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Abstract:  The need for deep-sea mineral exploration has become more urgent as marine resources become increasingly 
scarce. In order to effectively identify marine geological anomalies and improve the accuracy of prospecting 
prediction, this study proposes a multi-modal data fusion method based on deep learning to achieve anomaly 
identification and prospecting prediction. Based on the fusion of multi-source data such as ocean seismic 
waves, magnetism, gravity, etc., the method adopts adaptive feature extraction technology, and uses a double-
branch prediction network to perform anomaly identification and mineral enrichment prediction. Finally, the 
results of this paper show that the system performs well in multi-regional seabed geological data, among 
which the enrichment of copper ore is 3.5%, and the enrichment of nickel ore is 1.2%. The comprehensive 
analysis shows that the model and its integrated platform have strong robustness in the complex marine 
environment, which can effectively improve the efficiency of mineral exploration.  

1 INTRODUCTION 

The exploitation of marine mineral resources has 
become a key component of the global economy, but 
due to the complexity of the deep-sea environment, 
traditional geological exploration methods have 
many challenges in terms of cost and efficiency. In 
order to solve the above problems, some researchers 
have proposed that deep-sea geological anomalies 
can be identified based on the joint analysis of 
magnetic and gravity data (Chao, Wang, et al.  2023), 
but this method cannot effectively deal with the 
complexity of multimodal data. Some researchers 
have also proposed that a simple machine learning 
system based on seismic wave data can be used to 
accomplish related tasks. However, due to the 
ignorance of the importance of spatial features and 
multimodal fusion, the results are not accurate 
enough. In addition, some researchers have also tried 
to estimate mineral enrichment based on geochemical 
data analysis (De, Cocchi et al.  2024), but due to the 
scarcity of sampling sites, it is not possible to predict 
the full range of mineral distribution (Kim, Golynsky, 
et al.  2022). In order to solve these limitations, this 
paper uses deep learning algorithms and integrates 

multi-modal data, and at the same time, based on 
adaptive feature extraction and dual-branch network 
prediction, in order to significantly improve the 
accuracy of marine geological anomaly identification 
and mineral prediction. This method can cope with 
the complexity of marine data and provide new ideas 
for future deep-sea mineral exploration. This chapter 
analyzes the complexity of the deep-sea environment 
based on the current situation of marine geological 
resources development, studies the shortcomings of 
various marine geological anomaly identification and 
prospecting prediction algorithms, and puts forward 
the development and application advantages of deep 
learning in the current environment, and helps people 
realize that it is of practical significance to apply deep 
learning algorithms to marine geological anomaly 
identification and prospecting prediction.  
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2 RELATED WORKS 

2.1 Deep Learning and Multimodal 
Data Fusion will Better Reflect the 
Characteristics of Marine 
Geological Anomalies 

When dealing with complex geological data, a single 
data source generally cannot fully reflect the 
characteristics of marine geological anomalies, so 
multimodal data fusion technology is necessary 
(Kochetov, Shepelev, et al.  2023). The theory of 
multimodal data fusion is based on the use of 
heterogeneous data from different sources, such as 
seismic waves, magnetism, gravity, etc., based on a 
unified framework (Kusnida, Albab, et al.  2023), to 
perform processing, so that the model can extract 
information from multiple dimensions and capture 
the internal correlation between different modalities. 
The attention mechanism and convolutional neural 
network provided by deep learning will provide a 
strong theoretical basis for this kind of fusion (Liu, 
Wu, et al.  2023), which can automatically identify 
the importance of each modal data and dynamically 
adjust the weight of each data in the overall features. 
This method can not only improve the efficiency of 
data utilization, but also effectively enhance the 
system's ability to identify anomalies (Ma, Chao, et 
al.  2024), especially to adapt to the complexity of 
marine geological data. 

