Empirical Evaluation of Memory-Erasure Protocols

Reynaldo Gil-Pons' @2, Sjouke Mauw!®° and Rolando Trujillo-Rasua®®°

YUniversity of Luxembourg, 6 Avenue de la Fonte, Belval, Luxembourg

2Universitat Rovira i Virgili, 26 Avinguda dels Paisos Catalans, Tarragona, Spain

Keywords: Security Protocol, Memory Erasure, Malware, Internet-of-Things, Empirical Evaluation.

Abstract: Software-based memory-erasure protocols are two-party communication protocols where a verifier instructs a
computational device to erase its memory and send a proof of erasure. They aim at guaranteeing that low-cost
IoT devices are free of malware by putting them back into a safe state without requiring secure hardware
or physical manipulation of the device. Several software-based memory-erasure protocols have been intro-
duced and theoretically analysed. Yet, many of them have not been tested for their feasibility, performance
and security on real devices, which hinders their industry adoption. This article reports on the first empirical
analysis of software-based memory-erasure protocols with respect to their security, erasure guarantees, and
performance. The experimental setup consists of 3 modern IoT devices with different computational capabili-
ties, 7 protocols, 6 hash-function implementations, and various performance and security criteria. Our results
indicate that existing software-based memory-erasure protocols are feasible, although slow devices may take
several seconds to erase their memory and generate a proof of erasure. We found that no protocol dominates
across all empirical settings, defined by the computational power and memory size of the device, the network
speed, and the required level of security. Interestingly, network speed and hidden constants within the protocol
specification played a more prominent role in the performance of these protocols than anticipated based on
the related literature. We provide an evaluation framework that, given a desired level of security, determines

which protocols offer the best trade-off between performance and erasure guarantees.

1 INTRODUCTION

The low-cost characteristics of some classes of IoT
(Internet of Things) devices and the ecosystem in
which they operate make them particularly vulnerable
to malware infection and an attractive target for cyber-
attackers. Defenders, in a context of limited compu-
tational resources, cannot rely on health-monitoring
software installed on the IoT device to fight malware.
Instead, defenders ought to resort to security services
provided by an external agent that, by interacting with
the IoT device and observing its behaviour, can con-
clude whether the device is malware-free.

There exist two fundamental security services to
ensure that computationally-constrained devices are
malware-free: memory attestation and memory era-
sure. The former starts from an expectation on
the contents of a device’s memory and the assump-
tion that its contents are malware-free, followed by

https://orcid.org/0000-0003-1804-3319
@ nhttps://orcid.org/0000-0002-2818-4433
¢ https://orcid.org/0000-0002-8714-4626

Gil-Pons, R., Mauw, S. and Trujillo-Rasua, R.
Empirical Evaluation of Memory-Erasure Protocols.
DOI: 10.5220/0013554800003979

a mechanism to verify the integrity of the device’s
memory. That is, memory attestation checks whether
a device’s memory is in a known safe state. Mem-
ory erasure, instead, replaces the contents of a de-
vice’s memory with random data, effectively remov-
ing all information, including malware, from the de-
vice. Both memory attestation and memory erasure
have their use-cases. Our focus in this article is on
memory erasure, which allows defenders to remove
malware without making assumptions on the contents
of the device’s memory. This service is particularly
useful for updating the memory of a device with new
software securely, allowing the device to be rede-
ployed elsewhere.

Memory-erasure mechanisms that depend on hav-
ing physical access to the IoT device or using ded-
icated secure hardware on the IoT device, such as
a Trusted Platform Module, have the potential to
offer high security assurances. However, the first
requirement makes memory erasure unscalable and
time-consuming, while the second requirement makes
memory erasure expensive or infeasible in low-cost

209

In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 209-220

ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

devices. Mechanisms requiring none of those fea-
tures, which are, hence, suitable for low-cost IoT de-
vices, are called software-based memory-erasure pro-
tocols. In theory, these protocols have the advantage
of being able to operate on low-cost, even legacy, de-
vices. In practice, they have not been thoroughly eval-
uated for their feasibility on off-the-shelf IoT devices.

Before introducing software-based memory era-
sure, it is important to make a distinction between per-
manent memory erasure (a.k.a. data destruction) and
the type of memory erasure we are referring to. Per-
manent memory erasure requires the erasure process
to be irreversible against advanced forensics tech-
niques (Reardon et al., 2013), including those that
rely on physical access to the device. Irreversibility,
however, is not necessarily required for malware re-
moval, hence the literature on memory erasure (Per-
ito and Tsudik, 2010; Karvelas and Kiayias, 2014;
Karame and Li, 2015) where our work fits in does not
aim at irreversibility.

Software-based memory erasure is a two-party
communication protocol executed between a veri-
fier, acting as a powerful computational device, and
a prover, acting as a devise with limited computa-
tional resources. The role of the verifier is to in-
struct the prover to fill its memory with random
data and verify the erasure proof generated by the
prover. Even though several software-based memory-
erasure protocols have been proposed, they have
never been compared within the same experimental
setting. Moreover, those that have been implemented
and tested on real-world devices (Perito and Tsudik,
2010; Karame and Li, 2015; Ammar et al., 2018),
have not made their source-code publicly available
for further scrutiny and analysis. Hence, it is still an
open question how existing software-based memory-
erasure protocols perform on low-cost IoT devices
and how they compare in terms of computational and
communication complexity, erasure guarantees, and
security. This article provides an answer, which we
argue is a necessary step towards the adoption of
software-based memory-erasure protocols by the IoT
industry.

