
Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and
Explainable AI Evaluation

Viet Anh Phan a and Jan Jerabek b

Faculty of Electrical Engineering and Communication, Brno University of Technology,
Technicka 3082/12, Brno, Czech Republic

Keywords: IPv6, Covert Channel, Dataset, Machine Learning, Intrusion Detection, Explainable AI.

Abstract: Adopting a dual approach, this paper presents a framework that integrates two complementary components:
CovertGen6, a novel tool for generating realistic IPv6 covert channel attack packets, and a framework of
detection system based on multiple machine learning models. CovertGen6 outperforms existing tools by
producing diverse, evasive attack scenarios that are captured by Wireshark and converted into CSV datasets
for analysis. These authentic datasets are then used to train and evaluate machine learning models for detecting
IPv6 covert channels, with the Random Forest classifier achieving a binary classification AuC of 0.985 and
a multi-label classification F1-score of 90.3%. Additionally, the explainable AI technique is incorporated to
transparently interpret model decisions and pinpoint the specific header fields used for covert injections. This
dual approach bridges the gap between theoretical research and practical network security, laying a robust
foundation for intrusion detection systems in IPv6 networks.

1 INTRODUCTION

The introduction of IPv6 has brought about new fea-
tures (Shiranzaei and Khan, 2018). This also includes
new challenges in network security, notably the emer-
gence of covert channels that enable malicious actors
to embed hidden communications within legitimate
traffic. These IPv6 covert channels pose a significant
threat as they can evade traditional intrusion detec-
tion systems by exploiting unused or under-monitored
protocol fields. Prior research has made important
strides in this domain; for instance, Zhao and Wang
(Zhao and Wang, 2020) introduced a blind network
steganalysis model based on convolutional neural net-
works, demonstrating high detection accuracy in IPv6
environments. Similarly, Dua et al. (Dua et al., 2022)
developed DICCh-D, which utilizes deep neural net-
works to detect IPv6-based covert channels, thereby
highlighting the potential of machine learning in ad-
dressing these sophisticated threats.

Despite these promising developments, existing
methodologies often rely on oversimplified datasets
that fail to capture the complexity and diversity of
real-world covert communication scenarios. More-

a https://orcid.org/0009-0003-1787-8063
b https://orcid.org/0000-0001-9487-5024

over, many of these approaches focus solely on max-
imizing detection accuracy without providing trans-
parency into the model’s decision-making process.
Addressing these gaps, this paper introduces a novel
tool called CovertGen61 for designing and generating
diverse, evasive IPv6 covert channel packets that re-
alistically mimic potential attack scenarios. The gen-
erated network traffic is captured by Wireshark, then
transformed into CSV datasets and used to train a
suite of machine learning models, achieving approx-
imately 0.985 of AuC for binary classification and
around 90.3% of F1-score for multi-label classifica-
tion.

A key contribution of our work is the integration
of explainable AI (XAI) techniques. These methods
not only enhance the transparency of our detection
models by interpreting their decisions but also iden-
tify the specific IPv6 header fields exploited for covert
injection. Such interpretability is essential for foster-
ing trust among network administrators and for en-
abling more informed and rapid responses to security
threats.

By combining realistic data generation with robust
machine learning detection and in-depth XAI eval-
uation, our framework bridges the critical gap be-

1https://github.com/vafekt/CovertGen6.git

666
Phan, V. A. and Jerabek, J.
Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation.
DOI: 10.5220/0013556100003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 666-675
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



tween theoretical research and practical network se-
curity applications. This approach lays the foundation
for more robust and adaptive intrusion detection sys-
tems, which are vital to safeguarding IPv6 networks.

2 RELATED WORKS

This section reviews literature on IPv6 covert chan-
nels, covering design methodologies that inspire our
tool CovertGen6 and detection techniques that inform
our integrated approach.

2.1 Covert Channel Designs in IPv6

The design of IPv6 covert channels in Mavani et
al. (Mavani and Ragha, 2014) and Mazurczyk et al.
(Mazurczyk et al., 2019) leverages the flexibility of
IPv6 protocol fields and extension headers to embed
hidden data. Mavani et al. focused on exploiting
the Destination Options Extension Header, a feature
allowing optional processing by destination nodes.
They manipulated this header by embedding covert
data in two ways: (1) defining custom, unrecognized
options (e.g., reserved or vendor-specific codes) that
evade standard validation, and (2) abusing the PadN
option by inserting nonzero padding bytes, which typ-
ically serve alignment purposes but can encode secret
information.

