image watermarking which cause
around 0.1% accuracy loss. However, their approach
is not generic and cannot be directly applied to the
datasets such as time-series.

Considering time-series and audio data, they have
common characteristics such as both data types are a
form of frequency and are measured over time. There-
fore, in this work, we explore the idea of applying
a transform domain media watermarking algorithm,
i.e., DWT-based audio watermarking, to non-medical
time series data. Transform domain algorithms are
more robust and resistant to attacks (Guo et al., 2023;
Attari and A. Shirazi, 2018) while ensuring better im-
perceptibility compared to spatial domain algorithm,
e.g., Least Significant Bit. In consequence, we chose
DWT-based audio watermarking (Attari and A. Shi-
razi, 2018) since it is a frequency domain watermark-
ing algorithm and makes good use of the signal char-
acteristics (Guo et al., 2023).
Our Approach. To be able to watermark a time-
series dataset that may contain multiple signals and

676
Raave, M. P., İşler, D. and Erkin, Z.
Dataset Watermarking Using the Discrete Wavelet Transform.
DOI: 10.5220/0013556300003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 676-681
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

several covariates (which is not the case for media sig-
nals) using DWT-based audio watermarking (Attari
and A. Shirazi, 2018), we modified their algorithm
to suit the type and range of time-series data. We split
the data into frames and embed a Barker code into
each frame to counter single-range cropping attacks
and enhance performance. Afterwards, we use the
magnitude of the DWT coefficients of the data to em-
bed the watermark. Additionally, we proposed new
attacks to improve the robustness of the modified al-
gorithm after careful investigation since the original
algorithm’s use-case scenario is changed.

Our foremost contribution is to apply an audio wa-
termarking technique based on DWT to non-media
time series datasets using two real-world datasets. We
measure the distortion in terms of data statistics in-
troduced by watermarking. Based on our experimen-
tal finding, our algorithm modifies the average of the
datasets by approximately 0.5%. Hence, adjusting
the watermarking parameters, the owner can satisfy
its desired imperceptibility and robustness. Later, we
evaluate robustness against cropping, scaling, noise
addition, zero-out, and collusion attacks. Our ex-
perimental results show that our algorithm improves
robustness up to 65% data deletion for single-range
cropping attacks and up to a scaling rate of 1.5 for
scaling attacks.

2 RELATED WORK

(Attari and A. Shirazi, 2018) is an SS-based audio
watermarking approach. They watermark an audio
signal using 6th-level DWT coefficients. These co-
efficients are divided into frames, after which a wa-
termark bit is assigned per frame. Per coefficient in
a frame, the closest Fibonacci number to its mag-
nitude is determined. Based on the bit assigned to
the frame, which contains the coefficient, and the Fi-
bonacci number, the magnitude of the coefficient is
changed to either the closest Fibonacci number or one
number higher in the Fibonacci sequence. To extract
the watermark, similar steps as in the embedding pro-
cess are executed frame by frame. If, within a frame,
the majority of the closest Fibonacci numbers to the
coefficients correspond to even positions in the Fi-
bonacci sequence, the extracted watermark bit is 0,
otherwise, it is 1. As the bit stream is randomly gen-
erated, the algorithm is hard to break ensuring a high
level of security. They further analyze the robustness
of their algorithm against various attacks. In addi-
tion, their algorithm is suitable for various applica-
tions since the frame size can be tuned depending on
the underlying watermarking application.

(Fallahpour and Megı́as, 2014) propose a similar
algorithm utilizing the Fast Fourier Transform (FFT)
coefficients instead of DWT coefficients and gives
the possibility to tune parameters (e.g., the frequency
band of the signal used for embedding and the frame
size) depending on the required capacity and robust-
ness. As FFT coefficients do not store information
about time, their algorithm is only suitable for au-
dio applications. (Pham et al., 2017) use an image
as a watermark that is scrambled through the Arnold
transformation before embedding to improve robust-
ness. The data itself is down-sampled after the 4th-
level DWT approximation coefficients are calculated.
Afterwards, the watermark image gets embedded with
a bit of the image per data frame. For extraction, they
use an ML model built from part of the watermarked
data. This algorithm has high robustness against small
forms of cropping, noise addition, filtering and re-
sampling attacks and has good imperceptibility such
that the watermarked data is still usable.

