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Abstract: Fully homomorphic encryption (FHE) enables to execute operations on ciphertexts without decryption. This
leads to an expectation on FHE to be applied to analyses of confidential data. Each of FHE schemes proposed
thus far has its own strengths such as an ability to handle real numbers or execute arbitrary functions. Scheme
switching enables to switch one FHE ciphertext to another, and enables to utilize both strengths. However,
as scheme switching is computationally expensive, it is sometimes more efficient to use one scheme with
approximation. Xiang et al. (CRYPTO23) proposed an efficient blind rotation technique which is used in a
scheme switching method named PEGASUS. They use the NTRU-based GSW-like encryption to accelerate
blind rotation, which can be applied to schemes that use the GSW encryption. This paper investigates the
effects of the application of the NTRU-based GSW-like encryption to PEGASUS. We found that applying
the NTRU-based GSW-like encryption to PEGASUS theoretically reduces the key size required to evaluate
a look-up table by 43% and the number of multiplications of integers by 96%. We also confirmed through
experiments that using the NTRU-based GSW-like encryption in PEGASUS accelerates the evaluation of a
look-up table by 1.55 times.

1 INTRODUCTION

Fully homomorphic encryption (FHE) is an encryp-
tion scheme that enables operations on ciphertexts
without decryption. FHE is expected to be useful
for analyzing sensitive data and conducting collabo-
rative analyses of confidential data among several or-
ganizations. Multi-party computation (MPC) is also
known as one of secure computation schemes that en-
able computation without the computers knowing the
confidential information. MPC carries a risk that the
computers such as servers may know the confidential
information if they maliciously cooperate. Thus, it
requires the assumption that the servers do not ma-
liciously cooperate. On the other hand, FHE does
not require such an assumption because the comput-
ers cannot know the values of the plaintext unless they
have access to the secret key. Although FHE tends to
be more computationally expensive than MPC, it in-
curs lower communication costs. FHE is expected to
be applied to various fields for the above reasons.

The noise of a FHE ciphertext grows as operations
are performed on it. The decrypted value of it be-
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comes wrong when the noise exceeds a certain thresh-
old. Homomorphic operations can be performed on
ciphertexts as long as the noise is less than this thresh-
old. Homomorphic encryption schemes with a lim-
ited number of operations are called somewhat ho-
momorphic encryption or leveled homomorphic en-
cryption. To make the number of operations unlim-
ited, FHE adopts a noise-reducing operation called
bootstrapping. Many FHE schemes proposed thus far
(Cheon et al., 2017; Chillotti et al., 2020) are based on
learning with errors (LWE) encryption (Regev, 2005).
They adopt different operations for multiplication and
bootstrapping.

One major FHE scheme proposed thus far is
the Cheon-Kim-Kim-Song (CKKS) scheme (Cheon
et al., 2017), which enables handling approximate
numbers as plaintext and homomorphically evaluat-
ing polynomials. CKKS is used for data analyses
(Geva et al., 2023) and implemented in FHE libraries
(Al Badawi et al., 2022).

FHEW (Ducas and Micciancio, 2015) and TFHE
(Chillotti et al., 2020) are also major FHE schemes.
They utilize Gentry-Sahai-Waters (GSW) encryption
(Gentry et al., 2013) to implement homomorphic mul-
tiplication. They also realize bootstrapping with GSW
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ciphertexts. Their bootstrapping scheme is called pro-
grammable bootstrapping (PBS) because it enables
the evaluations of any functions using a look-up ta-
ble (LUT) while reducing noise. As PBS can homo-
morphically evaluate any function, TFHE is expected
to be applied in fields of machine learning and data
analysis where evaluations of nonlinear functions are
necessary. There are several libraries of TFHE (Zama,
2022) and machine learning using TFHE (Meyre
et al., 2022).

There are several FHE schemes each of which has
its own strengths, and it is necessary to select an ap-
propriate scheme for the intended purpose. These
schemes sometimes have their own weaknesses in ex-
ecuting complicated operations. Thus, it is useful to
combine their strengths and mitigate their weaknesses
by switching one ciphertext to another This switching
technique is called scheme switching.