Mazurczyk et al. expanded this scope by evalu-
ating six distinct data-hiding techniques in real-world
IPv6 deployments. Their methods included abusing
fields like the Flow Label, which typically ensures
packet sequencing but can be repurposed to encode
covert bits, and the Traffic Class field for timing-
based steganography. They also exploited extension
headers (e.g., Fragment, Hop-by-Hop) by embed-
ding data in rarely monitored fields or manipulating
fragmentation offsets. For instance, covert channels
were established by altering the Flow Label’s pseudo-
random values to encode messages or embedding data
in unused bits of extension headers.

In practice, such covert channels manifest as
seemingly ordinary IPv6 traffic. For example, a
packet with a Destination Options Extension Header
might appear standard but include a custom option
type (e.g., a proprietary code point) carrying en-
crypted data, or a Flow Label field might exhibit
nonrandom patterns that encode a hidden message.
Mazurczyk et al. emphasized the challenges in detec-
tion, as these channels exploit IPv6’s inherent com-
plexity and the limited scrutiny of newer protocol fea-
tures in security tools. Their work underscores the
need for advanced detection frameworks, such as ma-

chine learning models or protocol-aware wardens, to
identify anomalies in header fields and traffic behav-
ior.

2.2 Detection Approaches

Wang et al. (Wang et al., 2022) introduced CC-Guard,
an IPv6 covert channel detection method based on
field matching. Their approach involves extracting
specific header fields from IPv6 packets and com-
paring them against predefined normal patterns using
a deterministic decision automaton. Although CC-
Guard achieves high detection accuracy by pinpoint-
ing deviations in fields like Traffic Class and Flow La-
bel, the exhaustive pattern matching process results in
a time-consuming analysis that may hinder real-time
applicability.

Danyang Zhao and colleagues (Zhao and Wang,
2020) developed BNS-CNN, a blind network ste-
ganalysis model based on convolutional neural net-
works specifically tailored for IPv6 networks. Their
method involves generating a dataset of 24,000 pack-
ets by embedding covert data into the IPv6 source ad-
dress, Hop Limit field, and TCP ISN. The CNN auto-
matically extracts relevant features from this dataset
to detect covert channels with high accuracy. How-
ever, the dataset’s narrow focus on only a few covert
channel types limits the model’s generalizability to
other types of covert communications.

Arti Dua and co-authors (Dua et al., 2022) pro-
posed DICCh-D, which employs a deep neural net-
work (DNN) to detect IPv6-based covert channels.
Their approach leverages the pcapStego tool (Zup-
pelli and Caviglione, 2021) to generate covert chan-
nels by modifying fields such as Flow Label, Traf-
fic Class, and Hop Limit. While this method demon-
strates the potential of DNNs for efficient detection,
its reliance on pcapStego confines the dataset to only
these specific field modifications, thereby limiting its
ability to detect covert channels exploiting other parts
of the IPv6 header.

This review shows that while early works effec-
tively highlighted various covert channel designs in
IPv6, detection methods have evolved from exhaus-
tive statistical analyses, as seen in CC-Guard, to more
efficient machine learning techniques in DICCh-D.
However, the limited scope of the datasets used in
these machine learning approaches remains a critical
drawback, underscoring the need for frameworks that
can generate a broader range of covert channel sce-
narios and support more robust detection strategies.

Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation

667



3 COVERTGEN6: A NETWORK
TOOL FOR IPV6 COVERT
CHANNEL COMMUNICATION

3.1 Software Architecture

Before presenting the methodology, we introduce
CovertGen6, a custom-developed command-line tool
for covert data transmission over IPv6 networks.
Implemented in Python, it enables embedding data
within various IPv6 header fields to establish covert
channels that bypass traditional detection mecha-
nisms. CovertGen6 supports multiple covert chan-
nel types, encryption methods, and transport proto-
cols, offering flexibility in constructing and transmit-
ting covert packets. The main components of Covert-
Gen6 are depicted in Figure 1.

Command-line
input

Configuration
Management

File Processing
& Encryption

Data
segmentation

Packet
generation

Packet
transmission

Packet sniffing

User

Exit

Protocols
construction

Figure 1: Software architecture of CovertGen6.