3 WATERMARKING TIME
SERIES USING DWT

Now, we present our watermarking scheme utiliz-
ing (Attari and A. Shirazi, 2018) to watermark time-
series.

3.1 Watermark Embedding

The watermark embedding algorithm, see Algorithm
1, receives the following inputs: a time-series dataset
d formalized as d = {(ti,xi)|i = 1,2, . . . ,N} where N
is the total number of observations in d, and ti is the
timestamp of the i-th observation and xi ∈R is the i-th
observation’s value(s),1 a bit stream as watermark w,
a reference set re f of numbers with a fixed multipli-
cation rate mult, an integer containing the preferred
DWT level dwt, a frame size for the coefficients fbin,
a frame size for embedding a Barker code fBarker,
and returns a watermarked version of d as denoted by
dw. w is randomly generated through a pseudorandom
function using a secret seed value as a high entropy
secret. d is split into smaller sections such that w is
embedded into multiple places in d to increase robust-
ness against (un)intentional modifications. Each sec-
tion n has a fixed size of fBarker. Per section n, the data
is split into two lists, n1 and n2, such that n1 +n2 = n
as in (Shen et al., 2012).

1The formalization can be modified as xi ∈ Rm where
m ≥ 1 represents the number of variables or dimensions
(univariate if m = 1, multivariate if m > 1).

Dataset Watermarking Using the Discrete Wavelet Transform

677

In n1 5-bit Barker codes are embedded in each se-
quence to counter cropping attacks. The relative value
of a Barker code of length 5 has been used as consid-
ered in (Campbell, 1989) which is added to the value
at the corresponding index in n1. The imaginary val-
ues of the Barker code are added in the dataset to
make the process of extracting the watermark more
robust and effective. In order to avoid having imag-
inary values in the dataset, we use n1 for the Barker
code and n2 for embedding the watermark. For em-

Algorithm 1: Watermark Embedding.

Data: d, fbin, fBarker,dwt,re f ,w
Result: dw

1 foreach List n from d with size fBarker do
2 n1 = [1, . . . ,1]| fBarker | ;
3 n2 = n−n1;
4 n1[1] = 1+

√
−1;

5 n1[3] = 1−
√
−1;

6 cA =ComputeDWT (n2,dwt);
7 for List y in cA with size fbin do
8 f rameNr = the current iteration of the

loop.;
9 wbit = w[f rameNr];

10 for Coefficient c in y do
11 k =

f indPositionClosestNumber(re f ,c);

12 if k mod 2 ≡ wbit then
13 c = re f [k];
14 end
15 else
16 c = re f [k+1];
17 end
18 end
19 end
20 n′2 =ComputeIDWT (cA);
21 n = n1 + n′2;
22 end
23 dw = CombineAll(n);

bedding the watermark in n2, a dwtth-level DWT is
first applied to n2 and the resulting DWT approxi-
mation coefficients are divided into frames f of size
fbin. Each frame is assigned a bit out of w by calcu-
lating the index of the bit in w: l = ⌊ i

index o f f ⌋+ 1,
where i represents the index of the coefficient in the
list of approximation coefficients. For each coeffi-
cient c, the kth number in re f is found that is closest
to the magnitude of c. To embed the bit, the con-
dition k mod 2 ≡ w[l] is checked. If the condition
is true, the magnitude is changed to the kth number
in re f . If not, it is changed to the (k+ 1)th number

in re f . After all coefficients are considered, the in-
verse DWT is applied and n1 is merged with the mod-
ified version of n2 to get the watermarked data dw.
Finally, all the sections are concatenated to form dw,
and { fbin, fBarker,dwt,re f ,w} are securely stored as
watermark secrets.