A brief discussion on related work. The special char-
acteristics of constrained IoT devices have pushed
practitioners to find the most performant and effi-
cient algorithms for each task. Ultimately, testing the
behaviour of an algorithm requires deploying them
on real devices and conducting performance evalu-
ations. This has been done recently for lightweight
hash functions (Rao and Prema, 2019), cryptographic
algorithms (Silva et al., 2024), and data protection
mechanisms (Lachner and Dustdar, 2019). However,
as pointed out by recent surveys on the topic (Banks

210

et al., 2021; Kuang et al., 2022), such level of scrutiny
has not yet been achieved for memory erasure and
memory attestation. That is not to say that these pro-
tocols have never been compared with each other. For
example, Aman et al. (Aman et al., 2020) compare
their memory-attestation protocol against three alter-
natives from the literature. In the case of memory
erasure, Karame and Li (Karame and Li, 2015) and
Perito and Tsudik (Perito and Tsudik, 2010) evalu-
ate the performance of their protocols on off-the-shelf
IoT devices, but do not directly compare them, nor
implement other proposals. A common issue of these
examples is the lack of available open-source imple-
mentations, making it hard to reproduce their evalu-
ation and to comprehensively compare existing pro-
posals within a common empirical setting.
Contributions. This article provides the first compari-
son and evaluation of software-based memory-erasure
protocols by directly observing and analysing their
performance in a real-world experimental setting. We
claim this to be a necessary step towards their adop-
tion by industry and their deployment in the real-
world. Crucially, we aim at answering the follow-
ing questions about existing software-based memory-
erasure protocols:

1. Can they be implemented in low-cost IoT de-
vices? If so, what is their memory footprint and
execution time?

2. How much is their execution time affected by the
computational power of the device, the size of the
memory to erase, the implementation of the un-
derlying hash function, and the speed of the com-
munication channel?

3. Is there a dominant protocol in terms of perfor-
mance and security, i.e. a protocol that performs
better than the others in all settings? If not, what
are the best trade-offs?

Our experimental setting consists of three off-the-
shelf IoT devices from the microcontroller unit fam-
ily MCU, namely F5529, FR5994 and CC2652. The
first one does not have cryptographic accelerator sup-
port, the second one comes with AES built-in, and
the third one supports AES and SHA256. Aiming at
a more comprehensive evaluation, we provided those
three devices with software-based implementations of
various prominent hash functions.

We implemented seven software-based memory-
erasure protocols and evaluated them in terms of per-
formance, security and erasure guarantees. In par-
ticular, we measured the overall time of the proto-
col execution in relation to the speed of the commu-
nication channel, the device’s computational charac-
teristics and the choice of the hash function imple-

mentation. We placed the obtained performance val-
ues alongside other relevant protocol features, such as
their security and erasure guarantees, with the goal of
determining the protocols offering optimal trade-offs.
Specifically, given a desired security level, we iden-
tify which protocols strike the best balance between
performance and erasure assurances.

Structure of the article. 'The next section (Sec-
tion 2) describes existing software-based memory-
erasure protocols, highlights their most relevant fea-
tures, and provides a comparison and analysis based
on those features. The remainder of this article is ded-
icated to extending that analysis with empirical data
on the execution time of memory-erasure protocols,
with the goal of determining their feasibility and pro-
viding a more detailed comparison. Section 3 pro-
vides our experimental setup, Section 4 reports on the
results obtained after running the experiments, and
Section 5 discusses the results. Concluding remarks
are given in Section 6.

2 SOFTWARE-BASED MEMORY
ERASURE: A SURVEY

The earliest software-based protocol for secure mem-
ory erasure was introduced by Perito and Tsudik in
2010 (Perito and Tsudik, 2010). At the start of the
protocol, the verifier sends a fresh random value of
the same size as the prover’s memory. The prover
computes the HMAC of this value, using as key the
last bits received. The security proof of this protocol
relies on the fact that, to compute the HMAC on a ran-
dom value, the prover needs to first receive the key.
The proof of security is informal, though, and does
not specify which assumptions the HMAC function
must fulfil to make the protocol secure. This proto-
col, in addition, has the drawback of sending over the
network a message as large as the prover’s memory.
An improvement upon Perito and Tsudik’s protocol
in terms of efficiency was later proposed by Karame
and Li (Karame and Li, 2015).

To reduce the size of the random value sent over
the network by the verifier, Dziembowski, Kazana
and Wichs (Dziembowski et al., 2011) introduced a
software-based memory-erasure protocol that, given
a nonce of standard size, asks the prover to store in
memory a random labelling function. Ideally, this
step requires the use of the entire memory of the
prover. The verifier then challenges the prover to
quickly give the output of the labelling function on a
number of inputs. Dziembowski, Kazana and Wichs
provide an elegant security proof based on a reduc-
tion to a combinatorial game known as pebbling, plac-

Empirical Evaluation of Memory-Erasure Protocols

ing the first stone for the study of memory-erasure
protocols whose security depends on the structure
of a graph-based labelling function. The drawback
of their protocol is that the computational complex-
ity of building the labelling function is quadratic in
terms of the memory size of the prover, which might
quickly become inefficient as the prover’s memory
increases. This computational complexity was re-
duced by Karvelas and Kiayias (Karvelas and Ki-
ayias, 2014), using a labelling function whose un-
derlying graph has quasilinear size in terms of the
memory size of the prover. A major limitation of
this design is that it can only provably erase 31—2 of
the prover’s memory. This means that Karvelas and
Kiayias’s protocol offers a lower erasure guarantee
than the protocols we have reviewed so far. The work
in (Karvelas and Kiayias, 2014) also introduces an
erasure protocol that is not based on graphs, but on
hard-to-invert hash functions. The security of this
protocol is proven assuming that the adversary cannot
query a hash function during the memory-challenge
phase. We are not aware how this could be enforced
in practice.

A key security assumption made by all software-
based memory-erasure protocols up to 2019 is that
prover and verifier should run the protocol in iso-
lation, i.e. without interference from an external
attacker. This assumption is cumbersome to en-
force successfully for wireless communication, lim-
iting the use of software-based memory erasure to
rather specific use-cases. Trujillo-Rasua questioned
in (Trujillo-Rasua, 2019) whether such assumption
is necessary, offering a symbolic security proof of a
memory-erasure protocol that uses distance bounding
to thwart collusion between the prover and an exter-
nal conspirator. This work, however, left open the
question of how to bound the probability of success of
an adversary (i.e. malware colluding with an external
conspirator) passing the memory-erasure test without
removing the malware.