As shown in Figure 1, the user first enters the pa-
rameter as a command-line input, with its usage ex-
plained later in the next section. Once all parame-
ters are provided, the process moves on to the next
module. In this phase, Configuration Management
validates the inserted parameters. The tool verifies the
existence of the specified network interface, input file,
and cryptographic parameters, ensuring all required
inputs are correctly formatted.

Once validated, the tool moves into Protocol
Construction. This module determines how the
packet frame is built based on the selected protocol
(IPv6, ICMPv6, UDP, or TCP). The tool structures
packet headers accordingly to ensure proper network
transmission.

Simultaneously, File Processing & Encryption
prepare the data for insertion into IPv6 packets. The
selected file is read in binary format, and if encryption
is enabled, it is processed using AES-CBC or DES-
CBC encryption (based on the user’s preference). The
encryption key can either be user-defined or automat-
ically generated. The encrypted data is then encoded
for insertion into IPv6 header fields.

The method of Data Segmentation depends on
the selected covert channel type:

• For Traffic Class, Flow Label, Next Header, and
Hop Limit: Each 1-byte segment of encrypted
data is embedded into the respective field of a sin-
gle IPv6 packet. These fields have limited size,

making them suitable for small-scale covert trans-
mission.

• For IPv6 Extension Headers (Hop-by-Hop, Des-
tination Option, Routing Header, Fragment
Header): Data is divided into 256-byte blocks
and embedded within Unknown Options of these
headers. If the remaining data is less than 256
bytes, zero-padding is applied to maintain block
consistency.

This segmentation process ensures that the data
is correctly structured within IPv6 packets, avoid-
ing corruption or detection by simple header integrity
checks.

With the covert data embedded, Packet Genera-
tion constructs the final IPv6 packets. These packets
follow the structure defined in the protocol construc-
tion phase, incorporating the chosen protocol, encryp-
tion method, and covert channel technique.

Once generated, the packets are sent via Packet
Transmission, using raw socket operations to inject
them directly into the network interface. The tool
ensures proper sequencing of packets, maintaining a
structured covert communication flow.

In parallel, CovertGen6 includes a Packet Sniff-
ing module that monitors network traffic for re-
sponses from the covert receiver. If the receiver
acknowledges the packets, the tool logs response
metadata, including source and destination addresses,
timestamps, and protocol details. This feature en-
ables users to verify whether covert packets success-
fully bypassed Intrusion Detection System (IDS) or
firewall defenses between the sender and receiver.

By analyzing responses, the tool helps assess net-
work security risks and refine covert channel strate-
gies to improve stealth and reliability.

3.2 Usage

The tool is executed with the following inserted pa-
rameters:

python3 covert_channel.py [interface] [options]

• Interface: The network interface to use from the
sender. Manually specified or automatically re-
solved.

• Source and Destination MAC/IP Addresses (-
smac/-dmac and -sip/-dip): Manually specified
or automatically resolved.

• Covert Channel Type (-t): Currently, only one
option may be used at a time; data must be embed-
ded exclusively in one of the following options:

– Traffic Class (TC)

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

668



– Flow Label (FL)
– Next Header (NH)
– Hop Limit (HL)
– Hop-by-Hop (HBH)
– Routing Header (RH)
– Destination Option (DO)
– Fragment Header (FH)

• Input File (-i): The file to be transmitted covertly.

• Encryption (-a): Data can be encrypted using
AES-CBC or DES-CBC, with an optional user-
provided encryption key.

• Protocol (-p): Users may select one of the fol-
lowing protocols for packet construction: IPv6,
ICMPv6, UDP, or TCP. For ICMPv6, an Echo
Request packet (used for ping) is employed. For
TCP, a TCP SYN packet is used, which is ideal for
carrying the user’s message to the target. In every
case, the hidden data remains unaffected since the
chosen protocol merely serves as a carrier, ensur-
ing that the packets appear as legitimate, normal
traffic.

• Key (-k): The key to encrypt the file using the de-
fined algorithm (automatically generated if skip-
ping).

4 COMPARISON OF CovertGen6
WITH EXISTING IPv6 COVERT
CHANNEL TOOLS

To evaluate the advantages of CovertGen6, we com-
pare it with existing tools, including pcapStego 2,
THC-IPv6 3, IPv6CC 4, and IPv6teal 5. Table 1
highlights key differences in supported covert chan-
nel types, encryption capabilities, and protocol com-
patibility.