A few steps in the original algorithm are modi-
fied to improve the performance. First, splitting the
data into lists with size fBarker and dividing those lists
n into n1 and n2 is an improvement to accommodate
the embedding of a 5-bit Barker code in n1 to counter
single-range cropping attacks. Second, this algorithm
has no variable values which are optimal for all cases
compared to the original. Thus, the user/owner can
determine the way the variable re f is created and what
the value of fbin, fBarker and dwt is. The results of
changing these variables can be seen in Section 4.

Algorithm 2: Watermark Extraction.

Data: dw, fbin, fBarker,dwt,re f
Result: w′

1 w′ = [];
2 startIndex = detectBarkerCode(dw, fBarker);
3 Take a sub-list with the first fBarker values

from startIndex as n;
4 n1 = [1, . . . ,1]| fBarker |;
5 n2 = n−n1;
6 cA =ComputeDWT (n2,dwt);
7 for List y in cA with size fbin do
8 for Coefficient c in y do
9 k = f indPositionClosestNumber(re f ,

c);
10 Store k mod 2;
11 if majority-k-values≡0 then
12 w′.add(0);
13 end
14 else
15 w′.add(1);
16 end
17 end
18 end
19 return w′;

3.2 Watermark Extraction

The first step in watermark extraction, see Algo-
rithm 2, is to detect the start point of extracting
the watermark from a suspected dataset dw using
⟨ fbin, fBarker,dwt,re f ⟩. The detection is achieved by
finding the embedded Barker codes at the start of each
section, which are the added imaginary values to the
data. When the start of a section has been found, a list
n is stored from the start index with the next fBarker

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

678

values. This list is split into sections n1 and n2, such
that n1 + n2 = n. A dwtth-level DWT is applied to
n2 and the resulting DWT approximation coefficients
are divided into frames with size fbin. Each frame y
is used for a form of majority voting to find the wa-
termark bit embedded. Hence, for each coefficient
c in a frame, the kth number is found in re f closest
to the magnitude of c. Each k connected to each c
is stored. If the values of k are more often odd than
even per frame, the watermark bit is 1; otherwise, it
is 0. Therefore, the algorithm always uses odd-sized
frames to prevent ambiguity. Once all frames have
been considered, the watermark w′ is extracted from
the sequence. If w′ is equal to the input watermark w,
the watermark is successfully detected.

The main change to the extraction algorithm com-
pared to the original is the added step to detect the
Barker code at the start of a section. Since exist-
ing methods offered no clear way to embed and de-
tect Barker codes, we used complex values, which re-
main hidden when the data is visualized. Addition-
ally, the algorithm only analyzes the first section from
the starting point, as it offers the highest likelihood
of correct watermark retrieval, especially when the
dataset has been modified or resized.

4 EXPERIMENTAL SETUP AND
RESULTS

4.1 Setup

Our experimental results are produced on a standard
laptop machine with an Intel(R) Core(TM) i7-9750H
CPU at 2.6GHz with 16.00 GB RAM. We use two
datasets from (Brownlee, 2020): 1) minimal temper-
ature dataset; and 2) sunspots dataset. The sunspots
dataset and the minimal temperature dataset consist of
2800 entries and 3600 entries, respectively. In terms
of the statistics of the datasets, the sunspots dataset
has an average value of 51.3. The minimal tempera-
ture dataset has an average value of 11.2. For our ex-
periments, we evaluate our approach using two main
metrics: 1) imperceptibility; and 2) robustness.

Imperceptibility. As a common practice (Agrawal
and Kiernan, 2002) , we evaluate the imperceptibil-
ity by analyzing the effect of the watermark on each
dataset by measuring the relative changes of the fol-
lowing metrics: 1) the average of the dataset; and 2)
the average absolute change of values.