Although scheme switching enables mutual
switching of ciphertext and utilize the strengths of
each scheme, it requires extra keys and operations.
The size of the key is generally larger than that of the
secret key and ciphertexts. The computational cost of
switching between schemes is relatively high. Some
research of applying FHE to machine learning does
not adopt scheme switching and instead use approx-
imations of complicated functions or plaintext (Geva
et al., 2023; Azogagh et al., 2022) due to the above
reason. Therefore, it is important to reduce the key
size, space complexity and time complexity for the
applications of fully homomorphic encryptions.

Xiang et al. (Xiang et al., 2023) proposed effi-
cient blind rotation technique. Blind rotation is of-
ten used in TFHE-like schemes to evaluate a look-
up table. Their research proposed a vector of NTRU
ciphertexts that enables homomorphic multiplication
with an NTRU ciphertext. Their scheme makes an
evaluation of a blind rotation more efficient by using
this homomorphic multiplication.

This paper investigates the effects of applying
Xiang’s method to PEGASUS, a scheme switching
method of FHE. Most of FHE schemes proposed thus
far can be switched to another since they are based
on LWE encryption (Regev, 2005). Scheme switch-
ing among LWE-based FHE schemes uses GSW en-
cryption to execute homomorphic multiplication. As
Xiang’s method requires less space complexity and
fewer operations, we discuss the effect of applying
Xiang’s method to PEGASUS.

2 PRELIMINARIES

This section defines the notations used in the rest of
this paper and quickly reviews homomorphic encryp-

tions and scheme switching.

2.1 Notations

The set of integers is denoted by Z. We define Zq
for a positive integer q by Zq := Z/qZ. The set of n-
dimensional vectors each entry of which is an integer
is denoted by Zn. For a vector v, we use vi to represent
the i-th entry of v. ⟨u,v⟩ denotes an inner product
of two vectors u, v. For a positive integer q and a
power of two N, we define R := Z[X ]/(XN + 1) and
Rq := R/qR.

2.2 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) is an encryp-
tion scheme that enables operations such as addi-
tion and multiplication on ciphertexts without de-
cryption. Major FHE schemes are Brakerski-Fan-
Vercauteren (BFV) (Fan and Vercauteren, 2012),
Cheon-Kim-Kim-Song (CKKS) (Cheon et al., 2017),
TFHE (Chillotti et al., 2020). These schemes are
based on Learning with Errors (LWE) encryption
(Regev, 2005) and its variant using polynomial, Ring-
LWE (Lyubashevsky et al., 2013). Each of them has
its own strength such as the ability to perform SIMD,
to handle a real number as a message and to evaluate
an arbitrary function. As all of the above schemes are
based on the LWE encryption, it is possible to com-
bine their strengths by mutually switching between
them. Such a method of switching schemes is called
scheme switching and several methods have been pro-
posed (Boura et al., 2020; Lu et al., 2021).

FHE is mainly composed of three algorithms:
key generation, encryption and decryption, similar to
public-key encryption. Addition of LWE-based FHE
scheme is conducted by simply adding two cipher-
texts. Multiplication of them is realized with a spe-
cial key called an evaluation key, which contains the
information of the secret key. These operations on a
ciphertext increase a noise in it, which increases the
decryption failure rate. Thus, it is necessary to reduce
the noise using a special operation called bootstrap-
ping. The details of bootstrapping differ among each
scheme, but they have in common that all schemes re-
alize bootstrapping with homomorphic operation with
a special key containing information about the secret
key.

As CKKS and FHEW/TFHE schemes are based
on LWE encryption, we will describe LWE encryp-
tion at first. The parameters of LWE are positive in-
tegers q and n. Let De be an error distribution. An
LWE ciphertext with a secret key s ∈ Zn

q is given by

LWE(m) := (a,−⟨a,s⟩+∆m+ e) ∈ Zn+1
q
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where e is sampled from De and ∆ is a scale param-
eter. For an LWE ciphertext (a,b) = LWE(m), de-
cryption can be performed by removing the error from
b+⟨a,s⟩ by division and rounding. An RLWE cipher-
text is similarly defined by replacing Zn

q in the defini-
tion of an LWE ciphertext with Rq.

