
Predictors of Freshmen Attrition: A Case Study of Bayesian Methods
and Probabilistic Programming

Eitel J. M. Laurı́a a

School of Computer Science and Mathematics, Marist University, Poughkeepsie, New York, U.S.A.

Keywords: Bayesian Methods, Probabilistic Programming, Freshmen Attrition, Higher Education Analytics.

Abstract: The study explores the use of Bayesian hierarchical linear models to make inferences on predictors of fresh-
men student attrition using student data from nine academic years and six schools at Marist University. We
formulate a hierarchical generalized (Bernoulli) linear model, and implement it in a probabilistic program-
ming platform using Markov chain Monte Carlo (MCMC) techniques. Model fitness, parameter convergence,
and the significance of regression estimates are assessed. We compared the Bayesian model to a frequentist
generalized linear mixed model (GLMM). We identified college academic performance, financial need, gen-
der, tutoring, and work-study program participation as significant factors affecting the log-odds of freshmen
attrition. Additionally, the study revealed fluctuations across time and schools. The variation in attrition rates
highlights the need for targeted retention initiatives, as some schools appear more vulnerable to higher at-
trition. The study provides valuable insights for stakeholders, administrators, and decision-makers, offering
applicable findings for other institutions and a detailed guideline on analyzing educational data using Bayesian
methods.

1 INTRODUCTION

In higher education, the issue of student dropout rates
has always remained a serious concern, and its effects
extend well beyond the academic domain. Poor re-
tention of students has negative effects on the pres-
tige and the financial stability of an educational in-
stitution. At a time when students and their families
often feel that a college education is too expensive
and has uncertain outcomes and return of investment,
schools must, more than ever, track how many and
why students leave their programs. Student attrition
rates are especially high during the freshman year,
which places the focus on addressing the transition
of traditional freshmen students during their first year
of college and into their sophomore year. Accord-
ing to the National Center for Educational Statistics
(NCES, 2022), for students who entered a 4-year in-
stitution in Fall 2019, the overall retention rate was
82%, with a wide spread between the more selective
and less selective institutions. At public 4-year in-
stitutions the retention rate was 82% overall, 96% at
the most selective institutions, and 59% at the least
selective institutions. Similarly, at private non-profit
institutions, the retention rate was 81% overall, with
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92% for the most selective institutions and 64% for
the least selective institutions. In private for-profit
institutions the overall retention rate was 63% At 2-
year degree granting institutions, the overall full-time
freshmen retention rate was 61%, with 61% for pub-
lic institutions, 68% for private nonprofit, and 67%
for private for-profit institutions. In comparison, 64%
of students who joined 4-year institution in fall 2014
completed the degree within 6 years, which shows
that a large large percentage of student attrition hap-
pens during or at the end of the freshman year, as
also reported in a number of studies (Deberard et al.,
2004; NSCRC, 2014). But despite all the research
in the academic and learning analytics domain, in-
cluding student performance and retention analysis
(Campbell, 2007; Laurı́a et al., 2020, for e.g.), and
the widespread availability of technology platforms
and software systems that can learn from data, very
little has been done using the machinery of Bayesian
methods and probabilistic programming. Bayesian
methods have emerged as a more intuitive and robust
alternative to frequentist inference methods, blend-
ing prior beliefs with data to compute probability
distributions of model parameters (Bertolini et al.,
2023). But these methods, techniques and software
tools have received considerable less attention by re-
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searchers and practitioners in the educational domain,
been mostly relegated to specific niches -Bayesian
knowledge tracing, used in many intelligent tutoring
systems (Yudelson et al., 2013; Dai et al., 2021), nat-
ural language processing and text mining (Chen et al.,
2022), and to a lesser extent, Bayesian networks (De-
len, 2010). A simple experiment reinforces these as-
sertions: a search on Google Scholar with keywords
student retention (or attrition), predictors, and ma-
chine learning / statistical analysis / data analysis
yields several thousand results. When we replace the
latter with a combination of keywords Bayesian and
MCMC / Markov chain Monte Carlo / variational in-
ference / NUTS (all common terms in a Bayesian in-
ference setting), the number of search results drops
way below one hundred.

This paper explores the use of Bayesian hierar-
chical linear regression models using data from mul-
tiple academic years to derive insights on freshmen
student retention. Hence, the paper makes the fol-
lowing contributions: 1) It frames freshmen retention
analysis through the lens of Bayesian inference. 2)
It describes the use of Bayesian hierarchical linear
models, demonstrating the use of hierarchical mod-
els to account for data organized in multiple layers or
levels; 3) It highlights the computational power and
simplicity of probabilistic programming tools, pro-
viding reproducible data-driven workflow practices in
this context. The paper is organized in the following
manner: we start with a section on Bayesian meth-
ods and probabilistic programming, introducing key
concepts and their application to modeling freshmen
attrition. Next, we describe the study, including re-
search questions, data, methods, technology platform,
and results. The paper ends with a summary of our
conclusions.

2 BAYESIAN METHODS AND
PROBABILISTIC
PROGRAMMING

2.1 Overview

Bayesian methods provide a framework to make in-
ferences from data using probability to quantify un-
certainty. Bayesian models are grounded in Bayes’
theorem, which describes the relationship between
the prior or initial beliefs on the probability distribu-
tions of the model parameters, the likelihood func-
tion, and the posterior distribution, the probability of
observing the data given the model parameters, also
known as the likelihood function, and the posterior

distribution of the model parameters, representing the
conditional distribution of the parameters represent-
ing the updated beliefs after observing the data. To
formulate Bayes theorem, let’s consider observable
data X , and a vector of unobservable parameters θ.
Bayes’ theorem is therefore expressed as:

P(θ|X) =
P(X |θ)P(θ)

P(X)
(1)

where P(θ) in Equation 1 is the prior distribution of
vector parameter θ; P(X | θ) is the likelihood of the
data X given θ; P(θ | X) is the posterior distribution
of θ after observing X ; and P(X) =

∫
P(X | θ) p(θ)dθ

is the marginal likelihood of X , which serves as a nor-
malization constant.

