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Abstract: Security knowledge databases represent key information in the process of vulnerability assessment and test
automation of industrial products. The CVE and CAPEC databases respectively describe vulnerabilities and
attack patterns. Linking a CVE entry to CAPEC can facilitate the generation of test plans, in the context
of product test automation. Unfortunately, the great majority of CVE have no direct references to CAPEC.
Several research works have focused on matching automatically CVE and CAPEC by computing text sim-
ilarity on their descriptions, evaluating various models, in particular the term frequency inverse document
frequency (TF-IDF) technique and transformer-based models such as SBERT. Depending on CVE description
characteristics and evaluation criteria, these models are likely to perform differently by capturing different
information types: vocabulary, preprocessing methods, context around words, etc. Hence, we propose a new
classifier-based approach to select the most adapted similarity computation model from a given selection to
match a CVE description with linked CAPEC descriptions. We evaluate this method on a recent set of CVE
with CAPEC labels and show an improvement of matching accuracy compared to state-of-the-art methods
leveraging a single model to compute text similarity. Our results also highlight the bias in the training and test
set of CVE-CAPEC pairs.

1 INTRODUCTION

The common vulnerability exposure
(CVE) (MITRE.org, 2024), and common at-
tack pattern enumeration and classification
(CAPEC) (MITRE.org, 2023) databases are in-
terconnected resources (Valence, 2023) that provide
comprehensive insights into vulnerabilities, their
causes, and potential exploitation methods. To help
in reproducing vulnerabilities, the CAPEC database
references common attack patterns and provides
detailed insights on potential exploits. Every CAPEC
has an “Execution Flow” section, which describes
how to Explore, Experiment, and Exploit a vulnera-
bility. Linking CVE to CAPEC is not systematically
done and is essential to automate the identification
and management of vulnerabilities, i.e. with the
objective for an organization to enhance its ability to
prioritize and mitigate threats effectively. However,
these security databases contain many entries (i.e.
more than 270,000 CVE (NIST, 2025) and more
than 500 CAPEC (MITRE.org, 2023)). Thus, the
manual mapping between CVE and CAPEC can
be time-consuming and error prone for product

developers and testers.
Recent research has demonstrated the ability of

Large Language Models (LLM) to solve Natural Lan-
guage processing (NLP) tasks by learning complex,
hierarchical representations of language data (Naveed
et al., 2023). For example, LLM have been deployed
in common vulnerability scoring system (CVSS) to
assist CVE scoring during CVE registration (Shahid
and Debar, 2021). More specifically, many research
works (Kanakogi et al., 2021b; Kuppa et al., 2021;
Das et al., 2022; ?; Bonomi et al., 2025) pro-
pose text similarity computation methods based on
transformer-based models like SBERT (sbert.net, ) to
identify correlations between CVE and CAPEC de-
scriptions.

Since the mapping of CVE to CAPEC is not
straightforward for the majority of CVE, as explored
by Kanakogi et al. (Kanakogi et al., 2021a) and dis-
cussed in ICAR (Valence, 2023); it is difficult to eval-
uate the ability of a method to accurately identify
matching CVE and CAPEC. Thus, the evaluation cor-
pus must be comprehensive and diverse enough to ad-
equately reflect real-world scenarios where the frame-
work will operate.
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Consequently, matching vulnerabilities to attack
patterns implies the following challenges:

• Building a large and relevant corpus of labelled
CVE and CAPEC, considering a good coverage
of CAPEC and CVE is difficult. The manual cre-
ation of a corpus is time consuming and error-
prone.

• State-of-the-art models to match CVE and
CAPEC descriptions do not perform uniformly
well across different CVE and CAPEC pairs to
match. The relevance and applicability of a model
potentially varies depending on the CVE charac-
teristics. Thus, adapting the model to CVE repre-
sents a promising approach to improve CVE and
CAPEC descriptions matching accuracy.