2.3 CKKS

CKKS scheme is an RLWE-based FHE scheme pro-
posed by Cheon et al. and can handle a real or com-
plex number as a message by encoding it into a plain-
text. Secret keys are sampled from Rq and each entry
of the key belongs to {0,±1} with Hamming weight
equal to h. The error distribution is a discrete Gaus-
sian distribution with the mean equal to 0 and the stan-
dard deviation parameterized by σ. CKKS scheme
uses an evaluation key of RLWE containing informa-
tion about the secret key for homomorphic multipli-
cation.

The CKKS scheme encodes a message before en-
cryption so that it can handle a real number as a
message and decodes the decrypted text to obtain
the message. Decoding and encoding are sets of
embeddings from polynomial space Rq to complex
numbers and their inverses. Thus decoding is rep-
resented by a map φ : Rq → CN/2. Concretely, for
f (X) ∈ Rq, the embedding φ is given by φ( f ) =(
f (ζ), f (ζ3), . . . , f (ζN−1)

)
∈ CN/2 where ζ = e2πi/N .

Encoding is performed by evaluating the inverse φ−1

and multiplying a scaling factor on a message vec-
tor. Note that not all the complex vectors are nec-
essarily encoded to a polynomial with integer coef-
ficients, thus rounding is required. Decoding can be
performed by the inverse of encoding, in other words,
multiplying by the inverse of the scaling factor and
applying φ so that the complex vector is obtained. By
rounding the obtained vector to an appropriate accu-
racy, the decoded message is obtained. As each entry
of φ, a map that substitutes X with ζ2i+1, is a homo-
morphism, addition and multiplication after encoding
correspond to those before encoding. This is the rea-
son that CKKS can handle a real or complex number
as a message while using polynomials with integer co-
efficients as a ciphertext.

2.4 FHEW and TFHE

FHEW and TFHE are called the third generation of
FHE. They enables homomorphic multiplication by
utilizing bit decomposition. FHEW (Ducas and Mic-
ciancio, 2015) is an FHE scheme proposed by Ducas
et al., which accelerate bootstrapping by bit opera-
tions. TFHE is a scheme proposed by Chilloti et

al. that defines its ciphertext over a torus. These
schemes utilize GSW encryption to realize homomor-
phic multiplication. A GSW ciphertext concsists of a
vector of LWE ciphertexts with a gadget matrix that
corresponds to a bit decomposition of the plaintext.
An operation called external product of an LWE ci-
phertext and a GSW ciphertext enables homomorphic
multiplication. A GSW ciphertext is composed as
follows. Let g := (q/B, . . . ,q/Bl) be a gadget vec-
tor for positive integers B, l. We define a gadget ma-
trix G as G := diag(g,g, . . . ,g) ∈ Zl(n+1)×(n+1)

q . A
GSW ciphertext is defined by GSW(m) = L+m ·G
where L is a vector of l(n + 1) LWE ciphertexts:
L := (LWE(0) , . . . ,LWE(0)). Homomorphic multi-
plication of an LWE ciphertext and a GSW ciphertext
is given by

GSW(m1)⊙LWE(m2) :=
⟨GSW(m1) ,BitDecompB(LWE(m2))⟩

where BitDecompB stands for a bit decomposition by
a base B for each entry of the LWE ciphertext. The
inner product of a GSW ciphertext and bit decompo-
sition of an LWE ciphertext is defined by the sum of
the multiplication of the component LWE ciphertext
of the GSW ciphertext and each bit-decomposed entry
of the LWE ciphertext. This operation gives an LWE
ciphertext of m1m2, i.e. LWE(m1m2). A ring GSW
(RGSW) ciphertext is defined similarly as above ex-
cept it is defined over Rq instead of Zq.

TFHE scheme utilizes RGSW ciphertexts to boot-
strap an LWE ciphertext by blind rotation. Blind ro-
tation multiplies X i to a polynomial r(X) without de-
cryption and not knowing the value of i. Concretely,
blind rotation obtains r(X)×X−(b+⟨a,s⟩) for an LWE
ciphertext (a,b) for message m. Denoting ri the i-th
coefficient of r(X), one can obtain rm by taking the
constant term of the blind rotated value. This proce-
dure gives a LWE ciphertext of f (m) by setting the
coefficients of r(X) so that they correspond to f (X).