Why is the Bayesian framework important? Be-
cause it provides a common-sense, straightforward
interpretation of statistical conclusions. A Bayesian
high-density interval (HDI) for an unknown quantity
of interest provides a range of values where the quan-
tity of interest is most likely to be, given the observed
data and the priors, in contrast to a frequentist confi-
dence interval (CI), which may strictly be interpreted
only in relation to a sequence of repeated experiments
(Gelman et al., 2013). For example, a 95% HDI is
the region of values that contains 95% of the poste-
rior probability mass, whereas the 95% CI means that
approximately 95% of the intervals calculated from
the repeated experiments would contain the quantity
of interest. In frequentist statistics, a p-value sum-
marizes the probability over many trials of observing
the effect on the outcome, whereas Bayesian meth-
ods estimate the posterior probability of the effect
on the outcome after observing the data; the differ-
ence which seems subtle, has led to misinterpretations
that have spread throughout the scientific literature,
with students, practitioners and researchers mistaking
p-values as posterior probabilities (Greenland et al.,
2016). The p-value is also sensitive to the amount
of observations: a large sample size can give way to
small p-values that can in turn lead to erroneous asser-
tions about significant effects. Bayesian methods are
less affected by the size of the sample, as they pro-
vide a full probability distribution of the effect of the
model parameters on the outcome after observing the
data.

2.2 Approximate Bayesian
Computation and Probabilistic
Programming

Bayes rule, as depicted in Equation 1, hides the com-
plexity of computing the marginal likelihood of the
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data P(X) =
∫

P(X | θ) p(θ)dθ, which can be cir-
cumvented through the use of conjugate priors -one
where the product of the prior times the likelihood
yields a statistical distribution of the same form (in
the same family) as the prior distribution. The use
of conjugate priors can be advantageous but also re-
strictive, and not a well-grounded hypothesis in many
real-world situations. But when conjugate priors are
not valid, the marginal likelihood P(X) is an integral
that can be difficult or even impossible to compute,
especially over multiple dimensions. Bayesian in-
ference has to resort then to approximate numerical
techniques such as the Markov Chain Monte Carlo
(MCMC) family of algorithms, or variational infer-
ence. MCMC methods such as Metropolis-Hastings
(Hastings, 1970) and Gibbs sampling (Geman and
Geman, 1984), originally derived from statistical me-
chanics, produce samples approximating the sought
posterior distribution using a proposal distribution to
accept or reject those samples -in the case of Gibbs
sampling, the proposal distribution is the conditional
distribution of one parameter given the others, and
there is no rejection step. Hamiltonian Monte Carlo
or HMC (Duane et al., 1987), another popular vari-
ation of Metropolis-Hastings, simulates the Hamil-
tonian trajectory of a particle in a potential energy
field, formulating a proposal distribution that renders
more efficient sampling by avoiding random walk be-
havior and reducing the correlation between succes-
sive samples. The NUTS (No-U-Turn Sampler) al-
gorithm (Homan and Gelman, 2014), an extension of
HMC, uses a recursive algorithm that dynamically de-
termines the length of the simulated Hamiltonian tra-
jectory, avoiding backtracks and therefore leading to
better sampling. MCMC sampling methods are the
most common algorithms for Bayesian computation,
but other approaches have been developed as well.
Variational inference (Blei et al., 2017) is an alter-
native and generally more scalable method that ap-
proximates the posterior distribution of the parame-
ters of interest using a surrogate distribution instead
of resorting to sampling, and estimates the parameters
of the surrogate distribution using optimization algo-
rithms (e.g. variations of gradient descent) such that
the resulting distribution resembles as much as possi-
ble the posterior distribution. Variational inference is
usually faster than MCMC, but it can be less accurate
and it can converge to local minima, which further
restricts accuracy. Where do probabilistic program-
ming platforms come into play? They allow for flexi-
ble specification of probabilistic models, and provide
the tools to perform Bayesian inference, hiding the
intricate details of approximate Bayesian inference
computation (MCMC and variational inference) so

that researchers and practitioners can focus on model
design, development, and testing, leaving the proba-
bilistic programming platform to handle the compu-
tational details for them. A number of probabilistic
programming platforms have been developed over the
years, among them BUGS (Gilks et al., 1994), JAGS
(Plummer, 2003), Stan (Carpenter et al., 2017) and
PyMC (Abril-Pla et al., 2023), Stan and PyMC are
popular platforms in active development.

2.3 Using Bayesian Methods to Model
Freshmen Attrition

In a Bayesian context, a typical approach to model
student attrition is to use a binary logistic regression,
a generalized linear model where the response vari-
able y, representing whether the student has dropped
out, follows a Bernoulli distribution with parameter
θ, which in turn is a nonlinear (logistic) function
of a linear combination of m scaled predictors (i.e.
b0 +∑