Table 1: Comparison of IPv6 Covert Channel Tools.
pcapStego THC-IPv6 IPv6CC IPv6teal CovertGen6

IPv6 Covert channel types 3 1 3 1 5
Encryption allowed ✗ ✓ ✗ ✗ ✓
Encryption algorithms ✗ Blowfish ✗ ✗ AES-CBC, DES-CBC
ICMPv6 protocol applied ✓ ✓ ✗ ✓ ✓
UDP protocol applied ✗ ✗ ✗ ✗ ✓
TCP protocol applied ✗ ✗ ✗ ✗ ✓

CovertGen6 outperforms existing IPv6 covert
channel tools in multiple aspects. Unlike pcapStego,
IPv6CC, and IPv6teal, which support only a limited
number of covert channel types, CovertGen6 extends

2https://github.com/Ocram95/pcap injector.git
3https://github.com/vanhauser-thc/thc-ipv6.git
4https://github.com/Ocram95/IPv6CC SoftwareX.git
5https://github.com/christophetd/IPv6teal.git

its capability to five different covert channel types
(Traffic Class, Flow Label, Hop Limit, Next Header
and Extension Headers), providing greater flexibility
in data transmission. Furthermore, while some tools
such as THC-IPv6 allow encryption, they are lim-
ited to a single algorithm (Blowfish). CovertGen6 en-
hances security by offering AES-CBC and DES-CBC
encryption options, significantly increasing resistance
against IDS and firewalls. Additionally, CovertGen6
is the only tool that supports covert data transmission
over UDP and TCP, whereas other tools primarily rely
on ICMPv6. This extended protocol support allows
CovertGen6 to operate in more diverse network envi-
ronments, making it a superior choice for covert com-
munication research and practical applications. By in-
tegrating these advanced features, CovertGen6 sets a
new benchmark for IPv6 covert channel tools.

5 METHODOLOGY

This section details the proposed framework for de-
signing, generating, and detecting IPv6 covert chan-
nels, and is organized into five main phases: Traf-
fic Collection and Packet Generation (5.1), Dataset
Creation: PCAP to CSV Conversion (5.2), Data Pre-
processing (5.3), Machine Learning–Based Detec-
tion and Evaluation (5.4) and Explainable AI–Based
Model Validation (5.5), as described in Figure 2.

The proposed methodology provides a structured
approach to detecting IPv6 covert channels using ma-
chine learning. It begins with traffic collection and
packet generation, where covert IPv6 (attack) traffic
is sent using our designed tool called CovertGen6 and
captured by sniffing tools (Wireshark, in this case).
The collected PCAP files are then processed by ex-
tracting essential fields, converting them into CSV
format with modified features. In the data prepro-
cessing phase, irrelevant features are removed, miss-
ing values handled, categorical data encoded, and
the dataset is split into training and testing sets with
proper normalization. Machine learning models from
four main categories, including Gradient Boosting,
Neural Network, Ensemble Learning and Probabilis-
tic Classifier are then trained and evaluated based on
accuracy, precision, recall, F1-score, and AuC met-
rics. Finally, XAI using SHAP is applied to interpret
model decisions, highlighting the most influential fea-
tures in covert channel detection. This methodology
ensures an effective, data-driven approach for identi-
fying hidden communications within IPv6 networks,
enhancing security through AI-driven detection and
explainability.

Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation

669



CovertGen6

Normal Traffic

Covert sender

Design and send IPv6 covert channels

Supported header fields:
- Traffic Class, Flow Label, Next Header,
Hop Limit, Extension Header (Hop-by-Hop,
Routing, Destination Option, Fragment
Header)
Protocols: IPv6, ICMPv6, TCP, UDP
Encryption options: AES-CBC, DES-CBC
File insertion for payload & response
verification

pcap files

Sniffing and storing packets

Tabular csv files

Converting

Dataset

Dataset

- Binary classification: Benign Traffic, Attack.
- Multilabel classification: Benign Traffic, Traffic
Class, Flow Label, Next Header, Hop Limit,
Extension Header.

Preprocessing

Data cleaning

Data splitting:
- Training set
- Testing set

Normalization

Classification with ML models

Models
- CatBoost
- TabNet
- Random Forest
- Naïve Bayes

Prediction:
- Binary classification
- Multilabel classification

Metrics:
- AuC
- Accuracy
- Precision
- Recall
- F1-score
- Training time

Network scenario

Explanable AI with SHAP analysis

Most efficient model

Conclusion

Figure 2: Framework of proposed methodology for IPv6 Covert Channel design, detection and evaluation.