2.2 The Research Role of Adaptive 
Feature Extraction and  
Two-Branch Prediction in the Field 
of Marine Geology 

The theory of adaptive feature extraction refers to the 
dynamic adjustment of the convolution kernel and 
feature extraction process to adapt to the changes of 
geological features in different regions (Ma,  Liu, et 
al.  2023), so as to facilitate the efficient extraction of 
useful information in complex and changeable 
environments. This is of great significance for the 
spatial heterogeneity of marine geology, as the 
geological structure of different seabed areas varies 
significantly. At the same time, the two-branch 
prediction theory combined with the idea of multi-
task learning (Sang,  Long,  et al.  2023) will complete 
the task of identifying marine geological anomalies 
and predicting mineral enrichment based on the 
shared underlying characteristics. This approach can 
effectively improve the efficiency of the model and 
achieve the prediction of different goals under the 

same framework, and it will also be optimized based 
on the joint loss function, which will help the system 
to have high accuracy and robustness when handling 
complex tasks (Zhang,  Liu, et al.  2023). 

3 ABNORMAL MARINE 
GEOLOGICAL STRUCTURES, 
YOUR PRESET COMPARISON 
FOR MINERAL EXPLORATION 

3.1 Construction of a Comprehensive 
Platform for Anomaly 
Identification and Prospecting 
Prediction Based on Deep Learning 

A complete and integrated platform requires a 
multifaceted composition. In this study, the 
comprehensive platform has several functionally 
important components, each of which is very 
important and has its own function. In this process, 
the data acquisition and preprocessing component is 
a complex process that collects raw data from a 
variety of ocean data sources and cleanses, 
normalizes, and normalizes it. This component needs 
to process a large amount of multi-modal data, such 
as seismic waves, magnetics, gravity, geochemical 
data, etc., and after processing, the data format can be 
unified and high-quality to adapt to the input of deep 
learning models. The multimodal data fusion 
component needs to perform weighted fusion of 
geological data from different sources based on the 
attention mechanism, and further generate a unified 
representation of marine geological features. Based 
on the dynamic evaluation and fusion of the 
importance of each modal data feature, the 
component will effectively ensure that the model can 
effectively apply the information of each data type, so 
as to improve the accuracy of anomaly recognition. 
The adaptive feature extraction component is 
responsible for the use of adaptive convolution 
networks to extract spatial features from marine 
geological data. The component can dynamically 
adjust the convolution kernel according to the 
complexity of the marine geological environment to 
capture geological changes at different scales. The 
focus of this component is to accurately identify the 
spatial location and morphology of anomalies, and to 
provide key features for subsequent predictions. What 
the Dual Branch Prediction Component does is to 
perform geological anomaly identification and 
mineral enrichment prediction at the same time. The 
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component is based on a two-branch architecture, one 
of which ensures that the location and scope of the 
anomaly can be controlled, and the other part ensures 
that the mineral content and distribution of the 
anomaly can be effectively assessed. These two 
branches share the results of the underlying feature 
extraction to ensure the collaborative execution of the 
identification and prediction tasks. The system 
training and evaluation component is designed to 
manage the training process of the system and 
continuously evaluate and adjust the performance of 
the model. This component is based on techniques 
such as backpropagation to effectively optimize the 
parameters of the model, and uses the joint loss 
function to perform multi-task training. In addition, it 
needs to be responsible for ensuring the accuracy and 
generalization ability of the validation set evaluation 
system during the training process, and if necessary, 
the component also needs to adjust the 
hyperparameters to improve the prediction effect of 
the system. The purpose of the adaptive optimization 
component is to dynamically adjust the training 
hyperparameters of the model, such as the 
improvement rate, to ensure that the system can 
converge stably in the complex marine environment. 
According to the gradient change and the fluctuation 
of the loss function, the component adaptively adjusts 
the improvement rate to prevent the model from 
falling into the local optimal solution and overfitting 
phenomenon, so as to improve the overall robustness 
and adaptability of the system. 