TFHE uses RGSW ciphertexts as the bootstrap-
ping key to perform the above procedure. The
bootstrapping key is a set of RGSW ciphertexts of
each entry of the secret key si ∈ {0,1}. Bootstrap-
ping can be executed as follows. First, an initial
RLWE ciphertext is prepared by computing Acc0 =
RLWE

(
r(X)×X−b

)
. Then, Acci for i = 1, . . . ,n are

computed by

Acci = RGSW(si)⊙ (Acci−1 · (Xai −1))+Acci−1.

recursively. The value of Accn is an RLWE ciphertext
RLWE

(
r(X)×X−(b+⟨a,s⟩)

)
because si equals 0 or 1.

By applying a method called sample extraction to the
obtained RLWE ciphertext, one can obtain the desired
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LWE ciphertext LWE( f (m)). Blind rotation is an im-
portant component of the bootstrapping procedure of
TFHE because it reduces the noise of the LWE ci-
phertext through the procedure. The above procedure
is also called a look-up table (LUT) evaluation as it
can evaluate a prepared function.

2.5 Scheme Switching

It is necessary for users to choose an appropriate FHE
scheme depending on the purpose as each scheme
has its own strengths and weaknesses. On the other
hand, it is often difficult to determine the appropri-
ate FHE scheme for data analyses or machine learn-
ing as they require many kinds of processes. For in-
stance, on the one hand, the CKKS scheme is useful
for neural networks as it can handle a real number
as a message and process multiple messages simul-
taneously though it requires approximating activation
functions with polynomials (Choi et al., 2024). On the
other hand, TFHE can evaluate any activation func-
tion though it requires to scale messages to integers
(Stoian et al., 2023). Considering these situations, it
is useful to combine multiple schemes to implement
complicated computations such as neural networks.

Boura et al. proposed scheme switching al-
gorithms named CHIMERA (Boura et al., 2020).
CHIMERA sets TFHE as its hub and provides algo-
rithms to switch from TFHE to BFV or CKKS and
vice versa. Transformation of TFHE to CKKS in
CHIMERA packs N/2 TFHE ciphertexts in one poly-
nomial and homomorphically encodes it. Finally, it
evaluates the exponential function on the packed ci-
phertext to obtain CKKS ciphertext. This transfor-
mation performs homomorphic decryption with the
GSW-based evaluation keys. Although CHIMERA
provides scheme switching among three major FHE
schemes, it is pointed out that it requires large-sized
repacking keys (Lu et al., 2021).

Lu et al. proposed scheme switching algorithms
named PEGASUS (Lu et al., 2021). PEGASUS en-
ables to handle a real number like CKKS and to evalu-
ate any function (LUT) homomorphically like FHEW.
PEGASUS uses RGSW evaluation keys for LUT sim-
ilarly to TFHE described in Section 2.4. Note that
the gadget vector used to construct the evaluation
key does not correspond to bit decomposition but the
residue number system (RNS) for efficiency. The di-
mension of the vector is one. The evaluation key con-
sists of 2n RGSW ciphertexts (represented as EK j,k),
which contains information of the secret keys. Con-
cretely, EK j,k encrypts the j-th entry of the secret key
(s j) and k = 0 (resp. k = 1) corresponds to when s j =

1 (resp. s j = −1). PEGASUS obtains f (X) ·X b̃−⟨a,s⟩

by repeating homomorphic multiplications of X ã js j .
Finally, extracting the constant term of the ciphertext
gives LWE(T (m)).

In the whole protocol of PEGASUS, it first ex-
tracts l LWE ciphertexts from the RLWE ciphertext
of CKKS. It switches the parameter n and the secret
key of LWE ciphertexts, applies the LUT described
as above and switches n and the secret key again. It
finally repacks l LWE ciphertexts into one RLWE ci-
phertext. Through the above procedure, PEGASUS
enables to utilize the strength of CKKS in handling
a real number and that of FHEW in evaluating LUT.
Due to the space limitation, we have explained the
sketch of PEGASUS, refer to the original paper (Lu
et al., 2021, Figures 2 and 6) for the detail.