m
j=1 b j ·x j), representing student demographics,

high school and college student activity, characteris-
tics and academic performance. Numeric data is typ-
ically scaled to improve numerical stability and aid
the convergence and speed of computation. To obtain
stable logistic regression coefficients and circunvent
nonidentifiability issues due to separation (when a lin-
ear combination of the logistic regression predictors
perfectly predicts the outcome), sparsity, collinearity,
or the inclusion of numerous binary predictors, the lit-
erature prescribes mild regularization through the use
of noninformative or weakly informative priors on the
regression coefficients, by constraining parameter es-
timates so that they are not too extreme or unrealistic
(Gelman et al., 2008; Westfall, 2017). This formu-
lation is known as a ”flat” or ”pooled” model, in the
sense that it does not take into account the structure
associated with potential grouping and nesting of the
data. Educational data is inherently complex, multi-
layered, and nested: students join majors and minors,
which are part of academic units -departments and
schools. Each level within this layered structure has
its own characteristics which can have an effect on
student academic performance and student attrition.
Also, student attrition data has strong temporal com-
ponents, which give way to repeated measurements
of freshmen attrition over multiple academic years,
affected by internal and external factors (e.g., attri-
tion rates affected by COVID-19). Of course, the
immediate solution that comes to mind when deal-
ing with variability among groups is to fit a sepa-
rate regression model for each of the groups. This
”unpooled” approach addresses the issue of consid-
ering the particular characteristics of each group, but
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since a model is fitted independently for each group,
it is difficult to extract findings that are common to
all groups. Moreover, unpooled models may be con-
strained by the availability of data: there may not
be enough data in particular groups to fit the regres-
sion model. The multi-layered structure of educa-
tional data introduces this additional wrinkle in the
analysis: data can be sparse at each level. Special-
ized majors and minors might have low enrollment
figures, and new programs might carry limited histor-
ical data. If the analysis examines data using student
demographic characteristics, certain groups and mi-
norities might be highly underrepresented, giving way
to parameter estimates with high variance, or lead to
unstable, very large or potentially infinite regression
coefficients, a phenomenon described as complete,
or quasi-complete separation. Also, models trained
with small amounts of data are prone to overfitting
and may not generalize well when applied to new or
unseen data. This is especially critical when apply-
ing frequentist methods on multi-level data (e.g., fre-
quentist logistic regression), as Bayesian models in-
troduce priors that can help mitigate high variance
and bias of regression coefficients as well as separa-
tion issues. Hierarchical models strike a balance be-
tween effects that are group-specific and those that
apply more broadly across group populations (Gel-
man and Hill, 2006). Although frequentist hierarchi-
cal models (e.g., mixed-effect models or GLMMs) ad-
dress variability among groups, there are key advan-
tages in applying Bayesian hierarchical models com-
pared to frequentist approaches. Bayesian hierarchi-
cal models apply partial pooling through hierarchical
priors, naturally regularizing group-level estimates to-
wards the overall distribution, and therefore prevent-
ing large coefficient estimates in groups with small
counts. Frequentist hierarchical models can incorpo-
rate regularization, but it is not inherently built in. In
small groups, frequentist models may struggle to ac-
curately estimate the variance of random effects (e.g.
how much of the variability in attrition is due to differ-
ences between schools). On the downside, Bayesian
hierarchical models are computationally more expen-
sive, especially for large datasets, than their frequen-
tist counterparts, which rely on optimization methods
such as maximum likelihood estimation (MLE).

3 STUDY DESIGN

In this study, we investigate the use of Bayesian gen-
eralized linear models to ascertain potential predictors
of freshmen attrition drawn from student data. We
built hierarchical binary logistic regression models

using a probabilistic programming platform to com-
pute the posterior probability distributions of the lo-
gistic regression coefficients and derived metrics. The
quality of the fitted models and the significance of the
regression coefficients are measured using the metrics
described in section 2.3.2. We also analyze random
effects due to variability in the different academic
years under study and across different schools within
the academic institution. In doing so, the study ad-
dresses the following research questions:
RQ1: How do student demographics, high school and
university academic performance, and student activi-
ties affect the odds of freshmen attrition?
RQ2: Is there considerable fluctuation in freshmen at-
trition across different academic years and among dif-
ferent schools?
RQ3: How does the Bayesian hierarchical model
compare to its frequentist counterpart?

3.1 Datasets

We considered Freshmen data from nine academic
years (2012-2018, and 2021-2022) extracted from the
institution’s data warehouse. We decided to skip
(2019-2020) data as it corresponds to the COVID-
19 pandemic period, which could introduce variabil-
ity in the results (we are aware that 2021 and 2022
data could be also different from the pre-pandemic
years, but we performed preliminary testing and did
not find significant variation). See Table 1 for details.
School codes correspond to the following schools:
CC - Computer Science & Mathematics; CO - Com-
munications & the Arts; LA - Liberal Arts; SB - So-
cial & Behavioral Sciences; SI - Science; SM - Man-
agement.

Data was imputed using K-nearest neighbors
(KNN). Each record corresponds to each accepted
and registered freshman student in the Fall of the cor-
responding academic year, enriched with school data
and demographics using the record format depicted
in Table 1. The dataset included 10921 records, with
1154 instances of attrition. Dropouts are considered
over the full academic year (institutional research data
was used to determine if a student who came in in
the Fall of a given academic year, did not return in
the Fall of the following academic year). The over-
all attrition ratio in the dataset was 10.57%. Dataset
was checked to identify outliers and influential obser-
vations. Numeric variables were scaled as z-scores.
Correlations among predictors were checked: Effec-
tiveGPA correlates with HSGPA (0.49), isDeanList
(0.59), and NumAPCourses (0.26), indicating a rela-
tionship between past and current academic perfor-
mance. EFC (Expected Family Contribution) is neg-
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atively correlated with UnmetNeed (-0.33) and Pel-
lAmount (-0.21), reflecting expected patterns in fi-
nancial aid allocation. PellAmount is correlated with
UnmetNeed (0.40), hasLoans (0.19), and isCampus-
WorkStudy (0.23). We also checked the Variance In-
flation Factor (VIF). Predictors had a VIF < 5, mean-
ing multicollinearity is not a major concern. Effec-
tiveGPA had a VIF between 2.5 - 3.0, which warrants
some consideration.