3.2 Fusion of Multi-Source Data Such 
as Marine Seismic Waves, 
Magnetism, Gravity, etc., Adaptive 
Feature Extraction, and Algorithm 
Calculation 

The process of identifying marine geological 
anomalies involves a variety of geological and 
physical data, such as seismic waves and magnetic 
data, which reveal different aspects of the seabed 
environment. Therefore, the model must be based on 
multi-modal data fusion to jointly use the information 
from these different data sources to obtain more 
specific and comprehensive geological structure 
characteristics. In this paper, we design an attention-
driven feature fusion method, which is mainly based 
on the importance of weighted data of different 
modalities to generate a comprehensive feature 
representation, so as to facilitate more accurate 
identification of the complex structure of anomalies. 
See Eq. (1) for this. 
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In this formula, 
h fused it is the integrated feature 

representation after fusion, which mainly refers to the 
overall characteristics of the final geological 
environment obtained by the system when processing 
multimodal data. It can ensure that the model will 
consider the characteristics of different data sources 
when making decisions, so as to enhance the 
prediction ability of the system. ℎ௜It refers to the 
features extracted from different data modes, such as 
the waveform features in seismic waves and the 
intensity characteristics of magnetic anomalies. The 
purpose of these features is to provide the model with 
different perspectives of marine geological anomalies 
and lay the groundwork for subsequent fusion. 𝛼௜Represents weights, which are based on attention 
mechanism learning and can dynamically allocate the 
contribution of each data source based on the validity 
of different modal data. For example, in a certain 
region, if the magnetic data is more revealing about 
the anomaly, then the model will automatically 
increase the weight of the modality to enhance the 
influence of the feature.  

Marine geological data have significant spatial 
heterogeneity, which means that the geological 
characteristics of different regions may be 
significantly different. In order to accurately capture 
these differences, an adaptive convolutional kernel is 
designed in the construction of the system, so that the 
size and weight of the convolution kernel can be 
flexibly adjusted according to the geological 
complexity of different regions. This adaptive 
convolution enables effective modeling of complex 
geological structures, especially when capturing the 
spatial distribution of marine anomalies. See Eq. (2) 
for this. 
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In this formula, it 𝑓௜௝represents the output feature 

after adaptive convolution, which refers to the 
system's understanding of the anomaly at a certain 
spatial location. This output will be used to determine 
whether the area contains geological anomalies or 
not. (𝑥௜ା௞,௝ା௞) Representing the input features, which 
specifically refer to the geological data of adjacent 
areas, based on capturing these neighborhood 
features, the convolution operation will further assist 
the model, allowing the model to understand the local 
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geological environment more comprehensively. 𝑊௞Represents the weight of the convolution kernel, 
which can be dynamically adjusted according to the 
geological characteristics of different regions. When 
the geological information of a certain area has a large 
change, then the convolution kernel will fully capture 
the details of the anomaly based on weight 
adjustment.  

In addition to identifying the spatial location of 
marine geological anomalies, it is also necessary to 
assess the possible mineral enrichment within them. 
To this end, the system adopts a double-branch 
network structure to perform anomaly identification 
and mineral enrichment prediction respectively. This 
type of architecture allows the system to complete 
both tasks in parallel based on a shared feature 
representation to improve the overall efficiency and 
prediction accuracy of the model. For this, see Eq. (3). 

 
y f (h ), y f (h )anomaly anomaly shared mineral mineral shared= =    (3) 

 
In this formula, 𝑦anomalyit represents the output of 

the anomaly identification branch, which is used to 
predict whether there are geological anomalies in the 
seabed area, and their specific location and 
morphology. The main purpose of this branch is to 
quickly locate anomalous objects. 𝑦mineralRepresents 
the output of the Mineral Enrichment Prediction 
Branch, which is used to estimate the mineral content 
of the anomaly. Based on this prediction, it can 
provide a basis for subsequent prospecting decisions. (ℎshared) Represents a shared feature that is used to 
support common feature extraction for both tasks. Its 
function is to integrate the features extracted by 
multi-modal data and spatial convolution to ensure 
the synergy between anomaly identification and 
mineral prediction.  

3.3 Two-branch Prediction Network 
Application 

In this link, it is necessary to optimize the 
identification of anomalies and the prediction of 
mineral enrichment at the same time based on the 
joint loss function. Based on multi-task learning, the 
model can complete two tasks in continuous 
reinforcement learning to improve the efficiency and 
accuracy of the system. Depending on the needs of 
the task, the system can adjust the weights during the 
exercise to ensure that more attention is paid to a 
particular task. For example, the value that can be 
increased in scenarios where the anomaly 
identification task is more important 𝜆anomaly.  