3 NTRU-BASED GSW-LIKE
CIPHERTEXT

This section describes the efficient blind rotation al-
gorithm proposed by Xiang et al. (Xiang et al., 2023).
Their idea is to use the NTRU-based ciphertext (Hoff-
stein et al., 1998) to realize homomorphic multiplica-
tion. This algorithm shares a common feature with
the GSW-based blind rotation that they both use bit
decomposition to make the increase of noise in the
ciphertext small.

3.1 NTRU-Based GSW-Like Ciphertext

We describe an NTRU ciphertext and an NTRU′ ci-
phertext proposed by Xiang et al. Their NTRU ci-
phertext is slightly different from the original NTRU
ciphertext as it multiplies the inverse of the secret key
by the message. An NTRU ciphertext of a message
u ∈ Rq is defined as follows:

NTRU(m) := τ ·g/ f +∆ ·u/ f ∈ RQ.

where f ∈ Rq is the secret key that is invertible in Rq
and g ∈ Rq is a polynomial with small coefficients.
Parameters τ and ∆ are determined depending on the
used FHE scheme. For CKKS, both of them equal
one. We represent by / f a multiplication of the in-
verse of f .

An NTRU′ ciphertext of a message v ∈ Rq is de-
fined as follows:

NTRU′ (v) := (τ ·g0/ f + v,τ ·g1/ f +B · v, . . . ,

τ ·gd−1/ f +Bd−1 · v
)
∈ Rd

Q

where f ∈ Rq is the secret key that is invertible in Rq
and g0, . . . ,gd−1 ∈ Rq are polynomials with small co-
efficients. τ and B are integer parameters and d :=
⌈logB Q⌉.
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Homomorphic multiplication of an NTRU cipher-
text and an NTRU′ ciphertext is defined as follows.
We define a bit decomposition of a polynomial for
a base B. Bit decomposition of h ∈ RQ is given by
BitDecomp(h) := (h0, . . . ,hd−1) ∈ Rd

B so that it sat-
isfies that h = ∑

d−1
i=0 hiBi. The external product ⊙

of a polynomial h ∈ RQ and a vector of polynomials
c ∈ Rd

Q is defined as

h⊙ c := ⟨BitDecompB(h),c⟩.
Homomorphic multiplication of an NTRU ciphertext
and an NTRU′ ciphertext is given by the product
NTRU(u)⊙NTRU′ (v). We can verify it by the fol-
lowing equation:

NTRU(u)⊙NTRU′ (v) =
d−1

∑
i=0

hi(τgi/ f +Bi · v)

=
d−1

∑
i=0

hi(τgi/ f )+NTRU(u) · v

= τ

(
g+

d−1

∑
i=0

higi

)
/ f +∆u · v/ f

where (hi)
d−1
i=0 is the decomposition of NTRU(u) with

the base B. As g + ∑
d−1
i=0 higi is a polynomial with

small coefficients under an appropriate setting, it
holds that

NTRU(u)⊙NTRU′ (v) = NTRU(uv) .

This procedure does not require decryption, and thus
it is homomorphic multiplication.

3.2 Blind Rotation with NTRU
Ciphertext

We describe the blind rotation technique introduced
by Xiang et al. using NTRU and NTRU′ ciphertexts.
In the rest of this section, we fix the parameter q of
LWE with the secret key s = (s0, . . . ,sn−1) and NTRU
parameter Q with the secret key f ∈ RQ The degree of
RQ is a power of two N that can be divided by q. This
blind rotation requires n+1 evaluation keys and q−1
key switching keys. Evaluation keys are defined as
follows:

evk0 = NTRU′ (X s0/ f ) , evki = NTRU′ (X si)

evki = NTRU′
(

X−∑
n−1
i=0 si

)
.