5.1 Traffic Collection and Packet
Generation

In the depicted scenario (Figure 3), CovertGen6 oper-
ates on the covert sender’s side, transmitting various
types of covert channel packets to the covert receiver.
To ensure a realistic dataset, benign traffic is collected
by allowing normal network communication between
the sender and other hosts. This background traffic is
captured concurrently with the covert channel attacks,
ensuring a comprehensive dataset containing both le-
gitimate and malicious activities.

Covert receiver

Covert Channel Attack

Covert sender

Benign Traffic

Figure 3: Network Scenario Utilizing CovertGen6 for At-
tack Traffic Extraction and Benign Traffic Monitoring.

All network traffic, including both benign and
covert channel attack packets, is captured and stored
using Wireshark in the form of PCAP files. These
files serve as the dataset for evaluating classifica-
tion approaches. We analyze the packet distribution
in two scenarios: multi-label classification, where
each covert channel type is treated as a distinct class,
and binary classification, where all attack types are
grouped into a single category.

5.2 Dataset Creation: PCAP to CSV
Conversion

Our dataset is created by capturing network traffic
with Wireshark into PCAP files, which include both
benign and covert channel attack packets. We con-
vert these PCAP files to CSV format, where each row
corresponds to a packet with features extracted from
its headers. These features are essential for machine
learning models to identify IPv6 covert channels.

Several existing approaches have attempted to ex-
tract features from PCAP files for similar purposes,
but they have notable drawbacks. Wang et al. (Wang
et al., 2022) focused on standard IPv6 header fields
such as Flow Label, Traffic Class, and Hop Limit,
but their method does not adequately handle pack-
ets with extension headers, treating them the same
as those without. This is problematic for detecting
covert channels that exploit extension headers. An-
other method by Zhao et al. (Zhao and Wang, 2020)
constructs a two-dimensional matrix from IP, TCP,
and UDP headers, but when multiple extension head-
ers are present, it leads to excessive zero-padding, re-
sulting in sparse matrices that can degrade model per-
formance.

In contrast, our approach extracts a wide range
of features from both the main IPv6 header and its
extension headers. Key features include Version,
Traffic Class, Flow Label, Next Header, Hop Limit,
Source and Destination Addresses, as well as spe-
cific fields from extension headers like Destination
Options, Hop-By-Hop Options, Routing Header, and
Fragment Header. Additionally, we extract transport
layer information such as source and destination ports
for UDP and TCP, and payload-related fields. For
each packet, if a particular feature is present, its value

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

670



is recorded; otherwise, it is set to zero. This compre-
hensive feature set allows us to capture the nuances of
IPv6 covert channel attacks effectively.

The extracted features are organized into a CSV
where each row represents a packet. Figure 4 shows
the sample distribution for multi-label classification
of different attack types. For binary classification, all
attacks are labeled as Attack.

Figure 4: Samples distribution for the case of multi-label
classification.

5.3 Data Preprocessing

In this phase, we refine our dataset to enhance the
performance and generalization of our machine learn-
ing models. First, we clean the dataset by eliminating
rows containing non-numerical values. This ensures
that our data is both consistent and representative of
unique network flows. After cleaning, the dataset is
split into training and testing subsets using a widely
accepted 70/30 ratio, providing a balanced approach
for model training and validation.

Normalization is then applied to the numerical
features to ensure uniformity in scale. We use
two common normalization techniques: the Stan-
dard Scaler and the Min-Max Scaler. The Standard
Scaler transforms each feature to have a zero mean
and unit variance, which is particularly useful when
the data follows a Gaussian distribution. In contrast,
the Min-Max Scaler rescales features to a specified
range (typically [0, 1]), preserving the relationships
among the original data values while compressing the
scale. These normalization methods help prevent fea-
tures with larger numerical ranges from dominating
the model training process.

Following these steps, the dataset is fully prepared
and ready for input into our machine learning models.

5.4 Machine Learning–Based Detection
and Evaluation

In our approach, we leverage four distinct categories
of machine learning models to detect IPv6 covert
channels, each bringing unique strengths and limi-

tations to the task. The models under consideration
include Gradient Boosting (CatBoost), Neural Net-
works (TabNet), Ensemble Learning (Random For-
est), and a Probabilistic Classifier (Naive Bayes).