Table 1: Data Description.
Identifier Description
Academic Performance
EffectiveGPA (academic year) Numeric
isDeansList (made it to Dean’s list) Binary (1/0)
TutoringClassCount (classes tutored in) Numeric
HSGPA (high school GPA) Numeric
NumAPCourses (taken during high school) Numeric
Demographics
UScitizen Binary (1/0)
Gender Binary (F, M)
StudentofColor Binary (1/0)
isFirstGeneration (college student) Binary (1/0)
DistanceFromHome (miles) Numeric
Institutional and Enrollment Factors
isCampusWorkStudy Binary (1/0)
isDivisionI (athlete) Binary (1/0)
WaitListed (before admitted) Binary (1/0)
Financial Aid and Need
EFC (Expected Family Contribution, in $) Numeric
UnmetNeed (after financial aid, in $) Numeric
HasLoans Binary (1/0)
PellAmount (federal grant, in $) Numeric
AcademicYear Discrete
School ((CC, CO, LA, SB, SI, SM) Discrete
didNotReturnNextFall (response variable) Binary (1/0)

3.2 Statistical Modeling

We built a hierarchical binary logistic regression
model using the predictors depicted in Table 1. We
consider random effects in the model associated with
potential variability in the log-odds of freshmen at-
trition across multiple academic years and different
schools. The model, depicted in Equation 2, includes
varying intercepts for both academic year and school;
bAcademicYear is a group-level effect that captures the
effect on the likelihood of the outcome tied to being
in a particular year. Similarly, bSchool captures the ef-
fect of attending a particular school on the log-odds
of dropping out during or at the end of the freshman
year. Regression coefficient priors are denoted by Pβ.
We refined the prior distributions of the model, using
the following criteria:

• The choice of the Intercept’s prior as Normal(-
2.2, 1.0) is based on the approximate 10% at-
trition rate. The intercept represents the log-
odds when all predictors are at the mean value,
as they are scaled as z-scores. Therefore if

P(y = 1) = eIntercept

1+eIntercept , when P(y = 1) = 0.10 =⇒
log(0.10/0.90) =−2.2.

• We used StudentT(ν=3, ν=0, σ=2.5) on correlated
predictors or predictors width moderate outliers.
ν=3 allows for some large deviations and σ=2.5
keeps the prior weakly informative.

• We used normal weakly informative priors -
Normal(0,2.5) for all other predictors.

• For group effects (School and AcademicYear),
we used HalfNormal(2.5). A σ = 2.5 allows
for moderate variation while keeping the group-
specific intercepts within a rather similar scale as
the fixed-effects intercept.

The prior distributions with their calculated val-
ues using the criteria described above are depicted in
Table 2.

σbAcademicYear ∼ HalfNormal(σAcademicYear)

σbSchool ∼ HalfNormal(σSchool)

bAcademicYear ∼ Normal(0,σbAcademicYear)

bSchool ∼ Normal(0,σbSchool)

b0 ∼ Normal(µb0 =−2.2,σb0 = 1.0)
b j ∼ Pβ for j = 1,2, . . . ,m

logit = bAcademicYear +bSchool +b0 +
m

∑
j=1

b jx j

θ =
1

1+ exp(−logit)
y ∼ Bernoulli(p = θ)

(2)

3.3 Probabilistic Programming
Platform

We used Bambi (Capretto et al., 2022) -Bayesian
Model Building Interface, a Python package for gen-
eralized linear models built on top of PyMC (Abril-
Pla et al., 2023) and the ArviZ package for ex-
ploratory analysis (Kumar et al., 2019) to develop and
run the Bayesian logistic regression models and pro-
duce visualizations. The Bayesian models developed
in Bambi used the No U-Turn (NUTS) algorithm to
obtain the posterior distribution samples of the regres-
sion parameters. We chose the NumPyro (Phan et al.,
2019) implementation of the NUTS sampler. Sam-
ples of the posterior distributions for the logistic re-
gression parameters were computed using 4 chains of
5000 samples each, with a warm-up period of 1000
samples for each of the chains (the number of samples
initially discarded until the chain converges to the sta-
tionary posterior distribution). The chains were tested
and no divergences were found in any of the chains of
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Table 2: Prior Distributions for Fixed and Group Effects.
Component Prior Distribution
Fixed Effects
Intercept Normal(µ:-2.2, σ:1.0)
EffectiveGPA StudentT(ν:3.0, µ:0.0, σ:2.5)
isDeansList StudentT(ν:3.0, µ:0.0, σ:2.5)
TutoringClassCount Normal(µ:0.0, σ:2.5)
HSGPA StudentT(ν:3.0, µ:0.0, σ:2.5)
NumAPCourses Normal(µ:0.0, σ:2.5)
USCitizen Normal(µ:0.0, σ:2.5)
Gender Normal(µ:0.0, σ:2.5)
StudentOfColor Normal(µ:0.0, σ2.5)
isFirstGeneration Normal(µ:0.0, σ:2.5)
DistanceFromHome StudentT(ν:3.0, µ:0.0, σ:2.5)
isDivisionI Normal(µ:0.0, σ:2.5)
isCampusWorkStudy Normal(µ:0.0, σ:2.5)
WaitListed Normal(µ:0.0, 9.3792)
EFC StudentT(ν:3.0, µ:0.0, σ:2.5)
UnmetNeed StudentT(ν:3.0, µ:0.0, σ:2.5)
HasLoans StudentT(ν:3.0, µ:0.0, σ:2.5)
PellAmount StudentT(ν:3.0, µ:0.0, σ:2.5)
Group-Level (Random) Effect
AcademicYear (Random Intercept) Normal(µ=0.0, σbAcademicYear )

σbAcademicYear HalfNormal(σ=2.5)

School (Random Intercept) Normal(µ=0.0, σbSchool )

σbSchool HalfNormal(σ=2.5)

the models created. Convergence of the models was
assessed using R̂ < 1.01 as the threshold for accept-
able convergence (see the section below for details).

3.4 Model Quality and Performance
Metrics

Several metrics are considered to measure the quality
of the model:

• R̂ =

√
n−1

n σW+ 1
n σB

σW
, also known as the Gelman-

Rubin diagnostic, is a measure of the convergence
of the MCMC algorithm. R̂ computes and com-
pares the variance within chains with the variance
between chains. σB is the between-variance (the
average of the variances of each of the chains) and
σW is the within-variance, measuring the variabil-
ity between the means of the chains. A value of R̂
close to 1 is an indication of convergence.