In the optimization process of marine geological 
anomaly identification and prospecting detection 
model based on deep learning, it is necessary to 
introduce geological prior knowledge to effectively 
guide gradient update. This approach allows the 
model to perform faster convergence in targeted 
regions, especially in regions where anomalies are 
known or present, and based on this, the accuracy of 
the system can be realistically improved. Gradient 
enhancement means that the gradient update 
amplitude of a specific area should be increased when 
the parameters are systematically updated based on 
prior knowledge in the geological field. Based on this, 
it will effectively ensure that the model receives more 
attention in key geological anomaly areas and 
captures potential geological anomalies more quickly. 

The system then has to deal with the multi-scale 
characteristics of marine geology, that is, the seabed 
topography and geological structure in different 
regions may span multiple scales. To this end, a 
multi-scale regularization strategy is designed to 
prevent the system from overfitting information of a 
specific scale based on capturing local and global 
geological features at the same time. For this, see Eq. 
(4). 
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In this formula, 𝐿regthis is the regularized loss 
term to help the model maintain stability and 
accuracy. In the identification of marine geological 
anomalies, the geological structure is complex and 
diverse, so the model has to deal with different types 
of anomalies, so if the system is too sensitive to some 
specific data, it is likely to make its performance on 
new data too poor. In this way, the excessive 
fluctuations of system parameters can be effectively 
reduced, and the model can be prevented from 
"remembering" the characteristics of specific regions, 
so as to enhance the generalization ability of the 
model in different ocean regions and better identify 
unknown geological anomalies. λ is the 
regularization coefficient, which can control the 
intensity of regularization. In the "prospecting 
forecast", if the λ value is large, it means that the 
integrated platform places more emphasis on the 
stability of the system to prevent the system from 
performing poorly in areas with large data 
fluctuations, such as complex seabed geological 
structures. However, if the value is too large, it means 
that the model may ignore subtle geological changes, 
such as the characteristics of small-scale mineral-rich 
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areas, so the integrated platform will adjust the value 
according to the specific geological characteristics λ  
to make the model have a balanced performance in 
different scenarios. iθ represents the first parameter 

of the model i . For marine geological data, the 
operating system parameters i refer to the ability of 
the model to deal with specific geological features, 
such as seismic wave characteristics and magnetic 
anomalies in a certain area. The purpose of the 
regularization term i

2θ is to constrain the parameters 
of the operating system and ensure that the 
parameters are not too large, so that the model will 
not rely too much on a certain data feature when 
dealing with different geological structures, but can 
judge the enrichment of minerals in the anomaly 
according to a variety of characteristics. In this way, 
the overfitting of the operating system to certain 
extreme geological features will be avoided and its 
adaptability will be enhanced. ∑ ൫𝜃௜ − 𝜃௝൯ଶ௝ It is used 
to constrain the differences between different model 
parameters, especially the correlation between 
geological features in adjacent areas. In the marine 
geological environment, the geological 
characteristics of adjacent areas generally have some 
spatial continuity, such as the thickness of 
sedimentary layers and the distribution of faults, 
which will not change drastically suddenly. 
Therefore, the purpose of this project is to ensure that 
the operating system can capture the continuity of 
geological features when dealing with these areas, 
that is, the model parameters will not fluctuate 
drastically between adjacent areas. For example, 
when an operating system predicts the mineral 
enrichment of an area, if the geological conditions of 
the area are similar to those of adjacent areas, the 
differences in parameters should also be consistent, 
which can help the model to more accurately identify 
the distribution of potential mineral resources. n
Represents the number of parameters, which refers to 
the total number of parameters that must be optimized 
on the entire marine geological dataset of the deep 
learning system.  

Because of the complexity and dynamic changes 
of the marine environment, such as violent 
fluctuations in seabed topography, ocean currents, 
geological movements, etc., the deep learning model 
needs to flexibly adjust the learning rate according to 
the changes in data characteristics to ensure a stable 
and efficient exercise process. The adaptive 
improvement rate mechanism can enable the 
operating system to balance the learning speed and 
training stability in the face of these complex 

situations, and at the same time, ensure that the model 
will not affect the convergence of the operating 
system due to unreasonable improvement rate setting 
on the basis of accurately capturing geological 
anomalies. See Eq. (5) for this. 