In 2024, Bursuc et al. (Bursuc et al., 2024a; Bur-
suc et al., 2024b) introduced the first memory-erasure
protocols with provable security bounds that do not
depend on the isolation assumption. Two of the pro-
tocols follow the methodology established in (Dziem-
bowski et al., 2011; Karvelas and Kiayias, 2014),
consisting of the construction of a graph-based la-
belling function and an analysis of the protocol’s se-
curity via a reduction to a graph-pebbling game. The
third protocol is an extension of Perito and Tsudik’s
protocol with a distance-bounding technique. The
goal is to guarantee that the prover does not re-
ceive external help during the execution of the pro-
tocol. This protocol is proven secure unconditionally,

211

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

while those based on graph-based labelling functions
are proven secure within the random oracle model.
Like in (Trujillo-Rasua, 2019), the three protocols
introduced in (Bursuc et al., 2024a; Bursuc et al.,
2024b) use a distance-bounding mechanism consist-
ing of several round-trip-time measurements, each re-
quiring a round of communication between prover
and verifier. The number of round-trip-time measure-
ments thus become a security parameter in these pro-
tocols, which we denote r in Table 1.

The SPEED protocol (Ammar et al., 2018) per-
forms memory erasure using a Trusted Software Mod-
ule (TSM) as a lightweight alternative to hardware se-
curity modules. In practice, it might add a significant
overhead to any program running on the platform, as
the software-based memory protection continuously
monitors the platform to ensure memory isolation at
all times. Since memory erasure can start from any
state of the device, it is more desirable to avoid im-
posing constraints on programs running on it. SPEED
uses distance-bounding to ensure that only a nearby
verifier can start the memory-erasure procedure. This
does not make the protocol secure in the presence
of external attackers, unless the security of the TSM
guarantees that the prover device can only communi-
cate with the verifier during the run of SPEED.

We summarize our study of the literature on
software-based memory-erasure protocols in Table 1.
The table shows to what extent each of the protocols
we have discussed satisfies the following relevant fea-
tures, as claimed in the literature.

* Proof: There exists a formal proof of security,
which gives security guarantees with mathemat-
ical rigour.

* Prob.: There exists a formula to bound the proba-
bility of success of the attacker given the device
characteristics and protocol parameters. Unlike
asymptotic analysis, this feature allows the ana-
lyst to measure the actual security of the protocol
on a given device.

* No-Isolation: The protocol does not assume that
the device is isolated during the execution of the
protocol, meaning that the protocol resists net-
work attacks to some extent.

* Erasure: The proportion of the device’s mem-
ory that can be erased. Together with security
guarantees, this is the most important feature of
a memory-erasure protocol.

* Time: The time complexity of running the proto-
col.

* Comm.: The communication complexity of run-
ning the protocol.

212

From Table 1 one can already draw a prelimi-
nary and theoretical comparison of software-based
memory-erasure protocols. The series of protocols
PoSEjight, PoSEgrapn and PoSE adom are the only
ones that come with a formal security proof, a bound
on the probability of success of the attacker, and a
mechanism to operate without relying on the isola-
tion assumption. Their erasure guarantee, however, is
not asymptotically close to 1 for realistic values of r.
Further, it is unclear how the parameter r affects their
computational and communicational complexity in
practice. The other two protocols that resist network
attacks (no-isolation) are TR and SPEED. The for-
mer provides no erasure guarantees, though, while the
latter comes with no security proof and has the draw-
back of relying on a device-specific Trusted Software
Platform that negatively impacts the performance of
all programs running on the device. The DFKP pro-
tocol does ensure full memory erasure while, at the
same time, it comes with a formal security proof.
However, it offers the worst computational complex-
ity amongst all protocols, hinting that it might be a
viable option only for devices with low memory size.
This computational complexity is improved upon by
KK, but at the cost of erasing only a small fraction of
the device’s memory. Lastly, KL and PT offer opti-
mal computational complexity, but offer neither a for-
mal proof of security nor a bound on the adversary’s
success probability.

To enable a more detailed and accurate compar-
ison of the protocols above, it is necessary to obtain
empirical data on their performance (last two columns
of Table 1). That is the goal of the remainder of this
article.

3 EXPERIMENTAL SETUP

In this section we describe the procedure we have fol-
lowed to implement and test the protocols of inter-
est, providing all the necessary details for the repro-
ducibility of the experiments.

3.1 IoT Proving Devices, Verifier Device
and Communication Channel

For our experiments we considered 3 IoT microcon-
trollers produced by Texas Instruments with differ-
ent characteristics: FR5994, F5529, CC2652. These
devices acted as provers in the memory-erasure pro-
tocol. All prover implementations were done in
Portable C, making them usable on any platform or
architecture. To create the binaries, we configured the
compiler to optimize for code size. A personal Dell

Empirical Evaluation of Memory-Erasure Protocols

Table 1: Characteristics of the implemented memory-erasure protocols. The asymptotic bounds for the execution time and
communication complexity are given in terms of the memory size (denoted n) and the number of round-trip measurements
(denoted r). The erasure guarantees of the three protocols in (Bursuc et al., 2024a; Bursuc et al., 2024b) depend on r, n
and a bound p on the desired probability of success of the attacker. As an example, given r =71, n = 8KB and p = 1073,

f(r,n,p)=0.9.