• The high-density interval (HDI) summarizes the
range of most credible values of a parameter
within a certain probability mass. When 95%HDI
includes zero, the regression coefficient is not sta-
tistically significant. The literature has also sug-
gested the use 89%HDI, see (Kruschke, 2014) for
example. But we prefer to use the 95% interval
in the study, as it is more conservative and has an
intuitive relationship with the standard deviation
(Easystats, 2024).

• The percentage of 95% HDI within ROPE is a
measure of the practical significance of the re-
gression coefficients. ROPE (region of practical
equivalence) corresponds to a null hypothesis for
the model parameters and provides a range of val-
ues for the parameters in question that are consid-
ered good enough for practical matters. The so-
called HDI+ROPE decision rule (Kruschke, 2014)
determines the practical significance of the regres-
sion coefficients based on the overlap percentage
between the HDI (95%HDI in this case) and the
ROPE range. A percentage value of overlap closer
to 0 implies that the parameter (regression coeffi-
cient in this case) is significant. The ROPE range
is context-dependent.

• WAIC (Watanabe, 2010), which stands for widely
applicable information criteria, is used both for
model comparison and to measure the model’s
predictive performance (how well the model per-
forms when making predictions on new data).
WAIC uses the log-likelihood evaluated at the
posterior distribution of the parameter values pe-
nalized by the variance in the log-predictive den-
sity across those posterior samples. It is formu-
lated as WAIC = −2 · (LPPD − penalty), where
LPPD = ∑

n
i=1(log( 1

S ∑
S
s=1 P(yi | θs)) is the log

pointwise predictive density and Var(logP(yi |
θs))) is the penalty term that accounts for model
complexity. Note that n is the number of observa-
tions and S is the number of samples of the pos-
terior distribution. WAIC’s range is not bounded;
higher values of WAIC are an indication of better
model predictive performance.

• Pareto-smoothed importance sampling leave-one-
out cross-validation, a mouthful of a name, and
better referred to by the short acronym LOO, is a
newer approach introduced by Vehtari et al. (Ve-
htari et al., 2017) to measure out-of-sample pre-
diction accuracy from a fitted model. It uses a
leave-one-out approach, fitting the model n times,
each time with n − 1 observations. but instead
of re-fitting the model n times, the algorithm
uses importance sampling to estimate the leave-
one-out predictive density. Similar to the case
of WAIC, its formulation is derived from ap-
proximating the posterior predictive distribution:
LOO = ∑

n
i=1 log

(
1
S ∑

S
s=1

P(yi|θs
−i)

ŵs
i

)
. The −i in-

dex in θs
−i is used to denote all samples except

yi; ŵs
i are the Pareto-smoothed importance sam-

pling weights. As in the case of WAIC, LOO is
not bounded; higher values of LOO are indica-
tive of better predictive performance. LOO has
been described as being more robust than WAIC
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in the presence of weak priors or influential obser-
vations.

4 STATISTICAL ANALYSIS AND
RESULTS

We ran the hierarchical logistic regression model -
equation (1)- with the prior distributions depicted in
Table 2. Figure 1 displays, for several predictors, the
trace plots with the sampling paths for each of the
chains, along with the kernel density plots of the pos-
terior distributions elicited from each chain (due to
space restrictions we limited the number of predictors
displayed in the figure to two). The trace plots show
that the chains have ”mixed” well, with each of the
chains converging to the same posterior distribution
of the regression coefficients of each predictor.

To answer Research Question 1 -measuring the in-
fluence of the predictors on freshmen attrition- we
analyzed the results of the fixed effects of the logis-
tic regression. Table 3 reports the regression coef-
ficients derived from their posterior distributions to-
gether with statistical measures for each of the predic-
tors to assess the quality and convergence of the pos-
terior probability distributions of the regression co-
efficients of the predictors calculated by the MCMC
(NUTS) computation and evaluate the fixed effects of
the predictors on the log-odds of freshmen attrition.

• Mean and SD: The mean and standard deviation
of the posterior distribution of the regression of
each predictor, the coefficient measuring the av-
erage estimated effect (log-odds) of each predic-
tor on the outcome (freshmen attrition), and the
spread of the posterior distribution.

• HDI (2.5% and HDI 97.5%): The credible range
of the regression coefficients, given by the lower
and upper boundaries of the 95% Highest Density
Interval (HDI).

• MCSE Mean: The Monte Carlo Standard Error of
the Mean, which provides a measure of the vari-
ability of the mean estimate due to the finite sam-
ple size.

• MCSE SD: The Monte Carlo Standard Error of
the Standard Deviation, a measure of the variabil-
ity of the standard deviation due to limited sam-
pling.

• ESS Bulk and ESS Tail: The Effective Sample
Size (ESS) for the bulk and tail of the distribution,
which measures the quality of the sampling of the
bulk and tail regions of the posterior distribution
of each regression parameter. The bulk is where

most of the probability mass lies. The tail regions
hold less probable values.

• R̂: The convergence diagnostic. All reported R̂
values were equal to 1.0, which suggests that the
MCMC chains converged and therefore the pos-
terior distributions and the estimates derived from
the sampling process can be considered reliable.

• The percentage of 95%HDI within ROPE was
computed for each of the regression parameters in
the logistic regression models to ascertain the pre-
dictors that significantly impacted the log-odds of
freshmen attrition. ROPE was fixed at [-0.2,0.2],
following the recommendations by Kruschke (Kr-
uschke, 2018) for binary logistic regression. The
chosen ROPE range of [-0.2,0.2] is especially ap-
propriate considering that we have a combina-
tion of binary predictors and numeric predictors
scaled as z-scores. The ROPE can be seen then
as a region of values of the regression coefficient
around zero that are considered practically equiv-
alent to having a negligible effect on the log-odds
of the outcome. Hence, by setting the ROPE to [-
0.2, 0.2], we establish the criterion of a negligible
change in the log-odds.