For binary classification, we evaluate model per-
formance using the Area Under the Receiver Operat-
ing Characteristic Curve (AuC), a robust metric that
provides an aggregate measure of performance across
all classification thresholds by effectively capturing
the trade-off between true positive and false positive
rates. In contrast, for multi-label classification, we
employ accuracy, F1-score, recall, and precision to
obtain detailed insights into the performance on indi-
vidual classes. Additionally, training time is recorded
as a metric in both cases, allowing for a comprehen-
sive comparison of each model’s efficiency and over-
all suitability.

5.4.1 Binary Classification

After training and testing using different models, the
ROC curves for each model are shown in Figure 5.
The AuC values indicate the effectiveness of each
classifier in distinguishing between classes:

• Random Forest: AuC = 0.985

• CatBoost: AuC = 0.976

• TabNet: AuC = 0.959

• Naive Bayes: AuC = 0.818

Figure 5: ROC Curve Comparison for Binary Classifica-
tion.

From these results, it is evident that Random For-
est and CatBoost outperform the other models in clas-
sification performance, with AuC values very close to
1. TabNet follows with slightly lower accuracy, while
Naive Bayes shows the weakest performance due to
its assumption of feature independence.

Besides classification performance, training time
is a crucial metric, particularly for real-time detection
scenarios. The recorded training times for each model
are as follows:

Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation

671



• CatBoost: 1.042 seconds

• TabNet: 76.241 seconds

• Random Forest: 5.371 seconds

• Naive Bayes: 0.824 seconds

The results indicate that CatBoost provides a near-
optimal balance between high classification perfor-
mance and fast training time, making it a strong can-
didate for practical deployment. Random Forest also
performs well but requires slightly longer training
time. TabNet, because of its deep learning architec-
ture, shows a significantly higher computational cost
(76.241 seconds), which may not be suitable for time-
sensitive applications. Naive Bayes, while the fastest,
demonstrates the weakest classification performance.

5.4.2 Multi-Label Classification

Table 2 summarizes the performance of the eval-
uated models on the multi-label classification task.
The metrics include Accuracy, Precision, Recall, F1-
score, and Training Time (seconds).

Table 2: Multi-label Classification Results.
Metric CatBoost TabNet Random Forest Naive Bayes
Accuracy 0.812 0.782 0.902 0.420
Precision 0.815 0.780 0.910 0.675
Recall 0.805 0.784 0.896 0.400
F1-score 0.810 0.782 0.903 0.520
Training Time (s) 1.195 110.234 5.845 0.034

The Random Forest classifier achieves the highest
overall performance, with an accuracy, precision, re-
call, and F1-score of approximately 0.903, which sub-
stantially exceeds the results of the other models. Al-
though Naive Bayes offers an extremely short training
time, its low accuracy and F1-score make it unsuit-
able for practical deployment. CatBoost demonstrates
competitive performance, yet its results remain infe-
rior to those of Random Forest, and TabNet, despite
its deep learning approach, suffers from significantly
higher training time and lower performance metrics.

Consequently, after comparing both binary and
multi-label classification results, Random Forest
emerges as the most efficient model for the detection
of IPv6 covert channels.

5.5 Explainable AI–Based Model
Validation

The Random Forest algorithm demonstrated superior
performance in both binary and multi-label classifica-
tion tasks for detecting IPv6 covert channel attacks,
achieving high accuracy and robustness. To validate
its reliability and interpretability, SHAP analysis is
employed both binary and multi-label classification.

This approach deciphers the model’s decision logic
by quantifying feature contributions, ensuring trans-
parency in a domain where explainability is critical
for trust and actionable insights.

As can be seen in Figure 6, the Random Forest
model for binary classification identifies Hop Limit
(relative importance: almost 0.4) as the top feature
aligns with its exploitation patterns in IPv6 covert
channels. In benign traffic, the Hop Limit field fol-
lows predictable decrement patterns as packets tra-
verse routers. However, frequent or anomalous varia-
tions in this field within a single communication ses-
sion are statistically rare in legitimate traffic. Covert
channel attacks often manipulate this field to encode
data or evade detection (e.g., maintaining static values
or cycling through specific ranges), creating a distinct
fingerprint.