 𝛼௧ାଵ = 𝛼௧ ⋅ 11 + 𝛽|∇𝐿௧| (5) 
 

In this formula, represents the tα  t rate of 
improvement at the first iteration, which controls the 
pace at which the model updates parameters at each 
step. Its function is to determine how quickly the 
operating system responds to current errors. If the 
improvement rate is too large, the deep learning 
model may miss the optimal parameters. If it is too 
small, the workout time of the operating system will 
increase significantly. tL∇ Represents the gradient 
of the current loss function, which is the size of the 
model's current error on the input data. If the gradient 
is large, it means that the characteristics learned by 
the operating system at this stage are more complex, 
so the improvement rate should be reduced to ensure 
steady convergence. If the gradient is small, it means 
that the model is already familiar with the current task 
and can speed up learning. β is a moderating 
parameter that controls the effect of the gradient on 
the improvement rate. β The effect is to balance the 
magnitude of the gradient change to the improvement 
rate. If β the setting is larger, the improvement rate 
will be more sensitive to changes, which will help the 
model to respond more quickly in the face of complex 
marine geological environments. If the setting is 
small, it can prevent the operating system from being 
overly sensitive to short-term gradient fluctuations to 
avoid significant changes in the improvement rate 
unnecessarily. Based on the adaptive improvement 
rate adjustment strategy, the operation system can 
adapt to the dynamically changing marine 
environment, and gradually converge in the area with 
complex geological structure and unstable 
characteristics, so as to better identify anomalies and 
improve the accuracy of prospecting prediction.  

4 RESULTS AND DISCUSSION 

4.1 Marine Geological Area Testing 

In order to more efficiently identify marine geological 
anomalies and predict the possible enrichment of 
mineral resources in a deep-sea mineral exploration 

Identification and Prospecting Prediction of Marine Geological Anomalies Based on Deep Learning

55



project, this study introduces this self-designed deep 
learning integrated platform, hoping to effectively 
cope with the limitations of traditional exploration 
methods in complex seabed environments. The area 
has a typical multi-layered geological structure, and 
after many surveys, it has been found that the area 
may contain abundant polymetallic nodules and 
natural gas hydrates, which provides an important 
strategic reserve potential for the development of 
marine resources, the test area results are shown in 
Table 1.  

Table 1: Distribution of Multimodal Data by Region. 

Region Seismic 
Wave Data 

Volume 
(GB) 

Magnetic 
data volume 

(GB) 

Gravity 
data 
(GB) 

Number of 
geochemical 

samples 

A 120 30 25 500 
B 150 40 30 600 
C 100 20 15 300 

 
Table I shows the distribution of the amount of 

multimodal data collected in each region. Among 
them, the seismic wave and magnetic data of area B 
are large, reflecting its active geological movements. 

This exploration mission covers three areas of sea 
area A, B and C, and the geological characteristics of 
each area are obviously different. Area A is located in 
a sedimentary basin and is mainly composed of fine-
grained sediments; Zone B is an area with a 
significant history of volcanic activity with active 
fault zones; Area C is located in a deep-sea basin and 
initial exploration indicates possible enrichment of 
gas hydrates, the structure of the testing area is shown 
in Figure 1.  

 
Figure 1: Model construction of marine geological 
anomalies. 

This exploration mission covers three areas of sea 
area A, B and C, and the geological characteristics of 
each area are obviously different. Area A is located in 
a sedimentary basin and is mainly composed of fine-
grained sediments, with 120 GB of seismic wave data 
and 500 geochemical samples. Region B is an area of 

significant volcanic activity, with 150 GB of seismic 
wave data and 600 geochemical samples. In order to 
perform more accurate anomaly identification and 
mineral prediction, the design of a comprehensive 
platform in this study integrates multi-modal data 
fusion, adaptive feature extraction, and dual-branch 
prediction network.  

4.2 Abnormal Ocean Address, Testing 
the Mining Area 

Based on the automatic extraction and fusion of key 
features from multi-modal data such as seismic 
waves, magnetism, and gravity, the integrated 
platform can accurately identify the spatial 
distribution of geological anomalies and predict the 
mineral enrichment in them, the test results are shown 
in Table 2. 