We summarize the key findings from the poste-
rior distributions of the fixed effects, focusing on pre-
dictors that were found to be statistically significant
(95% HDI does not include 0) and practically signif-
icant using the percentage of 95% HDI within ROPE
as a practical significance criterion.

Effective GPA at the End of the Academic Year,
with Mean=-0.771 and 95% HDI=[-0.842, -0.698],
is negatively associated with freshmen attrition: a
higher GPA reduces the log-odds of attrition, making
it a statistically and practically significant predictor.

High School GPA (HSGPA), with Mean=0.129
and 95% HDI=[0.044, 0.214], suggests that higher
high school GPA values could be associated with
higher attrition odds. However, a substantial per-
centage of the 95% HDI falls within ROPE, making
its practical significance questionable. This result is
counterintuitive and warrants further investigation.

Made Dean’s List (isDeansList[1.0]), with
Mean=0.571 and 95% HDI=[0.383, 0.756], is statisti-
cally significant and practically significant, though its
practical impact remains unclear. Students who make
the Dean’s List appear to have a higher probability
of attrition, a finding that requires deeper exploration
(e.g. whether this institution was the students’ second
choice, who are seeking their first choice to continue
their studies)

US Citizenship (USCitizen[1.0]), with Mean=-
0.271 and 95% HDI=[-0.678, 0.127], suggests that
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Figure 1: KDE plots of the posterior distributions and trace plots for each chain.

U.S. citizens may be less likely to drop out, but this
effect is not statistically significant.

UnmetNeed, with Mean=0.370 and 95%
HDI=[0.285, 0.456], is both statistically and practi-
cally significant. The positive coefficient indicates a
strong association with freshmen attrition: students
with higher unmet financial need face significantly
increased odds of leaving the institution.

Gender (Male), with Mean=-0.234 and 95%
HDI=[-0.382, -0.087], suggests that male students are
less likely to leave the institution during or at the end
of their freshman year compared to female students.

Has Loans (HasLoans[1.0]), with Mean=-0.210
and 95% HDI=[-0.357, -0.056], suggests that students
with loans are slightly less likely to drop out.

Campus Work Study (isCampusWorkStudy[1.0]),
with Mean=-0.612 and 95% HDI=[-0.833, -0.389],
suggests that freshmen participating in the campus
work-study program are significantly less likely to
leave the institution. This result is both statistically
and practically significant.

Division I (isDivisionI[1.0]), with Mean=-0.014
and 95% HDI=[-0.204, 0.179], suggests that Division
I athletes do not exhibit a significant difference in at-
trition probability, as the 95% HDI includes 0, making
this effect not statistically significant.

Pell Amount, with Mean=-0.181 and 95% HDI=[-
0.262, -0.103], suggests that receiving a Pell Grant is
associated with lower attrition, but the effect is rela-
tively small and may not be practically significant.

Student of Color (StudentOfColor[1.0]), with
Mean=0.165 and 95% HDI=[-0.037, 0.360], suggests
that being a student of color is associated with slightly
higher attrition odds, but the effect is not statistically
significant.

Tutoring Class Count, with Mean=-1.802 and
95% HDI=[-2.732, -0.990], is both statistically and
practically significant, indicating that students who
attend tutoring sessions for their courses are much
less likely to drop out. This suggests a strong pro-

tective effect against attrition.
We performed posterior predictive checks using

ArviZ (Kumar et al., 2019) to measure out-of-sample
predictive accuracy by computing the widely appli-
cable information criteria (WAIC) measure, and the
Pareto-smoothed importance sampling leave-one-out
(LOO) measures. In the case of WAIC, the expected
log pointwise predictive density (elpd waic) is equal
to -3239.53, with SE=66.66. The value is negative
as it is a log-likelihood. Higher values (less nega-
tive) indicate better predictive performance. The ef-
fective number of parameters (p waic), with a value
of 28.35, measures model complexity. As the value is
rather small, the measure signals that the model is not
too complex. In the case of LOO, elpd loo and p loo
and very close to the WAIC: elpd loo=-3239.44), with
SE=66.66, and p loo=28.04. This makes the mea-
sures of posterior predictive accuracy and model com-
plexity consistent. ArviZ also reports LOO κ diag-
nostics ( see Table 4). The κ parameter refers to the
shape parameter κ of the Pareto distribution. If all the
records, like in this case, fall within the acceptable
(”good”) range, it means that the importance sam-
pling used when computing LOO is stable, and not
influenced by particular observations, and therefore
the metric is reliable.

To address Research Question 2, concerning
the fluctuation in first-year student retention across
schools and over time, We began by looking at the
distribution of attrition by school and academic year,
as depicted in Figure 2. Both charts display some dif-
ferences in the attrition rate. For attrition distribution
by academic year, year 2021 carries the larger per-
centage of attrition, probably since 2021 marked the
end of the COVID pandemic. In the case of distribu-
tion of attrition by School, the attrition percentage is
smaller in the School of Computer Science & Mathe-
matics (CC), with larger values in Liberal Arts (LA).

We then proceeded to examine the variability in
attrition rates by studying random effects for aca-
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Table 3: Summary of Posterior Distributions.