Robustness. We evaluate the robustness of our ap-
proach against five attacks: 1) cropping; 2) noise ad-
dition; 3) scaling; 4) zero-out attacks; and 5) collu-
sion attacks. These particular attacks have been cho-

Table 1: Imperceptibility results of the test datasets.

Input Min temp (%) Sunspots (%)
fbin dwt mult avg diff value

chg
avg diff value

chg
11 1 1.2 0.5 8.9 0.7 11.9
11 3 1.2 0.4 8.8 0.6 11.9
11 5 1.2 0.8 8.9 1.0 19.4
11 3 1.4 1.0 16.1 2.3 22.7
15 1 1.2 0.5 8.9 0.7 11.9

sen since we focus on formatted datasets. As a re-
sult, these datasets would be most vulnerable to stan-
dard data modification attacks as the ones mentioned
above. In the original algorithm (Attari and A. Shi-
razi, 2018), there are results for a form of cropping
and random noise addition attack which we can com-
pare with this algorithm. For the other three attacks
there are no results to compare with from the orig-
inal algorithm as these attacks are more typical for
time series data compared to audio data. Regarding
the value of fBarker, it was found that the smaller the
value is, the more perceptible the watermark will be
as a change in DWT values in a small piece of data
has a larger effect on the resulting value than with a
larger value of fBarker. The larger the value is, the less
robust the watermark is as a smaller part of the data
needs to be modified for the watermark to be irretriev-
able. The only constraint for fBarker is that the value
must be smaller or equal to the size of the dataset.
However, we have run all tests with fBarker = 600, as
this provided good imperceptibility and did not have
any negative effects on the robustness of the algorithm
compared to lower values of fBarker.

4.2 Results

We discuss the experimental results based on the
aforementioned setting and metrics. We run our ex-
periments 100 times per instance and take the mean
of total computations.

4.2.1 Imperceptibility

We present the complete results of imperceptibility
experiments in Table 1 and briefly discuss the results
due to limited space. The complete results can be
found in the full version (Raave et al., 2024).
Effect of fbin. Our results show that when we increase
fbin, the effect on the statistics of the datasets are not
significant as the average difference and average value
do not change for both datasets. Thus, our approach
does not distort data drastically.
Effect of dwt. When dwt is increased, we can see
in the results that the relative difference in the av-

Dataset Watermarking Using the Discrete Wavelet Transform

679

erage value and the average change per value in the
dataset increases noticeably when dwt = 5 for all
three datasets. Between dwt = 1 and dwt = 3 each
dataset does not show significant differences, which
shows that both values should achieve the best possi-
ble results when chosen in the algorithm.
Effect of mult. When mult is increased, all of the re-
sulting values increase with a significant factor. This
effect can be observed in both datasets.

4.2.2 Robustness

For the baseline for our robustness analysis, we chose
the following values: fbin = 11, dwt = 1 and mult =
1.2, as those values gave the most consistently good
results regarding watermark extraction and provided
a good trade-off between imperceptibility and robust-
ness. However, optimizing these parameters is an in-
triguing open problem as we did not include more val-
ues of fbin, dwt, and mult, since the detection rate of
the watermark would drop below a 100% when the
values deviated too far from the set baseline. For ro-
bustness, the following data modification attacks have
been chosen to focus on: cropping, noise addition,
scaling, zero-out, collusion attacks. These attacks
were tested with 10%, 30% and 50% of the dataset
being modified. These modifications were done on
randomly chosen indexes. Higher than 50% modifi-
cation led to a conversion of a Bit Error Rate (BER)
of 50%. As the algorithm only considers zeros and
ones as watermarks, it cannot be distinguished from
that point whether the algorithm randomly guesses,
as the correct guess for a watermark bit is 50%, or the
algorithm makes more mistakes for a different reason.
Below we discuss the results per attack.

Table 2: Robustness results of the real world datasets.