Our contributions consist of the followings:

• A novel multi-model framework, which com-
bines several Large Language Models (LLM) and
Term Frequency-Inverse Document Frequency
(TF-IDF) models to compute similarity between
CAPEC and CVE descriptions. We show how
our multi-model based method is able to im-
prove CAPEC and CVE matching compared to
approaches using a single model. To the best
of our knowledge, this is the first work to pro-
pose a framework combining several models
to adapt CVE-CAPEC matching according to
CVE description characteristics.

• The exploitation of a large evaluation corpus of
CVE and CAPEC, composed of 6,167 pairs of
CVE-CAPEC. We build it automatically with re-
cent CVE from 2021 to 2024, which have CAPEC
labels through the capecId reference.

The remainder of this paper is structured as fol-
lows: Section 2 provides an overview of related work,
while Section 3 introduces our multi-model method
for CVE and CAPEC matching. In Section 4 we eval-
uate the performance of the proposed framework on a
newly introduced large corpus of recent CVE. Finally,
Section 5 concludes this work.

2 RELATED WORK

Table 1 summarizes literature research in the field of
security databases mapping. We compare the differ-
ent works with the following criteria:

• the approach to match text descriptions;

• the type of databases they apply to;

• the corpus size used for the evaluation.

Kanakogi et al. (Kanakogi et al., 2021a; Kanakogi
et al., 2021b; Kanakogi et al., 2022) compare several
LLM and TF-IDF models to match CVE and CAPEC
by computing similarity of text descriptions. They
suggest to use ensemble learning in future work to en-
hance matching accuracy (Kanakogi et al., 2021b), by
adapting the matching model to CVE characteristics.
Our multi-model method leverages the same simi-
larity computation models they describe (Kanakogi
et al., 2021a). But to the best of our knowledge, this
is the first work to introduce and evaluate a CVE-
adaptive approach for matching CVE and CAPEC
descriptions. The authors define a corpus of 58 pairs
of CVE and CAPEC based on the information con-
tained under the CAPEC description of Examples In-
stances section. The corpus is rather small and data
coverage is low compared to the corpus we introduce:

• 55 CVE: this represents less than 1% of the
275,000 CVE registered between 1999 and 2024.

• 40 CAPEC: this represents 7% of the 556 CAPEC
available at the time of writing (2025).
Pan et al. (Pan et al., 2023) propose a new ap-

proach called Weighted-SBERT (WSBERT), which
is also based on text similarity calculation to match
CVE to CAPEC. Using a pretrained BERT-BiLSTM-
CRF NER model, they assign more weight to specific
words in order to focus on critical information. They
use a corpus of 63 pairs of CVE and CAPEC, compar-
ing their method to TF-IDF and usual SBERT models.
Their framework demonstrates a stronger generaliza-
tion and an ability to catch representative keywords
with maximum semantic contribution, especially for
long descriptions.

Das et al. introduce two frameworks for match-
ing CVE to CAPEC. Firstly, they present V2W-
BERT (Das et al., 2021), a transformer-based model
designed specifically for mapping CVE to CWE. This
model leverages the bidirectional encoding capabil-
ity of BERT. Secondly, Das et al. propose VWC-
MAP (Das et al., 2022) for mapping CWE to CAPEC
leveraging text descriptions. For CWE to CAPEC
mapping, they use a Text-to-Text model (Google
T5 (Raffel et al., 2023)) for learning the relationships;
i.e. given a CWE description as input, the model gen-
erates a text description, and finds the closest match
within CAPECs. Both works propose a complete
framework for linking CVE to CAPEC via CWE.

Bonomi et al. (Bonomi et al., 2025) enrich the
input data of their matching framework compared
to (Kanakogi et al., 2021b), by taking more CAPEC
information into consideration: CAPEC name, de-
scription, attack execution flow, mitigations, prereq-
uisites, and resources. They also enlarge the initial
corpus of Kanakogi et al. with:
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Table 1: Comparison of works in the field of security databases mapping.