Component mean sd hdi 2.5% hdi 97.5% mcse mean mcse sd ess bulk ess tail r hat % 95% HDI
within ROPE

Intercept -2.341 0.270 -2.863 -1.808 0.002 0.002 11857.0 11173.0 1.0 0.000
EFC 0.010 0.036 -0.063 0.078 0.000 0.000 20261.0 11400.0 1.0 100.000
EffectiveGPA -0.771 0.037 -0.842 -0.698 0.000 0.000 18953.0 13041.0 1.0 0.000
HSGPA 0.129 0.043 0.044 0.214 0.000 0.000 20415.0 12165.0 1.0 91.765
isDeansList[1.0] 0.571 0.095 0.383 0.756 0.001 0.000 20163.0 12725.0 1.0 0.000
NumAPCourses -0.053 0.039 -0.129 0.024 0.000 0.000 24348.0 12380.0 1.0 100.000
USCitizen[1.0] -0.271 0.205 -0.678 0.127 0.001 0.001 26992.0 10809.0 1.0 40.621
UnmetNeed 0.370 0.044 0.285 0.456 0.000 0.000 16588.0 12386.0 1.0 0.000
WaitListed[1.0] 0.110 0.116 -0.118 0.331 0.001 0.001 29026.0 11945.0 1.0 70.824
DistanceFromHome 0.122 0.028 0.067 0.176 0.000 0.000 29011.0 12249.0 1.0 100.000
Gender[M] -0.234 0.075 -0.382 -0.087 0.001 0.000 22534.0 12650.0 1.0 38.305
HasLoans[1.0] -0.210 0.077 -0.357 -0.056 0.001 0.000 21872.0 12397.0 1.0 47.841
isCampusWorkStudy[1.0] -0.612 0.114 -0.833 -0.389 0.001 0.000 29701.0 11619.0 1.0 0.000
isDivisionI[1.0] -0.014 0.099 -0.204 0.179 0.001 0.001 29319.0 11552.0 1.0 98.956
isFirstGeneration[1.0] 0.097 0.104 -0.105 0.300 0.001 0.001 24489.0 12078.0 1.0 75.309
PellAmount -0.181 0.041 -0.262 -0.103 0.000 0.000 22582.0 13008.0 1.0 61.006
StudentOfColor[1.0] 0.165 0.101 -0.037 0.360 0.001 0.001 22907.0 12177.0 1.0 59.698
TutoringClassCount -1.802 0.466 -2.732 -0.990 0.004 0.003 18164.0 9474.0 1.0 0.000

Table 4: Pareto κ Diagnostic Results.

Range Count Pct.

(-Inf, 0.70] (good) 10920 100.0%
(0.70, 1] (bad) 0 0.0%
(1, Inf) (very bad) 0 0.0%

demic year and school. As described in Equation (2),
We used a varying-intercept model, with group inter-
cepts tied to academic year and school. We did not
nest the group effects; instead, we fitted the model in
such a way that academic year and school were dif-
ferent group-level effects, independent of each other.
This enabled the measurement of fluctuations in the
outcome across each group while marginalizing over
the effect of the other.

The average log-odds across all academic years
is close to zero (-0.001108), which suggests that, on
average, the effect of different academic years over
freshmen attrition is small. However the standard
deviation of 0.175093 points to a certain amount of
fluctuation across multiple academic years, with the
year 2021 exhibiting a higher-than-average attrition
rate, probably due to the COVID pandemic, as noted
in the above paragraphs. The 95%HDI was equal to
[-0.196947, 0.241552], which presents a mixed sce-
nario, with some years having lower attrition rates,
and others somewhat higher values.

The forest plot in Figure 3 depicts the estimated
random effects of Academic Year on freshmen attri-
tion. The thick line represents the 50% HDI, and the
thin line, the 95%HDI. The graph exposes fluctua-
tions in attrition rates across different academic years.
Although most years have probable intervals that in-
clude zero, there are some exceptions, such as in the
aforementioned academic year 2021.

(a) Attrition by Academic Year.

(b) Attrition by School.

Figure 2: Distribution of Freshmen Attrition.

We conducted a similar examination of the vari-
ability in attrition rates across schools by consider-
ing random group effects by school and marginaliz-
ing the group effect of academic year. The analy-
sis yielded an average log-odds value of -0.004483,
with a standard deviation of 0.155275. This indi-
cates that the effect on the log-odds of freshmen
retention tied to schools is small on average, but
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Figure 3: Random Effects of Academic Year on Freshmen
Attrition Log-Odds.

Figure 4: Random Effects of School on Freshmen Attrition
Log-Odds.

there is non-negligible fluctuation. The 95%HDI =[-
0.221347,0.200628], which also suggests a mixed
scenario. The forest plot (see Figure 4) shows the
variability of log-odds of freshmen attrition across all
six schools.

Some schools, such as the School of Computer
Science & Mathematics (CC), have mostly negative
log-odds values, which point to a lower likelihood
of students dropping out in or after their freshman
year. Instead, freshmen students belonging or as-
signed to the School of Liberal Arts (LA) -and Be-
havioral Sciences (SB) to a much lesser extent- have
a higher likelihood of leaving the institution. To quan-

tify this difference, with a median log-odds value of
-0.25 for CC and 0.2 for LA, the odds ratio between
LA and CC is e0.2/e−0.25 = 1.57, which means that
LA freshmen are 1.57 times more likely to drop out
than CC freshmen. These results underscore the need
for additional analysis and potential targeted retention
strategies: while Computer Science & Mathematics
seems to be more sheltered from freshmen attrition
concerns, the positive log-odds exhibited by Liberal
Arts (LA) and, to some extent, Behavioral Sciences
(SB) may require that the institution dig deeper into
the underlying causes of these attrition rate values.

To answer RQ3 (Bayesian vs frequentist hierar-
chical models) we ran a frequentist mixed effects
model (see Equation 3) with the same fixed effects
predictors and group level intercepts for academic
year and school.

logit = b0 +bAcademicYear +bSchool +
m

∑
j=1

β jx j

bAcademicYear ∼ Normal(0,σAcademicYear)

bSchool ∼ Normal(0,σSchool)

p =
1

1+ exp(−logit)

(3)

We used pymer4 (Jolly, 2018), a Python library
that provides an interface to lme4, the popular R
GLMM package. The Pymer4 model produced simi-
lar significant logistic regression coefficients, validat-
ing the results in the Bayesian model, but there were
some important differences:

EffectiveGPA, isDeansList, Gender, UnmetNeed,
isCampusWorkStudy, and HasLoans remain strong
predictors in both models.