Table 2: Feature extraction results after data 
processing. 

Region Seismic 
Wave 

Extraction 
Features 

(Weights) 

Magnetic 
Characteristics 

(Weights) 

Gravity 
Feature 

(Weights)

Geochemical 
characteristics 

(weights) 

A 0.45 0.30 0.15 0.10 
B 0.50 0.35 0.10 0.05 
C 0.40 0.25 0.20 0.15 

 
Table 2 shows the features extracted from the 

different modal data and their importance weights. It 
can be seen that seismic waves and magnetic 
characteristics dominate the identification of 
anomalies, Determine the range of regional structure, 
as shown in Figure 2. 

 
Figure 2: Identification of marine geological anomalies. 
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From the data analysis in Figure 2, it can be found 
that there are certain anomalous points in the process 
of determining the range of anomalous structures in 
the ocean. Mainly distributed in the left and right 
parts of the graph. 

4.3 Abnormal Ocean Address, Test 
Results for Predicting Mining 
Areas 

Based on the research and analysis of the above three 
table data, it can be seen that the seismic wave 
reflection layer in region B has obvious anomalies, 
corresponding to the traces of volcanic activity in this 
area. In the magnetic data, the magnetic anomalies in 
this area are strong and show potential mineralisation. 
In contrast, the seismic wave reflection in region C is 
relatively uniform, but the local anomalies in the 
magnetic data indicate that it may have a small-scale 
gas hydrate enrichment zone. Combined with these 
features, the integrated platform successfully 
identified anomalies in the volcanic region and 
speculated on their possible mineral distribution. The 
identification areas of different outlier points are 
shown in Table 3. 

Table 3: Predictions of mineral enrichment by region. 

Region Copper 
Ore 

Enrichment 
Forecast 

(%) 

Nickel Ore 
Enrichment 
Forecast (%) 

Gas Hydrate 
Enrichment 
Forecast (%) 

region 

A 2.5 1.5 0.8 A 
B 3.8 2.0 0.5 B 
C 1.2 0.9 4.5 C 

 
Table 3 shows the projections of mineral enrichment 
in each region from the integrated platform. Zone B 
is prominent in copper forecasts, while Zone C shows 
high enrichment in gas hydrates. In the gravity data 
of regions A and B, it can be observed that the gravity 
anomalies in region A are relatively uniform, while 
the gravity anomalies in region B are obvious, which 
indicates that the area has a dense rock structure, 
which is consistent with the enrichment of copper and 
nickel elements in its geochemical data. Geochemical 
data indicate that area B has a high content of copper 
and nickel ore, which confirms the impact of volcanic 
activity on mineral enrichment. In the mineral 
enrichment prediction, the copper enrichment in Zone 
B is 3.8%, which is much higher than that of other 
regions, indicating that this area is a key area for 
future exploration. In contrast, Region C has the 

highest gas hydrate enrichment of 4.5%, indicating 
that this region has some potential for energy 
development. Based on the above analysis, the 
comprehensive platform designed in this study can 
effectively combine multi-modal data to accurately 
predict mineral enrichment in complex geological 
environment, and provide a reliable basis for actual 
exploration. 

5 CONCLUSIONS 

Based on the designed integrated platform for the 
identification and prospecting prediction of marine 
geological anomalies based on deep learning, this 
paper successfully realizes the efficient identification 
and mineral enrichment prediction of marine 
geological anomalies. Based on the integration of 
multi-source geological data, the integrated platform 
significantly improves the accuracy of anomaly 
identification in complex seabed environments, and 
shows strong prospecting and prediction capabilities 
in different regions. In short, the comprehensive 
performance of this comprehensive platform can 
provide important technical support for future marine 
resource exploration, and at the same time, it can also 
provide a strong and scientific basis for the 
development of marine minerals. This study is fully 
reliable, but it has some limitations in terms of data, 
and it can be expanded in the future. There are 
limitations in this study, mainly the deep learning 
dataset and the incomplete collection of marine 
geological anomaly identification and selection, 
which will be analyzed in the future.  
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