Work Approach Mapping Corpus size
(Kanakogi et al., 2021a) TF-IDF / SBERT CVE → CAPEC 58
(Kuppa et al., 2021) MLTC CVE → MITRE ATT&CK 200
(Shahid and Debar, 2021) BERT CVE → CVSS 45,926
(Das et al., 2022) V2W-BERT / Google T5 CVE → CWE →CAPEC 170,000
(Pan et al., 2023) Weighted-SBERT / SBERT / TF-IDF CVE → CAPEC 63
(Bonomi et al., 2025) ATTACKBERT Hyb & SBERT Hyb CVE → CAPEC 223

This work Multi-model combination CVE → CAPEC 6,167(TF-IDF and SBERT)

• 60 representative pairs of CVE and CAPEC, using
7 CVE selected per year from 1999 to 2024;

• 223 CVE and CAPEC pairs, including 160 CVE
and 118 CAPEC.

They use a hybrid approach using both SBERT and
ATTACKBERT including keywords search, addition-
ally to the similarity comparison, called SBERT Hyb
and ATTACKBERT Hyb. They compare their re-
sults to the methodology adopted by Kanakogi et
al. (Kanakogi et al., 2022): this approach improves
the recall of the traditional SBERT models by being
able to catch basic semantic similarity. It is particu-
larly efficient to capture words context, compared to
the approach by Kanakogi et al. They also propose
to use keywords for filtering, as well as other CAPEC
information.

Kuppa et al. (Kuppa et al., 2021) propose a Multi-
Label Text Classification (MLTC) method for map-
ping CVE to ATT&CK (MITRE.org, 2023) tech-
niques, using textual descriptions. Their framework
is based on a multi-head joint embedding neural net-
work architecture. Due to the lack of link between
these 2 security databases, as demonstrated in (Va-
lence, 2023), they propose a new unsupervised label-
ing technique, using the spaCy (spaCy, 2025) python
library to extract context words around a CVE and
ATT&CK descriptions. They create a labelled knowl-
edge base of 200 CVE found in threat reports: it is
composed of 150 attack scenarios exploiting vulner-
abilities and 50 mitigation strategies to enrich CVE
descriptions, covering 17 techniques. It helps learn-
ing attacker and defender views of a given CVE.

Shahid et Debar (Shahid and Debar, 2021) lever-
age recent advances in NLP to determine the CVSS
vector and the associated severity score of a vulnera-
bility. They trained BERT classifiers on 45,000 CVE
and split train and test data to a 50% ratio. They prove
that NLP applied to security databases could help de-
velopers and cybersecurity experts in better under-
standing CVE criticality.

Figure 1: CVE-CAPEC matching framework architecture.

3 MULTI-MODEL CVE-CAPEC
MATCHING FRAMEWORK

This section describes the multi-model framework for
matching CVE and CAPEC descriptions. Section 3.1
provides an overview of the framework architecture,
while Section 3.2 and Section 3.3 respectively fo-
cus on the matching model selection process and the
matching engine, which are the main parts of the sys-
tem.

3.1 Framework Architecture

The goal of the framework is to improve the state-
of-the-art accuracy to match CAPEC to CVE. The
matching process is described on Figure 1. We fol-
low an approach similar to the one of Kanakogi et
al. (Kanakogi et al., 2021a); the basic idea is to ap-
ply text similarity computation models to match CVE
and CAPEC text descriptions.

While previous works focus on evaluating various
similarity computation models such as TF-IDF and
LLM, we propose a multi-model approach to combine
several state-of-the-art similarity computation models
to match CVE with CAPEC.The intuitive motivation
for combining different models is to take advantage of
each model’s matching ability, since different models
seem to perform differently depending on the input
CVE description. Hence, we introduce a classifier
based model selector to select the model to be ap-
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Table 2: Preprocessing types.

Preprocessing type Description
No preprocessing Nothing is changed in the

original description.
Basic preprocessing Filtering of stop words

(“the”, “of”, etc.) and
punctuation.

Basic preprocessing
and Lemmatize

Converts word into base
form which considers the
context.

Basic preprocessing
and Stemming

Single words are replaced
by root words. This is
the preprocessing option
which induces the smallest
vocabulary.

plied for a given CVE description to identify linked
CAPEC leveraging inherent CVE characteristics: this
is the main contribution of this work.