Key switching keys are

ksk j = NTRU′ ( f (X j)/ f (X)
)

where j ∈ S := {2N/q+1|1 ≤ i ≤ q−1}. The algo-
rithm contains homomorphic evaluations of the au-
tomorphisms (EvalAuto j) that homomorphically sub-
stitutes X of an NTRU ciphertext with X j. In

other words, EvalAuto j transforms NTRU(u(X)) to
NTRU

(
u(X j)

)
. See (Xiang et al., 2023, Section 3)

for details.
We briefly review the correctness of the al-

gorithm. The homomorphic multiplication
of the accumulated value and the evaluation
key (evki) makes the accumulated value equal

to NTRU
(

r(X
2N
q w′

i) ·X− 2N
q bw′

i+∑
i−1
k=0 skwkw′

i+si
)

.
By evaluating the automorphism, it obtains
NTRU

(
r(X

2N
q w′

i+1) ·X− 2N
q bw′

i+1+∑
i
k=0 skwkw′

i+1
)

.
Finally, the output becomes

NTRU
(

r(X
2N
q w′

i+1) ·X− 2N
q b+∑

n−1
k=0 skwk−∑

n−1
k=0 sk

)
= NTRU

(
r
(

X
2N
q
)
·X

2N
q (−b+∑

n−1
i=0 aisi)

)
by the homomorphic multiplication of the accumu-
lated value and the n-th evaluation key. Therefore, the
blind rotation algorithm outputs an NTRU ciphertext
of the blind rotated polynomial.

As the output of the blind rotation algorithm is
an NTRU ciphertext of the blind rotated polyno-
mial, it is required to revert it to an LWE ciphertext.
This operation can be performed by sample extrac-
tion (Kim et al., 2024). Let c = (c0, . . . ,cN−1) and
f = ( f0, . . . , fN−1) be coefficient vectors of the output
c∈RQ of the algorithm and the secret key f ∈RQ. We
set ĉ := (c0,−cN−1, . . . ,−c1), then (ĉ,0) ∈ ZN+1

Q is a
desired LWE ciphertext with the secret key f.

The whole procedure of bootstrapping consists of
three parts: blind rotation, modulus switching and key
switching. It first applies the aforementioned blind
rotation algorithm to the input LWE ciphertext. The
input LWE ciphertext becomes an NTRU ciphertext
of the blind rotated polynomial by the blind rotation
and an LWE ciphertext is extracted by sample extrac-
tion. As the modulus and the secret key of this LWE
ciphertext are different from those of the input LWE
ciphertext, it is necessary to revert them to their orig-
inal values. This is solved by modulus switching and
key switching. Modulus switching from Q to q is ac-
complished by ⌊q/Q ·LWE(m)⌉ mod q.

Key switching of an LWE ciphertext requires
LWE ciphertexts containing information of the secret
key f as key switching keys. The key switching keys
are given by

lkski, j,v := LWEs

(
−vB j

ks f j

)
.

where s is the secret key after key switching, Bks
and Qks are integer parameters, and it hold that
i ∈ ZN , j ∈ Zdks , 1 ≤ v < Bks. We set dks :=
⌈logBks

Qks⌉. The procedure of key switching with the
above key switching keys is outlined as follows. Let

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

654



(â, b̂) = (â0, . . . , âN−1, b̂) be an LWE ciphertext and
(vi,0, . . . ,vi,dks−1) be a decomposition of âi with the
base Bks. We write lkski, j,v = (ai, j,v,bi, j,v). Here, we
set

â′ :=
N−1

∑
i=0

d−1

∑
j=0,vi, j ̸=0

ai, j,vi, j ,

b̂′ :=
N−1

∑
i=0

d−1

∑
j=0,vi, j ̸=0

bi, j,vi, j + b̂.

Then, it can be verified that (â′,b′) is an LWE cipher-
text with the secret key s.

The above procedure completes the bootstrapping
on an LWE ciphertext with NTRU-based GSW-like
keys. Thus, it finally outputs LWE( f (m)) from the
input LWE(m). Due to the space limitation, we have
described the sketch of the algorithm. See (Xiang
et al., 2023, Section 3) for details.

4 APPLICATION TO PEGASUS

This section discusses the effects of Xiang’s NTRU-
based technique as applied to PEGASUS. We discuss
the effects both theoretically and experimentally.