DFKP (Dziembowski et al., 2011)
KL (Karame and Li, 2015)

KK (Karvelas and Kiayias, 2014)
PT (Perito and Tsudik, 2010)
PoSEgpn (Bursuc et al., 2024a)
PoSEjjgn¢ (Bursuc et al., 2024b)
PoSE andom (Bursuc et al., 2024a)
TR (Trujillo-Rasua, 2019)

X NSNS IXNS xS

XX NN N X X% %%

Proof Prob. No-Isolation Erasure Time Comm.
X 1 On? o1
X 1 On On
X = O(n) 01
X 1 On On
v f(rn,p) On+r) Or
v f(rn,p) On+r Or
v f(rn,p) On+r On+r
v X On+r Or
v 1 On o1

SPEED (Ammar et al., 2018)

laptop acted as verifier, running Python 3 implemen-
tations of each protocol. The Bluetooth protocol was
used as communication channel between the verifier
and the prover.

Table 2 depicts the characteristics of each de-
vice, namely memory (code size I+ data size 2),
maximum clock speed, on-device crypto accelerators,
Bluetooth version, architecture, microcontroller unit
family (MCU), and IoT class (Bormann et al., 2014).
Notice that some devices have hardware accelerators.
For these, we also experimented using a hardware-
accelerated version of the hash function.

3.2 Hash Function Implementations

Most software-based memory-erasure protocols in-
voke multiple hash function calls, while at the same
time being independent of the particular hash function
that was implemented. Hence, given their prominent
role, we provide different hash function implementa-
tions to compare their performance and memory re-
quirements.

We selected these functions according to popular-
ity, amenability to software-based implementations,
and applicability to the IoT domain. All of them cal-
culate a digest of 256 bits. The following hash func-
tions were selected:

* ascon (Dobraunig et al., 2021): a sponge-based
hash function selected in the Lightweight Cryp-
tography Standardization Process by NIST?.

ICode size refers to the amount of memory occupied
by the executable code running on an IoT device. This in-
cludes, for example, applications and libraries.

2Data size refers to the memory used by the data used
during execution. This includes, for example, variables and
buffers used by the running code.

3https://csre.nist.gov/News/2023/
lightweight-cryptography-nist-selects-ascon

* blake2 (Aumasson et al.,, 2013): a widely de-
ployed and highly efficient hash function. It was
designed to be especially performant in software
implementations.

* blake3*: a recent improvement on the blake2
hash function which is claimed to be much faster
while offering similar security guarantees. This is
the fastest (in software implementations) crypto-
graphic hash function we could find.

e sha256 (Eastlake and Hansen, 2006): a well
known and widely used hash function based on
the Merkle-Damgard construction proposed by
NIST. Up to this day, it is still considered se-
cure, although it is prone to length extension at-
tacks (Tsudik, 1992).

« aeshash’: an unpublished hash function whose
core utilizes AES instructions. It was selected
mainly to check how much speed-up could be
achieved in a device with only an AES accelerator
(FR5994). As far as we are aware, this hash func-
tion has not been thoroughly analysed, so it does
not offer (yet) strong security guarantees, and it is
only used here for the purpose mentioned before.

Table 3 shows the memory footprint (in bytes) of
the hash implementations on each device. The lower
the memory footprint the better, as these bytes cannot
be erased during the execution of the protocol. One
surprising result is that the memory footprint of the
sha256hw function, which uses the hardware acceler-
ator, actually occupies more space than the software-
based implementation sha256. We conjecture this
must be the result of the extra code necessary to ac-
cess the hardware module. In the case of the hash
implementation used by PT, which originally uses an

“https://github.com/BLAKE3- team/BLAKE3-specs/
blob/master/blake3.pdf

Shttps://csrc.nist.rip/groups/ST/toolkit/BCM/
documents/proposedmodes/aes-hash/aeshash.pdf

213

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

Table 2: Microcontroller characteristics.

Device Memory Clock Crypto
F5529 (128 +10) KB 25MH:z —
FR5994 (256 +8)KB 16MHz AES

BT Arch MCU IoT
2 RISC-16 MSP430 Class 1
2 RISC-16 MSP430 Class 1/2

CC2652 (352+88)KB 48MHz AES,SHA2 5.2 RISC-32 Arm Cortex-M Class 2

HMAC instantiated with sha256, the memory occu-
pied by the hash function is not shown in the table,
because the implementation used was tightly coupled
with the HMAC routine, making it incomparable to
the others.

The memory footprint of each hash function varies
according to the device, due to the use of C implemen-
tations optimized for each architecture. For exam-
ple, the blake2 implementation used for the CC2652
is optimized for the 32 bit architecture, which is not
suitable for the others. For some hash functions this
leads to lower sizes (blake2, blake3 and sha256) in the
C(C2652 with a 32bit architecture, or lower sizes (the
rest) in the F5529 and FR5994 with a 16bit architec-
ture. Taking into account the three devices, sha256 is
the hash function with the lowest memory footprint,
followed by ascon and aeshash.

For reproducibility purposes, we remark that, to
measure the memory footprint of the hash function
implementations on each device, we used as baseline
a trivial hash function with minimal memory foot-
print. This allows us to measure the memory foot-
print of a hash function on a device by comparing it
against the implementation of the trivial hash function
on the same device. We measure memory in this way
to ensure (i) that the compiler code optimization rou-
tine does not remove the hash function and (ii) that all
hash functions implementations share the rest of the
program code.

3.3 Protocol Selection

Out of the 9 protocols described in Section 2, we se-
lected 7 protocols for their implementation and evalu-
ation. SPEED (Ammar et al., 2018) was discarded be-
cause it relies on a memory-isolation technique that is
neither open-source nor fully specified in the original
article. We also discarded the protocol in (Trujillo-
Rasua, 2019) because the protocol specification is
given symbolically, abstracting away from important
implementation details, such as the number of round-
trip-time measurements, the size of the nonces, etc.
Even though the author in (Trujillo-Rasua, 2019) of-
fers an instantiation of the symbolic protocol speci-
fication, it leaves as future work the analysis of its
security and erasure guarantees.