The selected model is a parameter provided as in-
put, together with the corresponding CVE descrip-
tion and all CAPEC descriptions of the corpus to the
matching engine. The matching engine computes text
similarity between the CVE and each CAPEC de-
scriptions. It returns the list of CAPEC of the input
corpus, which are ranked by decreasing correlation.
The framework returns the N best CAPEC descrip-
tions (i.e. with lowest rank), with N ∈ N∗ a fixed pa-
rameter set by the user, considering the trade-off be-
tween output size and matching accuracy. Logically,
the higher N (i.e. the more CAPEC in the output set),
the higher the matching accuracy.

3.2 CVE-CAPEC Matching Model
Selection from CVE Description

3.2.1 Preprocessing

We apply preprocessing on the input CVE descrip-
tion before it is manipulated by the model selector.
First, we manually remove from the text description
words which we consider useless in our context: e.g.
“attack”, “adversary”, “moreover”, etc. Second, we
lemmatize the description (Table 2); i.e. words are
replaced by their base form.

We use non-normalized embeddings to represent
preprocessed CVE descriptions; i.e. each description
corresponds to a vector of the vocabulary size, where
each feature corresponds to the count of word occur-
rences in the description. The vocabulary is defined
on the training set: words in the test set with no oc-
currence in the training set are ignored.

Figure 2: Classifier-based model selector training process.

3.2.2 Model Selector

The model selector takes a preprocessed CVE de-
scription as input. It returns the corresponding pre-
dicted label, which is the type of matching model to
select.

For the training process, we define the label as the
best model in the selection to match the input CVE
description with linked CAPEC descriptions. Labels
(i.e. the selected model for each CVE description) are
defined in the training corpus as follows:

• For each matching model in scope, we compute
the ranks of correct matching CAPEC for each
CVE-CAPEC pair in the corpus.

• We set the selected model as the model inducing
the lowest rank for the correct CAPEC among all
matching models in scope.

The model selector is a random-forest based clas-
sifier, which we train following the process illustrated
on Figure 2. Since the vocabulary is rather large, we
apply dimensions reduction to reduce the number of
features; we select features according to the k-nearest
neighbors. We define parameters empirically, for the
optimization method (chi2) and the number of neigh-
bors k to consider (Section 4.2).

3.3 CVE-CAPEC Matching Engine

The multi-model framework leverages 10 text similar-
ity computation models to match CVE with CAPEC.
Each one of these 10 models corresponds to a specific
label type of the modef selector. These 10 matching
models can be divided in two main categories:

• Large Language Models (LLM), applied on
text description without preprocessing. We
test the 6 following LLM pretrained sentence
transformers models, available from SBERT
website (sbert.net, ):

– all-mpnet-base-v2
– paraphrase-albert-small-v2
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– paraphrase-multilingual-mpnet-base-v2
– multi-qa-mpnet-base-dot-v1
– all-MiniLM-L12-v2
– all-distilroberta-v1

• Term Frequency–Inverse Document Fre-
quency (TF-IDF), was the method showing the
best recall in previous work (Kanakogi et al.,
2021a). We test 4 configurations applying
TF-IDF on text description after preprocessing
(Table 2):

– no preprocessing and TF-IDF;
– basic preprocessing and TF-IDF;
– basic preprocessing, lemmatize, and TF-IDF;
– basic preprocessing, stemming, and TF-IDF.

Figure 3: CVE count by year for evaluation corpuses.

4 EVALUATION OF THE
MULTI-MODEL MATCHING
FRAMEWORK

We describe the evaluation corpuses and metrics in
Section 4.1. Experimental results related to CVE and
CAPEC matching are in Section 4.2.

4.1 Experimental Setup

4.1.1 CAPEC and CVE Corpuses

We consider two corpuses of matching CAPEC and
CVE for the evaluation:

• Kanakogi et al. Database (Kanakogi et al.,
2021a) (CKan): this corpus consists of 58 pairs
of matching CAPEC and CVE (i.e. card(CKan) =
58), which were set by Kanakogi et al. from the

field “CVE examples” in the information of cer-
tain CAPEC. This corpus is not adapted to train
the classifiers defined in Section 3 because of its
small size. Thus, we use it as a test database for
comparison with the state of the art.