As stated in Section 2.5, PEGASUS extracts
LWE ciphertexts from an RLWE ciphertext of CKKS
and evaluates a look-up table by blind rotation with
RGSW-based evaluation keys. The LUT evaluation
of this process can be replaced by Xiang’s LUT tech-
nique. We will discuss the effects of reducing the
key size and the number of computations when the
LUT is replaced. In this paper, the LUT evaluation
of PEGASUS will be replaced by Xiang’s LUT illus-
trated in the previous section. The modulus q of an
LWE ciphertext can be switched by modulus switch-
ing. The parameter n also can be changed through
the key switching executed in the PEGASUS scheme.
Thus, we use the same LWE and NTRU parameter
sets as proposed in (Lu et al., 2021; Xiang et al., 2023)
and skip fine-tuning of parameters. Xiang et al. pro-
posed the 128-bit and 192-bit security NTRU param-
eters while Lu et al. proposed the LWE parameters at
least 119-bit security. Hence, we use 128-bit security
parameters for the NTRU scheme.

4.1 Comparison of Key Size

Xiang’s algorithm uses n + 1 NTRU′ ciphertexts as
evaluation keys, i.e. evki, to contain information
of the secret key and q − 1 NTRU′ ciphertexts as
key switching keys, i.e. kski, to change the expo-
nent of polynomials. Thus, it requires n+ q NTRU′

ciphertexts in total. An NTRU′ ciphertext consists

of d entries of RQ. As the degree of a polyno-
mial in RQ equals N − 1, it requires N⌈log2 Q⌉ bits
to represent one RQ element. Therefore, it requires
d(n+q)N⌈log2 Q⌉ bits in total to store the evaluation
keys for blind rotation.

Additionally, to complete the bootstrapping pro-
cedure, LWE key switching keys (LKSK) are also
required. They also have to be taken into account.
LKSK is composed of multiple LWE ciphertexts. The
number of LWE ciphertexts is N × dks × (Bks − 1)
since the suffixes i, j,v of lkski, j,v satisfy i ∈ ZN ,
j ∈Zdks, and 1≤ v<Bks. It requires n+1 elements of
ZQks to represent a single LWE ciphertext. Therefore
N · dks · (Bks − 1) · (n+ 1) log2 Qks bits are necessary
for LKSK. The sum of the bits of the evaluation keys
and the LWE key switching keys is the number of bits
required to store the keys for the bootstrapping pro-
cedure. Xiang et al. proposed the following param-
eters: n = 512, q = N = 1024, d = 5, log2 Q ≈ 19.9,
log2 B = 4, log2 Qks = 14, log2 Bks = 7, and dks = 2.
By substituting these values into the parameters, the
bits of the evaluation keys equal 18.75MB and the
bits of the key switching keys equal 222.7MB, thus
241.4MB in total. The difference of 0.1 is due to the
rounding error.

PEGASUS employs RGSW ciphertexts to evalu-
ate LUT. One RGSW ciphertext consists of four Rq
elements. The degree of a polynomial in Rq is N − 1
and PEGASUS uses 2n RGSW ciphertexts. Hence,
it requires 8nN log2 q bits in total. Considering that
the parameters of PEGASUS are n = 210, N = 212,
logq ≈ 105, the size of the evaluation key is 420MB.

Based on the above discussion, application of
NTRU-based GSW-like technique to PEGASUS re-
duces the LUT evaluation key size by 178.6MB
(43%).

4.2 Comparisons of the Number of
Operations

The most significant part of the computational cost
is the external products in both PEGASUS and the
NTRU-based algorithm because the other parts con-
sist of additions and multiplications of plaintexts. For
this reason, we compare the computational cost of the
external products. As the degrees of the polynomi-
als used in RGSW ciphertexts and NTRU′ ciphertexts
differs, it is fair to compare the numbers of integer
multiplications incurred by the external products, not
the numbers of polynomial multiplications.

The external products are executed twice in the for
loop of Xiang’s algorithm. This for loop repeats the
operation n times and there is another external prod-
uct after the loop. Thus, it requires 2n+ 1 external

Accelerating PEGASUS by Applying NTRU-Based GSW-Like Encryption

655



Table 1: Comparisons of Key size and the number of integer
multiplications when NTRU-based GSW-like encryption is
applied to PEGASUS.

Key size #Integer
[MB] Mult.