We note that the protocols PoSEjignt, POSEgrapn
and PoSE andgom (Bursuc et al., 2024a; Bursuc et al.,

214

2024b), depend on an additional security parameter
r that establishes the number of round-trip-time mea-
surements performed by the protocol. For our empiri-
cal setting, we set » = 71, which gives an erasure guar-
antee of 90% of the device’s memory with probability
(1—1073). If one wishes to erase 1/32 of the memory
only, like in the KK protocol, then it would be suffi-
cient to set r = 3, which is efficient. If one wishes to
erase 99% of the device’s memory, like in DFKP, KL
and PT, then the protocols in (Bursuc et al., 2024a;
Bursuc et al., 2024b) would need to execute hundreds
of round-trip-time measurements, which is inefficient.
We thus believe that » = 71 strikes a good balance
between erasure guarantees and performance. This
means that, for the remainder of this article, when
we refer to POSEgraph, PoSEjjgh¢ and POSE andom, we
are assuming that they all execute 71 round-trip-time
measurements.

In Table 4, we show the memory footprint of
our protocol implementations for each combination
of protocol and device. To calculate the memory
footprint of a protocol on a device, we considered a
dummy implementation of each protocol, that, while
sending messages of the same size and in the same
order, occupies a negligible amount of memory. The
rest of the code remained exactly the same. Compar-
ing this dummy implementation with the original one
allowed us to compute the actual size of each proto-
col implementation taking into account compiler op-
timizations.

Notice that the values in Table 4 vary between de-
vices because their architectures are different. An-
other reason for the size variation is that we used the
best available implementation for each hash function
and architecture. In general, the CC2652 implemen-
tations take more space than the F5529 or FR5994
ones. This is probably due to the use of byte size vari-
ables throughout the implementations, which can be
more efficiently represented in the 16 bits architecture
than in the 32 bits architecture. Taking into account
the three devices, the protocols with smaller memory
footprint are PT and PoSE andom-

3.4 Memory to Be Erased

To be able to run all protocols in a reasonable time
and avoid the need for device-specific engineering,
while erasing the same amount of memory with each

Empirical Evaluation of Memory-Erasure Protocols

Table 3: Memory footprint of the hash function in device CC2652 while attempting to erase 2KB.

aeshash ascon

DFKP 1250 5860
KL 1245 5886
KK 1253 5866
PT — —

PoSEgrapn 1251 5868
POSE]ight 1251 5867
PoSE andom — —

blake2 blake3 sha256 sha256hw
6365 21177 1043 1397
6364 21216 1038 1402
6364 21158 1043 1391

— — 3730 —

6367 21182 1044 1401
6366 21195 1044 1402

Table 4: Memory footprint (in bytes) of the protocol implementations on each device.
DFKP KL KK PT PoSEgpn PoSEjight POSErandom

CC2652 620 1023 1343 274
F5529 777 1343 1868 356
FR5994 781 1353 1876 357

protocol, we set up our experiments in such a way
that a fixed portion of the memory of each device is
erased. Our implementation creates an array with a
fixed size at compile time, and this array is exactly
what is erased while running the protocol. This makes
our implementation simple and device-independent.
Because the array must fit in the data size of each de-
vice, we restrict ourselves to the following memory
sizes. For the devices F5529 and FR5994 we erase
exactly 2KB, and for CC2652 we erase exactly 2 KB,
4 KB and 8 KB. Increasing the maximum erased size
in each device beyond the limits mentioned before,
led to the risk of overwriting memory addresses used
during execution, therefore making it unfeasible.

We notice that our implementations are limited
to performance testing, and will need to be adapted
for deployment in a real setting. The reason being
that, in practice, memory erasure protocols define the
segment of memory to be erased prior compilation,
rather than letting the compiler decides. Doing so,
however, requires device-dependent implementations,
which we considered would add unnecessary com-
plexity to the comparison task.

3.5 Distance

The distance between the device (prover) and the lap-
top (verifier) was approximately 1 meter. Each run
of the protocol was done independently, as the main
objective was to compare the protocols against each
other in the simplest possible setting.

4 EXPERIMENTAL RESULTS

This section reports on the time each combination of
protocol and hash function implementation takes to

1182 1181 312
1610 1644 415
1610 1644 416

(i) erase a fixed amount of memory on a device and
(ii) to generate a proof of erasure.

4.1 Impact of the Hash Function
Implementations

Most protocols under analysis, namely
DFKP,KL,KK,PoSEgrapn and PoSEjigne, re-
sort to several hash function calls to fill the device’s
memory with fresh data. This contrasts with the
approach followed by PT and PoSE,andom Where the
device’s memory is filled with random data sent by
the verifier. Hence, we start measuring the impact of
the hash function implementation on the execution
time of the former class of protocols. We do so
by measuring the execution time of the protocols
right until the point where the device’s memory has
been erased, thereby ignoring the verification of
the proof of erasure. We will refer to this (partial)
execution time by erasure time, to distinguish it
from the verification time where the verifier checks
the erasure proof, and from the total execution time
which accounts for both: the erasure and verification
time.

Tables 5 to 7 display erasure time values for ev-
ery combination of protocol and hash function, each
table focusing on a given device and memory size to
be erased. Notice that the protocols PoSEapdom and
PT do not appear in the tables, as they do not call the
hash function to fill the device’s memory.