• all labelled CVE (CLab): A new field “CAPEC
ID” appears in CVE database from 2021 (accord-
ing to CVE published date). Since then, many
CVE have been labelled with CAPEC. We use this
corpus for training classifiers since it is much big-
ger than CKan, i.e. card(CLab) = 6,167. The goal
is to assess the relevance of our multi-model ap-
proach on a larger scale.

Note that the corpus CKan was built in 2021 and there
is no overlap between both corpuses. Figure 3 shows
the distribution of CVE by year for each case. Within
the database of CVE (which contains 241,589 CVE
at the time of writing), only 6,037 CVE have CAPEC
labels. In the set of CVE in the corpus CLab, we con-
sider CVE with links to CAPEC which are neither ob-
solete nor deprecated: this represents a total of less
than 2.6% of the CVE database. In both corpuses,
the relation between CAPEC and CVE is many-to-
many. Considering all CAPEC and CVE pairs, the
corpus CLab corresponds to 6,167 pairs. In CLab, we
note a maximum of 19 CAPEC linked to a single
CVE.

We split the corpus CLab into training CLab
train

and test CLab
test set with a ration 80%-20%, so that

card(CLab
train) = 4,934 and CLab

test = 1,233. We split
CVE randomly between two sets so that we do not in-
duce an additional bias in the training and test phases,
i.e. based on CVE publication year for example.

The vocabulary used to represent preprocessed de-
scriptions is defined over the training set CLab

train. For
the test set, unknown words in the descriptions are ig-
nored. Table 3 shows the relation between vocabulary
size and preprocessing method.

Table 3: Vocabulary size (on CLab
train)

Preprocessing type Words count
No preprocessing 11,426 (100%)

Basic preprocessing 11,299 (99%)
Basic preprocessing and

lemmatize
10,693 (94%)

Basic preprocessing and
stemming

9,464 (83%)

4.1.2 Evaluation Metrics

We use several metrics to test our multi-model ap-
proach. First, we consider the prediction accuracy to
evaluate the ability of the classifier-based model se-
lector to make correct predictions. For a given set of
label predictions and corresponding actual labels, the
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prediction accuracy is the number of predictions that
exactly match the corresponding actual labels. We
show the normalized ratio of prediction accuracy so
that:

prediction accuracy =
count of all correct predictions

count of all labels
(1)

Second, following the work of Kanakogi et
al. (Kanakogi et al., 2021a), we leverage recall@n
metric to evaluate the matching accuracy of the ap-
proach over a test corpus. Intuitively, recall@n rep-
resents the probability of having the correct matching
CAPEC in the final output set of n CAPEC returned
by the multi-model framework.

4.2 Experimental Results

4.2.1 Prediction Accuracy of the Model Selector

As described in Section 3.2.2, we apply k-nearest
neighbors-based features selection to reduce the num-
ber of features of the random-forest classifier from the
vocabulary size to k. Hence we test various k values
between 1 and 9,464, which is the vocabulary size
after preprocessing (Table 3); results are shown in Ta-
ble 4. In the remainder of the experiments, we set
k = 1,500, which corresponds to the best prediction
accuracy observed on the test corpuses CLab

test and CKan.
The prediction accuracy is very high on the train-

ing corpus (higher than 95% compared to the results
on test corpuses (< 65%), with a tendency to over-
fitting for high values of k. A random prediction ac-
curacy would be 10%, since the classifier defines 10
classes corresponding to the 10 matching models of

the framework. In that regard, prediction accuracy on
both test corpuses CLab

test and CKan is above this random
reference in most of the configurations for k ≥ 100.
However, the model selector is much more accurate
on the test corpus we introduced, CLab

test , than on the
state-of-the-art corpus CKan.