Min temp (%) Sunspots (%)

% C
ro

p

E
di

t

In
se

rt

Z
er

o

C
ro

p

E
di

t

In
se

rt

Z
er

o

10 35 10 45 10 35 15 40 15
30 50 45 50 40 50 40 50 40
50 50 50 50 45 50 50 50 50

Cropping Attack. Two types of cropping attacks were
considered: removing a continuous range of data and
randomly deleting samples. To resist these, the al-
gorithm uses Barker codes for synchronization. By
choosing a frame size fBarker, the watermark is em-
bedded in each frame, increasing the chance of recov-
ery. A value of fBarker = 600 (for datasets of ∼3000
entries) offers a good balance between robustness and
imperceptibility. With this setup, up to 65% of the
data can be removed in one continuous block, and

the watermark is still fully recoverable. However, the
method is less effective against random deletion. As
shown in Table 2, removing 10% of samples at ran-
dom results in a BER of 35%, only slightly better than
random guessing (50%).
Random Noise Addition Attack. For adding noise to
the data, two variants of this attack are chosen to test
with: editing the existing values and inserting new en-
tries into the dataset. For editing existing values the
edited values were restricted to be within the range of
10% of the current value so that it is less perceptible
to others that the data is modified as shown by Table
2. Table 2 shows that for both datasets, the BER is
relatively low when 10% of the data is modified. For
larger-scaled attacks, it is more vulnerable.

For inserting values, they were chosen in a similar
way as for editing. The results of these tests can be
found in Table 2. In the table, it can be seen that for
both datasets, the watermark cannot be retrieved reli-
ably anymore. For 10% data modification, the BER
is lower than when one would guess the watermark
bits, but not significantly lower such that one could
still use the watermarked data in a practical setting.
Zero-Out Attack. A zero-out attack entails that a per-
centage of the data is changed to have a value of zero.
Therefore it is similar to a cropping attack, but the
dataset does not shrink in size in this case. Table 2
shows the results of the experiments. As shown by
Table 2, we observe that for 10% of the datasets be-
ing modified, the algorithm has a BER of 15%. With
larger-scaled zero-out attacks, this algorithm proves
to be more vulnerable.
Scaling Attack. A scaling attack entails that the data
is being scaled with a certain factor. The results of
this attack being successful were fully dependent on
the value of mult. The tests have been run with multi-
ple values of mult, but 1.6 seemed to give the best re-
sults. We found in our results that for positive scaling
values, the algorithm provides strong robustness up to
50% scaling with a resulting BER of 0%. When the
data is negatively scaled, the algorithm seems to flip
all bits which results in a BER of 100%. When testing
with lower values of mult, the maximal scaling rate
which still resulted in a BER of 0% detection went
down to about 10% positive scaling. When compar-
ing these results to a medical time series watermark
in (Pham et al., 2017) and the audio algorithm (Attari
and A. Shirazi, 2018), our algorithm provides more
robustness in positive scaling, while being less robust
against negative scaling (see our full version (Raave
et al., 2024) for more details).
Collusion Attack. In a collusion attack, an attacker
has access to two or more differently watermarked
versions of the same dataset and attempts to remove

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

680

or obscure the watermarks. This attack assumes a
stronger adversary than other types. To test our mod-
ified algorithm’s robustness, we generated two ver-
sions of the same dataset with different watermarks
and parameters (e.g., fBarker,dwt,mult). Our results
show that recovering the watermark or parameters is
difficult, as each one affects the data in a random,
uncorrelated way. Additionally, the use of a high-
entropy secret in generating w prevents the watermark
from being guessed. We will explore more advanced
collusion scenarios involving multiple copies.

5 DISCUSSION

Our imperceptibility tests show that changing fbin and
DWT level has minimal impact on output quality, sug-
gesting that a fixed DWT level is not essential for time
series data as it is common in audio watermarking.
For cropping attacks, the use of Barker codes proved
partially effective: with fBarker = 600, only one intact
block of 600 values is needed to fully recover the wa-
termark. This outperforms the method in (Attari and
A. Shirazi, 2018), which handles only a 200-sample
removal at the beginning of an audio signal. While
our method remains robust when up to 10% of data is
affected at random, performance drops beyond that.