We observe that it is notably faster to erase mem-
ory when the device has a higher clock frequency,
as can be seen when comparing performance in the
CC2652 with respect to the FF5529 and the FR5994
devices. Amongst the hash functions, sha265hw was
the fastest in the CC2652 device, which was expected
as it uses the hardware accelerator. One surprising
result is that ascon, which is meant to be used in

215

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

Table 5: Erasure time in seconds on device CC2652 while attempting to erase 8KB.

aeshash ascon blake2 blake3 sha256 sha256hw
DFKP 109 315 5.1 3.8 73 1.7
KL 0.0 0.0 0.0 0.0 0.0 0.0
KK 74 209 3.6 2.7 5.1 1.2
PoSEgaph 14.8 60.0 5.9 4.4 8.7 2.1
PoSEjjght 44 200 2.0 1.3 2.6 0.6

Table 6: Erasure time in seconds on device FR5994 while
attempting to erase 2KB.

aeshash ascon blake2 blake3 sha256
DFKP 3.1 805 20.1 15.6 27.8
KL 0.1 0.3 0.1 0.1 0.2
KK 49 130.8 34.5 26.9 48.1
PoSEgpapn 8.6 218.7 56.7 44.0 78.5
PoSEjjgh¢ 4.6 108.7 28.7 22.3 39.5

Table 7: Erasure time in seconds on device F5529 while
attempting to erase 2KB.

ascon blake2 blake3 sha256
DFKP 47.5 12.6 9.9 174
KL 0.7 0.6 0.6 0.6
KK 76.3 21.2 16.5 30.1

PoSEgrapn 1289 340 263 48.2
PoSE;jght 64.1 17.5 13.6 24.6

lightweight cryptography, had a consistently worst
performance. In every device blake3 was faster than
blake2, although the difference is around 25 percent
only. Aeshash was much faster than other hash func-
tions in the FR5994 device, as expected by the us-
age of the AES hardware module present on this de-
vice. On the contrary, it performed worse than blake2,
blake3 and even sha256 in the CC2652 device. There-
fore, we deduce that if the device is fast enough, pure
software implementations might be more performant
than hybrid implementations such as the one used in
aeshash.

To conclude, the impact of the hash function im-
plementation is high in most of the protocols anal-
ysed, with the exceptions of PT and PoSE;andom- In-
terestingly, the smaller erasure time on each device
is achieved with a different hash function. This sug-
gests that, before deploying a memory-erasure proto-
col on a given device, it is worth testing it with dif-
ferent hash functions implementations. Lastly, cross-
checking Table 3 (memory cost) with Tables 5 to 7
(computational cost), we conclude that (i) aeshash is
the fastest and smaller hash function implementation
on device FR5994, (ii) sha256 and sha256hw outper-
form the other hash functions on the device CC2652,
and (iii) on the device F5529 there is a clear looser,
namely ascon, but no clear winner.

216

4.2 Total Execution Time

Next, we measure the total execution time of each
combination of protocol and hash function implemen-
tation. This is admittedly the most important perfor-
mance variable in our experiments. The values can be
found in Tables 8 to 10, each table focusing on a given
device and memory size to be erased.

In the CC2652 device, the fastest protocols were
KK and DFKP, despite the latter being the one with
worst (asymptotic) time complexity. We believe this
to be possible because (i) the constants hidden in the
asymptotic notation are very small for this protocol
and somewhat larger for the others, and (ii) the size
of the erased memory is small. Looking at the proto-
cols PT and PoSE;andom, Which follow the approach
of sending a large random nonce over the network,
we observe that they perform poorly in comparison to
the others. Interestingly, that is not case if we shift
our attention to the devices FR5994 and F5529. In
those devices, PT and PoSE; pdom are amongst the
fastest protocols. This difference in result can be
explained by the version of the Bluetooth protocol
used. The CC2652 device has a Bluetooth module
included, able to run version 5.2, which means that in
each challenge-response round the message needs to
go through the whole Bluetooth stack. On the other
hand, for the FR5994 and F5529 devices, a simple
HC-05 module was used, which makes the Bluetooth
protocol overhead much smaller, as it does not sup-
port as many features.

A summary of the results just described is given
in Figure 1. In that figure, we display the total execu-
tion time of each protocol on each device by choosing
the hash function implementation that gives the fastest
execution time. From the figure we derive that the
choice of the most performant (fastest) protocol for a
device depends on the specific conditions in which it
will operate. In particular, clock speed, network cost
and memory size determine which protocol is more
suitable. Cross-checking Table 4 (memory cost) with
Figure 1 (computational cost), we conclude that PT
offers an optimal trade-off between memory footprint
and execution time on the devices F5529 and FR5994;
other good alternatives are DFKP and PoSE andom-
In the CC2652 the winner is DFKP.

Empirical Evaluation of Memory-Erasure Protocols

Table 8: Total execution time in seconds on device CC2652 while attempting to erase 8KB.

aeshash ascon blake2 blake3 none sha256 sha256hw
DFKP 11.1 317 53 4.0 — 7.5 1.9
KL 234 234 23.3 23.3 — 234 23.3
KK 76 21.1 3.8 2.9 — 5.3 1.3
PT — — — — — 23.2 —
PoSEgrapn 214 66.6 12.5 11.0 — 153 8.7
PoSEjgnt 11.0 26.6 8.6 8.0 — 9.2 72
PoSEandom — — — — 297 — —
31.1 EEE DFKP
304 KK
. KL
= PT
POSEgraph
PoSEjignt
254 BN PoSE.ndom

204

Communication + Computation Time (seconds)

04

F5529

FR5994

CC2652

Figure 1: Total execution time in seconds, partitioned by communication time (striped) and computation time, using the best

hash function for each device.