HSGPA, DistanceFromHome and PellAmount are
statistically significant in both the frequentist and
the Bayesian models, but the Bayesian model out-
puts a very high overlap of the 95%HDI with ROPE
(91.765%, 100%, and 61.006% respectively), which
suggests limited practical impact.

The TutoringClassCount estimate is highly unsta-
ble in the Pymer4 model with a mean=-5.744 and
95% CI=(-105.501, 94.014). Instead, the Bayesian
model shrinks the estimate to a more reasonable
value: mean =-1.802, 95%HDI=(-2.732, -0.990).
This is important for dealing with small sample sizes
within some academic years and schools.

The frequentist intercept estimate has also a
very high variance, with mean=-3.153 and 95%CI=(-
24.075,17.769). In comparison, the Bayesian model
shrinks the estimate to mean=-2.341, 95%HDI=(-
2.8963,-1.808), reflecting the true baseline dropout
rate much better.

The frequentist model gives a single estimate
and confidence interval, assigning significance based
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Table 5: Summary of Frequentist Model Estimates.

Component Estimate SE 2.5% CI 97.5% CI OR OR 2.5% CI OR 97.5% CI Z-stat P-val Significance

Intercept -3.153 10.675 -24.075 17.769 0.043 0.000 5.214e+07 -0.295 0.768
EFC 0.013 0.035 -0.056 0.083 1.013 0.946 1.086 0.376 0.707
EffectiveGPA -0.769 0.037 -0.841 -0.696 0.464 0.431 0.498 -20.854 0.000 ***
HSGPA 0.127 0.043 0.042 0.212 1.136 1.043 1.237 2.926 0.003 **
isDeansList [1.0] 0.573 0.096 0.385 0.761 1.774 1.470 2.140 5.985 0.000 ***
NumAPCourses -0.054 0.039 -0.130 0.022 0.947 0.878 1.022 -1.405 0.160
USCitizen [1.0] -0.281 0.204 -0.680 0.118 0.755 0.507 1.126 -1.379 0.168
UnmetNeed 0.370 0.044 0.285 0.456 1.448 1.330 1.577 8.507 0.000 ***
WaitListed [1.0] 0.113 0.116 -0.114 0.340 1.120 0.893 1.405 0.978 0.328
DistanceFromHome 0.124 0.028 0.069 0.179 1.132 1.072 1.196 4.431 0.000 ***
Gender [M] -0.240 0.076 -0.389 -0.091 0.787 0.678 0.913 -3.154 0.002 **
HasLoans [1.0] -0.211 0.077 -0.362 -0.060 0.810 0.697 0.942 -2.741 0.006 **
isCampusWorkStudy [1.0] -0.612 0.113 -0.833 -0.391 0.542 0.435 0.677 -5.425 0.000 ***
isDivisionI [1.0] -0.011 0.099 -0.206 0.184 0.989 0.814 1.202 -0.107 0.915
isFirstGeneration [1.0] 0.105 0.103 -0.097 0.306 1.110 0.907 1.358 1.016 0.310
PellAmount -0.180 0.040 -0.258 -0.102 0.835 0.773 0.903 -4.536 0.000 ***
StudentOfColor [1.0] 0.166 0.101 -0.033 0.365 1.180 0.968 1.440 1.635 0.102
TutoringClassCount -5.744 50.898 -105.501 94.014 0.003 0.000 6.756e+40 -0.113 0.910

Random Effects Academic Year: Var = 0.034, Std = 0.184 School: Var = 0.023, Std = 0.152

Evaluation metrics Log-likelihood: -3227.289 AIC: 6494.577

purely on p-values, whereas the Bayesian model gives
a full posterior distribution of the model parameters,
which helps in gauging uncertainty in regression co-
efficients.

As for random effects, the frequentist model re-
ports variance and standard deviation for each group
(academic year and school), which makes it difficult
to assess variability among groups when the group ef-
fects are small. Random effects in the Pymer4 model
are estimated independently. This means that each
group (academic year and school) gets its own sep-
arate estimated effect, without the effect being pulled
towards the mean, even if there are a small number
of observations per group. In contrast, the Bayesian
model reports the full posterior for each group, which
helps in detecting some significant deviation, as ex-
plained in the above paragraphs (see RQ2, Figure 3,
and Figure 4). Additionally, in the Bayesian model,
group effects are not treated independently, with par-
tial pooling regularizing group effects.

5 CONCLUSION

The goal of this research work was to apply Bayesian
hierarchical regression methods to analyze freshmen
attrition. The paper provides a guideline on how to
conduct the analysis and report the results and find-
ings in the context of Bayesian methods and proba-
bilistic programming. The Bayesian framework is a
robust yet highly underutilized data-driven method-
ology in the academic analytics literature, especially
regarding student academic performance and attrition
analysis. The results presented in this paper identify
college academic performance, financial need, gen-
der, tutoring, and work-study program participation as
having a significant effect on the likelihood of fresh-
men attrition. The study showed fluctuations across

time and schools that deserve deeper investigation and
potential customized intervention strategies. Also, a
comparison was made with an equivalent frequentist
mixed-effects model to highlight the differences be-
tween both approaches. The motivation of this re-
search is not only to provide a guideline on the use
of Bayesian methods for freshmen retention but also
to serve as a proof of concept that encourages other
researchers and practitioners to apply the Bayesian
framework in this domain. The practical implica-
tions of this work go beyond the methodological ap-
proach presented on the use of Bayesian inference and
probabilistic programming for student attrition analy-
sis. We believe that the analysis provides actionable
findings to stakeholders, administrators, and decision-
makers in higher education.
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