PEGASUS 420 1.37×1011

PEGASUS+NTRU 241.4 5.37×109

Difference 178.6 1.32×1011

(43%) (96%)

products. One external product consists of d poly-
nomial multiplications. Taking the degree N − 1 of
the polynomial into account, the number of neces-
sary multiplications in ZQ is d(n + 1)N2. We ob-
tain 5.37×109 by substituting the parameters with the
aforementioned values.

PEGASUS executes 2n external products, result-
ing in 8n polynomial multiplications as one external
product consists of four polynomial multiplications.
Therefore, it conducts 8nN2 integer multiplications,
which is equal to 1.37×1011 with the aforementioned
parameters substituted.

Hence, application of NTRU-based GSW-like
technique to PEGASUS reduces the number of inte-
ger multiplications by 1.32×1011 (96%).

4.3 Experimental Results

We implemented the external products of both the
schemes that we discussed above. As described in the
previous subsection, the elapsed time to execute LUT
evaluation is dominated by the time to execute the ex-
ternal products. Therefore, we compare the elapsed
time to execute as many external products as are re-
quired to execute one LUT evaluation.

We implemented the external products with Sage-
Math 10.3 (The Sage Developers, 2024), which works
on Python 3.11.8.

The execution environment was a Mac mini with
an Apple M2 CPU, 24 GB RAM, and macOS Ven-
tura 13.6.3. We employed the quotient ring structure
pre-implemented in SageMath to implement RLWE,
RGSW, NTRU and NTRU′ ciphertexts.

The details of our experiments were as follows.
We implemented the external products of both PEGA-
SUS and Xiang’s NTRU-based algorithm. We exe-
cuted as many external products as necessary for each
algorithm, in other words, 2048 times for PEGASUS
and 1025 times for Xiang’s NTRU-based algorithm.
We repeated this experiment 100 times to measure the
mean time to execute one LUT evaluation.

The experimental results we obtained are shown
in Table 2. The mean time for PEGASUS is 67.03
seconds while that for the NTRU is 43.28 seconds.

Table 2: Experimental results of mean time and standard
deviation to execute as many external products as required
to perform one LUT evaluation.

mean time [s] std. dev.[s]
PEGASUS 67.03 0.52
PEGASUS+NTRU 43.28 5.82

This means that replacing the GSW-based algorithm
of PEGASUS with the NTRU-based algorithm im-
proves the execution time by a factor of 1.55 times.
Although our theoretical calculation showed that this
replacement would reduce 96% of the execution time,
the experimental results do not show such a reduc-
tion. This is considered to be because of the dif-
ference in the time required for polynomial multipli-
cations. The 25 times acceleration of our proposed
method consists of 16 times acceleration of a sin-
gle polynomial multiplication and 1.6 times improve-
ment in the number of polynomial multiplications.
Concretely, the NTRU-based LUT evaluation requires
5125 polynomial multiplications and each polynomial
multiplication requires 10242 integer multiplications
while the PEGASUS scheme requires 8192 polyno-
mial multiplications and each polynomial multiplica-
tion requires 40962 integer multiplications. As we
implemented the NTRU and RGSW using the poly-
nomial structure of SageMath, the polynomial multi-
plication is optimized. This leads to a slight differ-
ence between polynomial multiplications with differ-
ent degrees. Hence, the difference of the two schemes
only occurs in the number of polynomial multiplica-
tions. The theoretical improvement of the number
of polynomial multiplications is approximately 1.60
(= 8192/5125). This explains our experimental im-
provement.

5 CONCLUSION

We have discussed the effects of applying Xiang’s
NTRU-based GSW encryption to PEGASUS. We the-
oretically confirmed that this application reduces the
key size for LUT by 43% and the number of inte-
ger multiplications of external products by 96% by
replacing the LUT evaluation of PEGASUS with Xi-
ang’s NTRU-based blind rotation technique. We also
confirmed by experiments that NTRU-based GSW-
like encryption improves PEGASUS scheme by a fac-
tor of 1.55 times.

We employed the original parameters to analyze
the effects of the replacement of the look-up table
evaluation of the original PEGASUS scheme with
the NTRU-based look-up table evaluation. However,
it may be possible to make the scheme more effi-
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cient by optimizing the parameter set. Our future
work is to optimize the parameters of both PEGASUS
and NTRU-based schemes and compare their perfor-
mances.
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