Table 9: Total execution time in seconds on device FR5994
while attempting to erase 2KB. For PoSE . dom it Was 6.8
seconds.

aeshash ascon blake2 blake3 sha256
DFKP 3.2 80.7 20.2 15.7 27.9
KL 2.4 2.6 2.5 2.4 -2.5
KK 5.1 131.0 34.6 27.1 48.2
PT — — — — 2.4
PoSEgpapn 13.3 2234 61.4 48.7 83.4
PoSEjign¢ 9.3 1133 33.5 27.2 444

Table 10: Total execution time in seconds on device F5529
while attempting to erase 2KB. For PoSEadom it Was 6.8
seconds.

ascon blake2 blake3 sha256
DFKP 47.6 12.7 10.0 17.5
KL 3.0 2.9 2.9 2.9
KK 76.4 21.3 16.7 30.2
PT — — — 2.9
PoSEgrapn 133.5 38.7 31.1 52.9
PoSEjign¢ 68.9 22.1 18.3 29.3

4.3 How Much Does the Size of Memory
Impact the Execution Time?

A rather surprising result from the empirical data we
have presented so far is that the DFKP protocol seems

to perform very well across all devices, despite having
the worst asymptotic computational complexity. As
the memory to be erased increases, one should expect
a worse performance of DFKP in comparison to the
other protocols. That is precisely what we test next,
i.e. how the execution time changes as we increase
the memory size. We perform this experiment on the
CC2652 device, which allows us to erase up to 8KB
of memory. Figure 2 displays the results.

Observe that the execution time of most protocols
seem to increase linearly with the memory size. Ex-
ceptions are PoSEgpapn and PoSEjign¢, whose execu-
tion time is dominated by the communication time
rather than by the erasure time. The performance of
DFKEP on the erasure of 8KB of memory starts get-
ting worse than that of KK, supporting the hypothe-
sis that its quadratic computational complexity might
make it unsuitable for larger memory sizes. We ac-
knowledge, that further experiments are needed to de-
termine the memory threshold where DFKP starts be-
having worse than the other protocols.

217

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

Communication + Computation Time (seconds)

2KB

Figure 2: Total execution time in seconds on device CC2652, partitioned by communication time (striped) and computation

time, using the best hash function.

S COMPARATIVE ANALYSIS

Our results have not revealed a clear winner with re-
spect to performance. That said, PT, KL, KK and
DFKP seem to perform relatively well across all de-
vices. KK, however, provides little erasure guarantees
(only 1/32 of the memory is guaranteed to be erased),
while PT and KL come with no formal security proof.
Hence, our next step is to provide a holistic compar-
ison of the protocols, one where security and erasure
guarantees are considered alongside performance.

To reach our conclusions, we considered the fol-
lowing facts:

¢ Protocols KL, KK and PT offer a low level of
security

Protocols PoSE andom, POSEgraph, PoSEjignt and
DFKEP offer a high level of security. Note, though,
that the DFKP protocol is less secure than the oth-
ers given that it is not resistant against distant at-
tackers.

Protocols PoSEandgom, PT or KL require send-
ing the full memory of the device through the net-
work.

* DFKP has quadratic complexity, hence its perfor-
mance is worse when the amount of memory is
large.

Next, we provide a fine-grained analysis of the
results, by projecting them onto specific use-cases.
These results are summarized in Table 11. They were
obtained by extrapolating the behaviour of the proto-
cols in each device.

218

e When the network cost is high, communication
needs to be minimized, therefore protocols such
as PoSE andom, PT or KL are impractical.

— When memory is small, protocol DFKP is the
clear winner (see for example Table 10). Even
though it has quadratic complexity, its very low
constant factor makes it faster than the rest of
the protocols. We are considering that this pro-
tocol has high security even though it assumes
the isolation assumption. If security against
distant attackers is necessary, the winner for
this category is the PoSEjign¢ protocol.

— When memory is large, the most performant
protocols are PoSEjigye and KK, for high se-
curity and low security, respectively.

e When the network cost is low, the most perfor-
mant protocols are POSE;angom and PT, for high
security and low security, respectively. A surpris-
ing result in this setting is that KL had a very sim-
ilar performance to PT, which should not have
been the case as it was specifically designed to
improve its performance. If the device in ques-
tion has hardware accelerators, then for the high
security case it is possible that DFKP is faster, as
shown for example in Table 8.

It is noteworthy that the clock speed only changed
the selection of the winner when the network cost is
low and memory is small. In this scenario, the DFKP
protocol outperforms PoSE;spdom and KK outper-
forms PT (see for example Table 8).

We end our analysis by completing the compari-
son table given in Section 2 with the empirical data

Empirical Evaluation of Memory-Erasure Protocols

Table 11: Summary of results. For each combination of Network cost (high, low), Clock speed (high, low), Memory size
(large, small) and Security (high, low) the most performant protocol is shown.

Network cost
High Low
Clock speed Clock speed
High Low High Low
N ‘ Large | Security I]:I;g\f,] Poiﬁgight PO?(Eigght POSEI:)r%ndom POS]i:)l:%ndom
emory size -
. | High| DFKP DFKP DFKP PoSE andom
Small | Security 06— HFKP | DFKP KK PT

Table 12: Summary of results, contrasting performance with security. The last three columns show the total time on each
device, when using the highest possible memory to erase (in parentheses) and the hash function leading to the lowest execution

time.

Proof Prob. No-Isol.

DFKP (Dziembowski et al., 2011)
KL (Karame and Li, 2015)

KK (Karvelas and Kiayias, 2014)
PT (Perito and Tsudik, 2010)
PoSEgrapn (Bursuc et al., 2024a)
PoSEjigh: (Bursuc et al., 2024b)
PoSE 4ndom (Bursuc et al., 2024a)

AN NN IR
NN N X X% X% X%

obtained during our experiments. This provides an-
other angle to compare the results obtained across
devices, this time contrasting performance with the
same protocol features shown before in Table 1. The
results are displayed in Table 12. For a simpler visual
comparison amongst the protocols, we labelled each
cell in the table with a symbol that indicates whether
the protocol performs well (v'), average () or poorly
(X), relative to the other protocols. For the numerical
values in the table, we determined their labels by clus-
tering the values in a column in three clusters. Specifi-
cally, we used k-means for clustering. For example, in
the last column of the table, which gives the execution
time of each protocol on the CC2652 device when
erasing 8KB, there are three clusters that minimize
the sum of the squared Euclidean distances of each
point to its closest centroid, namely v = {1.9,1.3},

= {8.7,7.2} and X = {23.3,23.2,29.7}. The table
reinforces the analysis results we have mentioned ear-
lier. An interesting observation is that PoSEjgy¢ is the
only protocol that does not perform poorly on any of
the features considered.