Next Header ranks second, despite its prevalence
across packet types. While this field naturally varies
in legitimate traffic (e.g., indicating TCP, UDP, or ex-
tension headers), its importance in detection arises
from attackers’ use of non-standard or sequential
header types (e.g., chaining Fragment, Destination
Options, or Routing headers) to embed covert pay-
loads. However, its lower discriminative power com-
pared to Hop Limit reflects its inherent variability in
both benign and malicious traffic, reducing its unique-
ness as an attack marker.

Flow Label and Traffic Class show moderate im-
portance. While these fields are occasionally re-
purposed in attacks (e.g., Flow Label manipulation
to mimic legitimate flows), their standardized use
in QoS prioritization limits their anomaly potential.
Lower-ranked features like Destination Option NH
and ICMPv6 Data are less impactful, as their exploita-
tion requires specialized attack logic (e.g., abusing
ICMPv6 for tunneling).

Figure 6: Feature Importance for Binary Classification.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

672



For the multi-label classification (depicted in Fig-
ure 7), Next Header emerges as the top feature (almost
0.3) in multi-label classification, as different attack
subtypes (e.g., Traffic Class vs. Extension Header
attacks) require distinct protocol configurations. For
example:

• Extension Header-based attacks (e.g., Destination
Options abuse) directly alter Next Header values
to chain non-standard headers.

• Traffic Class attacks manipulate QoS bits but
retain standard Next Header values (e.g., UD-
P/TCP).

This necessitates Next Header as a primary dis-
criminator. Hop Limit retains importance but to a
lesser degree than in binary classification, as its ma-
nipulation is common across multiple attack subtypes,
reducing its specificity. Flow Label and Destination
Options for IPv6 gain relative importance for distin-
guishing attacks that modify flow-state metadata or
embed payloads in extension headers.

Figure 7: Feature Importance for multi-label Classification.

Next, the SHAP summary plot reveals critical
insights into the Random Forest model’s decision
logic for binary classification (through Figure 8).
The model demonstrates strong logical fidelity to
IPv6 covert channel mechanics. Its reliance on Next
Header and Hop Limit, which are most frequently
manipulated in this dataset, reflects domain-aware
feature prioritization. The suppression of Version
(SHAP: ±0.02) and Option Payload (SHAP: ±0.03)
aligns with their irrelevance to header-based attacks.
However, the muted impact of Fragment Header sug-
gests potential blind spots in detecting fragmentation-
based covert channels, warranting dataset augmenta-
tion. Overall, for the case of binary classification, this
SHAP analysis validates the model’s efficacy in de-
tecting header manipulation patterns while exposing
limitations in payload-based attack detection. Feature

Figure 8: SHAP Summary Plot of Attack class for Binary
Classification.

Figure 9: SHAP Summary Plot of Traffic Class for multi-
label Classification.

importance hierarchy directly mirrors IPv6 protocol
abuse trends, confirming the model’s operational rel-
evance.

In multi-label classification, the SHAP analysis
reveals assessment below:

• When detecting a Traffic Class attack (refer to
Figure 9), the Traffic Class feature exhibits the
highest impact, with a SHAP magnitude exceed-
ing 0.6, reinforcing its role as the primary de-
terminant of the model’s output. Other features,
such as Hop Limit and Flow Label, rank second
in terms of contribution to detection. However,
their influence is more balanced and moderate, as

Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation

673



Figure 10: SHAP Summary Plot of Flow Label for multi-
label Classification.

Figure 11: SHAP Summary Plot of Hop Limit for multi-
label Classification.

their positive and negative SHAP magnitudes are
approximately equal.

• When detecting Flow Label attack (through Fig-
ure 10), Flow Label dominates (SHAP magni-
tude: 0.6), with secondary contributions from Hop
Limit (0.3) and Next Header (0.2). This aligns
with Flow Label manipulation tactics that pair al-
tered flow identifiers with header modifications to
mimic legitimate traffic. The model effectively
isolates Flow Label-specific anomalies but shows
minor overreliance on Traffic Class (0.2), a less
specific feature.

Figure 12: SHAP Summary Plot of Next Header for multi-
label Classification.

Figure 13: SHAP Summary Plot of Extension Headers for
multi-label Classification.