Unlike in Attari et al.’s audio watermarking, us-
ing a Fibonacci mult of 1.618 in time series data in-
creased perceptibility and had limited robustness ben-
efits. A smaller mult (1.2) worked better, likely due
to the lower value spread in time series compared to
audio. While we use standard distortion metrics, dis-
tortion is highly use-case dependent and influenced
by attack types. As noted in (İşler et al., 2024), opti-
mizing and generalizing distortion remains a complex
challenge, which we plan to explore further both the-
oretically and experimentally.

6 FUTURE WORK AND
CONCLUSION

We proposed a novel technique to watermark non-
medical time series by adapting an audio watermark-
ing technique (Attari and A. Shirazi, 2018). We
experimentally showed that our approach is robust
against cropping, scaling, and small-scale randomly
sampled attacks. We also evaluated the effect of wa-
termarking on data utility (imperceptibility) using dif-
ferent multiplication rates. Determining the optimal
parameters for a given time-series dataset is an inter-
esting future direction.

ACKNOWLEDGEMENTS

This paper is supported by the European Union’s
Horizon Europe research and innovation program un-
der grant agreement No. 101094901, the Septon
and 101168490, the Recitals Projects. Devriş İşler
was supported by the European Union’s HORIZON
project DataBri-X (101070069).

REFERENCES

Agrawal, R. and Kiernan, J. (2002). Watermarking rela-
tional databases. In VLDB. Morgan Kaufmann.

Attari, A. and A. Shirazi (2018). Robust audio watermark-
ing algorithm based on DWT using fibonacci num-
bers. Multim. Tools Appl.

Brownlee, J. (2020). 7 time series datasets for machine
learning.

Campbell, C. (1989). 13 - coding techniques using linear
saw transducers. In Surface Acoustic Wave Devices
and their Signal Processing Applications. Academic
Press.

Fallahpour, M. and Megı́as, D. (2014). Robust audio water-
marking based on fibonacci numbers. In MSN.

Guo, K., Xu, Z., Luo, S., Wei, F., Wang, Y., and Zhang, Y.
(2023). Invisible video watermark method based on
maximum voting and probabilistic superposition. In
ACM MM.

İşler, D., Cabana, E., Garcı́a-Recuero, Á.., Koutrika, G.,
and Laoutaris, N. (2024). Freqywm: Frequency wa-
termarking for the new data economy. IEEE ICDE.

Maesen, P., İşler, D., Laoutaris, N., and Erkin, Z. (2023).
Image watermarking for machine learning datasets. In
ACM Data Economy Workshop, DEC.

Malanowska, A., Mazurczyk, W., Araghi, T. K., Megı́as, D.,
and Kuribayashi, M. (2024). Digital watermarking - A
meta-survey and techniques for fake news detection.
IEEE Access.

Panah, A. S., van Schyndel, R. G., Sellis, T. K., and Bertino,
E. (2016). On the properties of non-media digital wa-
termarking: A review of state of the art techniques.
IEEE Access.

Pham, T. D., Tran, D., and Ma, W. (2017). An intelligent
learning-based watermarking scheme for outsourced
biomedical time series data. In IJCNN.

Raave, M. P., İşler, D., and Erkin, Z. (2024). Watermarking
time-series data using dwt. TU Delft repository.

Rani, S. and Halder, R. (2022). Comparative analysis of
relational database watermarking techniques: An em-
pirical study. IEEE Access.

Shen, J., Pan, F., and Guo, Y. (2012). Digital audio wa-
termark sharing based on the chinese remainder theo-
rem. In International Congress on Image and Signal
Processing.

Dataset Watermarking Using the Discrete Wavelet Transform

681