6 CONCLUSIONS

In this paper we presented the outcome of our exper-
iments with various memory-erasure protocols in an
IoT setting. We implemented® 7 protocols, each with

Shttps://gitlab.com/uniluxembourg/fstm/dcs/satoss/
memory-erasure-experiments

NN N X X X X

Erasure Total Time
F55292KB FR59942KB CC26528KB

1 v 100 32 v 1.9 v

1 v 29 v 2.4 v 233 X
5 X 167 5. v 13 v

1 v 29 v 2.4 v 232 X
0.9 31,1 X 133 X 8.7
0.9 18.3 9.3 72
0.9 6.8 v 6.8 29.7 X

several variants depending on the hash function used,
and tested them on 3 modern IoT devices. Further-
more, we compared the security guarantees provided
by each protocol, and contrasted them with their per-
formance in a practical setting.

Our results revealed that current memory-erasure
protocols are practical, although erasing the full mem-
ory securely could take several minutes for the slower
devices. Network speed might be faster than local
computation, therefore aiming at minimal communi-
cation complexity is not always the best choice. For
protocols that use hash functions, the choice of the
hash function may dramatically influence the proto-
col performance and memory footprint. Finally, the
most performant protocol might not be the best ac-
cording to the asymptotic complexity analysis, as for
small memory sizes the hidden constants may play a
determining role.

ACKNOWLEDGEMENTS

Reynaldo Gil-Pons was funded by the Luxem-
bourg National Research Fund, Luxembourg, under
the grant AFR-PhD-14565947. Rolando Trujillo-
Rasua was supported by a Ramén y Cajal grant
(RYC2020-028954-1) from the Spanish Ministry of
Science and Innovation and the EU, as well as
by projects PROVTOPIA (PID2023-1500980B-100),
funded by MICIU/AEI/10.13039/501100011033 and
FEDER (EU), and HERMES, funded by INCIBE and
the EU’s NextGenerationEU/PRTR.

219

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

REFERENCES

Aman, M. N., Basheer, M. H., Dash, S., Wong, J. W., Xu, J.,
Lim, H. W., and Sikdar, B. (2020). HAtt: Hybrid Re-
mote Attestation for the Internet of Things With High
Availability. IEEE Internet of Things Journal.

Ammar, M., Daniels, W., Crispo, B., and Hughes, D.
(2018). Speed: Secure provable erasure for class-1
iot devices. In Eighth ACM Conference on Data and
Application Security and Privacy.

Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., and Win-
nerlein, C. (2013). BLAKE2: Simpler, Smaller, Fast
as MD5. In Applied Cryptography and Network Secu-
rity.

Banks, A., Kisiel, M., and Korsholm, P. (2021). Remote
Attestation: A Literature Review. ArXiv.

Bormann, C., Ersue, M., and Keranen, A. (2014). RFC
7228: Terminology for constrained-node networks.
IETF RFC.

Bursuc, S., Gil-Pons, R., Mauw, S., and Trujillo-Rasua, R.
(2024a). Software-based memory erasure with relaxed
isolation requirements. In Proc. 37th IEEE Computer
Security Foundations Symposium (CSF’24).

Bursuc, S., Gil-Pons, R., Mauw, S., and Trujillo-Rasua, R.
(2024b). Software-Based Memory Erasure with re-
laxed isolation requirements: Extended Version. arXiv
preprint arXiv:2401.06626.

Dobraunig, C., Eichlseder, M., Mendel, F., and Schliffer,
M. (2021). Ascon v1.2: Lightweight Authenticated
Encryption and Hashing. Journal of Cryptology.

Dziembowski, S., Kazana, T., and Wichs, D. (2011). One-
time computable self-erasing functions. In Theory of
Cryptography Conference.

Eastlake, D. and Hansen, T. (2006). US Secure Hash Al-
gorithms (SHA and HMAC-SHA). Technical Report
RFC4634, RFC Editor.

Karame, G. O. and Li, W. (2015). Secure erasure and code
update in legacy sensors. In International Conference
on Trust and Trustworthy Computing. Springer.

Karvelas, N. P. and Kiayias, A. (2014). Efficient proofs
of secure erasure. In International Conference on Se-
curity and Cryptography for Networks, Amalfi, Italy.
Springer.

Kuang, B., Fu, A., Susilo, W., Yu, S., and Gao, Y. (2022).
A survey of remote attestation in Internet of Things:
Attacks, countermeasures, and prospects. Computers
& Security.

Lachner, C. and Dustdar, S. (2019). A Performance Eval-
uation of Data Protection Mechanisms for Resource
Constrained IoT Devices. In 2019 IEEE International
Conference on Fog Computing (ICFC).

Perito, D. and Tsudik, G. (2010). Secure code update for
embedded devices via proofs of secure erasure. In Eu-
ropean Symposium on Research in Computer Security.
Springer.

Rao, V. and Prema, K. V. (2019). Comparative Study
of Lightweight Hashing Functions for Resource Con-
strained Devices of [oT. In 2019 4th CSITSS.

220

Reardon, J., Basin, D., and Capkun, S. (2013). SoK: Secure
data deletion. In 2013 IEEE Symposium on Security
and Privacy.

Silva, C., Cunha, V. A., Barraca, J. P., and Aguiar, R. L.
(2024). Analysis of the Cryptographic Algorithms in
IoT Communications. Information Systems Frontiers,
.

Trujillo-Rasua, R. (2019). Secure memory erasure in the
presence of man-in-the-middle attackers. Journal of
Information Security and Applications.

Tsudik, G. (1992). Message authentication with one-way
hash functions. ACM SIGCOMM Computer Commu-
nication Review.