• When detecting Hop Limit attack (through Fig-
ure 11), Hop Limit exhibits the highest impact
(SHAP magnitude: 0.6), consistent with its role
as a session-level fingerprint. Supporting fea-
tures like Next Header and Flow Label indi-
cate the model contextualizes HL anomalies with
protocol-chain deviations. The narrow SHAP
spread for Hop Limit (0.4–0.6) confirms robust
discrimination of Hop Limit manipulation from
benign traffic.

• When detecting Next Header attack (through
Figure 12), Next Header drives predictions
(SHAP magnitude: over 0.5), particularly for
non-standard values. Secondary features like

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

674



Hop Limit (0.35) and Destination Option Neaxt
Header for IPv6 (0.2) reflect attacks combin-
ing header-chain manipulation with session-level
anomalies. The model excels at detecting Next
Header-based evasion but shows reduced sensitiv-
ity to Routing Header (SHAP: 0.05), a legacy at-
tack vector.

• When detecting Extension Header attack (through
Figure 13), the model prioritizes Destination Op-
tions for IPv6, Destination Option Length, and
Destination Option Next Header (SHAP magni-
tude: 0.25 to over 0.3) for Extension Header de-
tection. These features directly reflect payload
embedding in extension headers, such as padding
fields or option overloading. The strong correla-
tion confirms the model’s precision in detecting
header-structure anomalies, though limited im-
pact from Fragment Header (SHAP: 0.05) sug-
gests gaps in fragmentation-based attack detec-
tion.

The SHAP analysis validates the model’s effec-
tiveness in detecting IPv6 covert channel attacks
across both binary and multi-label classification tasks.
The binary classifier reliably distinguishes mali-
cious traffic by prioritizing protocol-layer anoma-
lies in header fields rarely altered in benign traffic.
For multi-label classification, the model adapts to
subtype-specific patterns, leveraging distinct feature
hierarchies to differentiate attack vectors. Minor over-
laps in feature influence for edge cases suggest tar-
geted refinements, but the model demonstrates robust
alignment with IPv6 attack mechanics, confirming its
practical utility for real-world deployment.

6 CONCLUSION AND FUTURE
WORK

This paper introduced a dual approach for detecting
IPv6 covert channels, combining CovertGen6, a novel
attack dataset generator, with machine learning-based
detection. CovertGen6 enhances dataset realism by
generating five covert channel types, which are cap-
tured and processed for model training. The proposed
detection system, leveraging multiple machine learn-
ing models, achieved high classification performance,
with the Random Forest classifier obtaining an AuC
of 0.985 in binary classification and an F1-score of
90.3% in multi-label classification. Furthermore, XAI
method provided transparent insights into model deci-
sions, identifying critical IPv6 header fields exploited
in covert communications.

Future work will focus on expanding the scope of
IPv6 covert channels by exploring additional exten-
sion headers, IPv6 flags, and other unexplored fields
for covert transmissions. Additionally, we aim to
refine feature selection methodologies to align with
newly discovered covert channel types, ensuring a
more adaptive and precise detection framework.

ACKNOWLEDGEMENTS

This work is supported by Ministry of the Interior of
the Czech Republic under Grant VK01030019.

REFERENCES

Dua, A., Jindal, V., and Bedi, P. (2022). Dicch-d: Detect-
ing ipv6-based covert channels using dnn. Commu-
nications in Computer and Information Science, 1670
CCIS:42 – 53.

Mavani, M. and Ragha, L. (2014). Covert channel in
ipv6 destination option extension header. In 2014
International Conference on Circuits, Systems, Com-
munication and Information Technology Applications
(CSCITA), pages 219–224.

Mazurczyk, W., Powójski, K., and Caviglione, L. (2019).
Ipv6 covert channels in the wild.

Shiranzaei, A. and Khan, R. Z. (2018). Ipv6 security is-
sues—a systematic review. Advances in Intelligent
Systems and Computing, 638:41 – 49.

Wang, J., Zhang, L., Li, Z., Guo, Y., Cheng, L., and Du, W.
(2022). Cc-guard: An ipv6 covert channel detection
method based on field matching. page 1416 – 1421.

Zhao, D. and Wang, K. (2020). Bns-cnn: A blind network
steganalysis model based on convolutional neural net-
work in ipv6 network. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics),
12022 LNCS:365 – 373.

Zuppelli, M. and Caviglione, L. (2021). Pcapstego: A tool
for generating traffic traces for experimenting with
network covert channels.

Evasive IPv6 Covert Channels: Design, Machine Learning Detection, and Explainable AI Evaluation

675