Table 4: Prediction accuracy for the classifier-based model
selector for various dimension reduction configurations (k
features).

k Prediction accuracy
CLab

train CLab
test CKan

20 0.62 0.61 0.07
50 0.82 0.61 0.07

100 0.90 0.61 0.14
500 0.96 0.63 0.19

1,000 0.96 0.64 0.12
1,500 0.97 0.64 0.22
2,000 0.97 0.64 0.19
2,500 0.97 0.64 0.12
3,000 0.97 0.64 0.17

4.2.2 Matching Accuracy of the Multi-Model
Approach

As described in Section 3.1, we propose a multi-
model based CVE-CAPEC matching approach, be-
cause different models perform differently depend-
ing on the pair of CVE and CAPEC to match. The
recall@n results for both CLab

test and CKan corpuses are
shown respectively on Figure 4 and on Figure 5. A
focus on the results for CLab

test is provided in Table 5.
Our results validate the initial intuition of improv-

ing matching by combining various matching models:
for both corpuses, the best case (ideal models combi-
nation, in red) shows a significantly higher recall@n
rate compared to every tested single model.

Figure 4: recall@n as a function of n for CLab
test .
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Table 5: recall@n for different models on CLab
test corpus.

n
recall@n

all-MiniLM-L12-v2 multi-model based Ideal models
method combination

1 0.37 0.44 0.52
2 0.45 0.51 0.58
3 0.48 0.54 0.62

10 0.59 0.63 0.72
20 0.65 0.71 0.79
50 0.76 0.85 0.92

100 0.86 0.91 0.96
200 0.94 0.95 0.99
300 0.97 0.97 1.00

Figure 5: recall@n as a function of n for CKan.

After training the multi-model matching system
on CLab

train, we show that it performs well on CLab
test (i.e.

recall@n is higher than for any of the single models),
but poorly on CKan: as seen on Figure 5, the model
based on stemming and TF-IDF (as described in Sec-
tion 3.3) performs comparatively better. As shown in
Table 4, the reason for the difference of performance
between both corpuses is caused by the poor predic-
tion accuracy of the model selector (22% of accuracy
for CKan, 64% for CLab

test ). The degradation of inference
for CKan means that there is a bias in the training cor-
pus (CLab

train) or in the test corpus (CKan), i.e. the CVE
in CKan are different from the CVE in CLab

train, which
are used to train the classifier of the model selector.

5 CONCLUSION AND FUTURE
WORK

We proposed a new classifier-based multi-model ap-
proach to select the most adapted similarity computa-
tion model from a given selection to match a CVE de-

scription with linked CAPEC descriptions. We evalu-
ated the multi-model method on a recent set of CVE
with CAPEC labels. We leveraged 10 models, from
various LLM models and TF-IDF computation using
several preprocessing approaches. We tested match-
ing accuracy for every single model and our multi-
model method. Our results show an improvement of
matching accuracy compared to state-of-the-art meth-
ods leveraging a single model to compute text similar-
ity: considering a number of 20 matching CAPEC,
the correct CAPEC is in the output set in 71% of
cases, 65% in the best case using one single model.
Our results also highlight the bias in the training and
test sets of CVE-CAPEC pairs: because of the poor
accuracy of the classifier to select the model accord-
ing to the CVE description, the matching accuracy de-
creases globally on a different state-of-the-art small
test corpus introduced by Kanakogi et al.

A first open problem to address in future work
is how to build a representative evaluation corpus
of matching CVE and CAPEC, so that the multi-
model framework is generic enough to be applied
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on any CVE description. Building a representative
corpus would require to understand biases in current
databases in use. Second, in our current multi-model
approach, we manually fix the number of best match-
ing CAPEC to be returned by the framework. We pro-
pose to investigate how to reduce and adapt this num-
ber, filtering irrelevant CAPEC descriptions using
meta information from CAPEC and CVE databases
(e.g. abstraction level, keywords, etc.). Third, it
would be interesting to study the practical integra-
tion of such CVE-CAPEC matching tool, which po-
tentially induces matching errors, in a fully automated
test generation process towards full test automation of
industrial products.
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