
MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

Riccardo Longo1 a, Enrico Sorbera1 b and Valeria Vicard2 c

1Fondazione Bruno Kessler, Center for Cybersecurity, Trento, Italy
2Adverity GmbH, Vienna, Austria

Keywords: Searchable Encryption, Attribute-Based Encryption, Multi-Keyword Search.

Abstract: In this work we present MK-SEAC, a scheme that allows to perform outsourced keyword-based search queries
on an encrypted document batch, with native support to multi-keyword queries, fine-grained access control on
the results, and full verifiability. The scheme conceals both the query and the results from the server, and
minimizes the information revealed about documents to which users do not have access. Compared to other
schemes, such as SEAC by Nils Löken, MK-SEAC offers extended improved efficiency with a reduced leakage
profile.

1 INTRODUCTION

Searchable Encryption (SE) (Song et al., 2000), in-
troduced by Song et al. in 2000, consists of a set of
algorithms that allow users to delegate the storage of
encrypted documents on a remote location while re-
taining the ability to search for specific data without
the need first to decrypt them. Since then, various
schemes have been presented, each introducing valu-
able properties. In particular, we are going to focus on
a context in which each document is described by a set
of keywords, and the search operation is performed
utilizing these keywords. More precisely, we would
like to include multiple keywords in a single query
and find only documents that feature all the specified
keywords. Additionally, we would like our scheme to
guarantee the verifiability of the search results, that is,
in response to a search query, the user receives from
the server a set of results that includes all the informa-
tion necessary to prove its completeness and correct-
ness.

Moreover, we would also like to enforce fine-
grained access control on the set of results. In fact,
in several practical scenarios, the data should be ac-
cessible by a wide variety of users, with a poten-
tially vast number of different access requirements.
A common solution to this problem is provided by
Attribute-Based Encryption (ABE). This type of en-

a https://orcid.org/0000-0002-8739-3091
b https://orcid.org/0009-0009-0973-512X
c https://orcid.org/0009-0002-4334-1641

cryption scheme was introduced in (Sahai and Waters,
2004) and is used to cryptographically enforce access
control (i.e., users can access a document if and only
if they can decrypt it) in a setting where access poli-
cies are defined on a set of attributes and with for-
mulas on these attributes. The two main paradigms
of ABE are: Key-Policy Attribute-Based Encryption
(KP-ABE) (Goyal et al., 2006), where the documents
are described by sets of attributes, and the user keys
embed access policies that dictate which documents
they will be able to decrypt; and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) (Bethencourt
et al., 2007), where conversely the user keys embed
attributes that describe the users themselves, while
the ciphertexts embed an access policy that restricts
which users can access them. In our construction, we
use CP-ABE, so we will have a central trusted author-
ity that assigns attributes to users and provides them
with the corresponding keys.

1.1 Related Work

During the last decade, several attempts have been
made to combine SE and ABE, one of the most in-
teresting being (Li et al., 2020), which achieves col-
lusion resistance between the cloud server and search
users and ensures both backward and forward pri-
vacy. Unfortunately, it does not guarantee verifia-
bility and has a computational complexity of O(n2),
where n is the number of documents. Another impor-
tant work is (Yin et al., 2023), as it supports numeric
attribute comparison in access policies. Its drawbacks

Longo, R., Sorbera, E. and Vicard, V.
MK-SEAC: Multi-Keyword Searchable Encryption with Access Control.
DOI: 10.5220/0013529200003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 443-454
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

443

are mainly the lack of backward privacy, verifiability,
and fork consistency.

Considering the downsides of these results,
we took inspiration mainly from Nils Löken’s
SEAC (Löken, 2017), as it guarantees the verifiability
of the search results in a static environment.

The idea behind SEAC is to pre-compute all
search results and insert them in a structure that is
outsourced to an online cloud provider. Following the
structure’s pre-computed paths, the provider can ac-
cess only the ciphertexts of the documents the user
requested. In particular, the structure presented in
SEAC can be thought of as a series of filters, each
concealing a specific element from the server. For in-
stance, the first one is a Hash Table (HT) where all
the utilized keywords are inserted masked through a
pseudo-random function. Each entry in HT is then
mapped to an encrypted linked list in the next struc-
ture (A), where we have the ABE policies of the doc-
uments that are described with that keyword.

SEAC has been extended by Löken and Blömer to
the dynamic case (i.e., allowing the addition of doc-
uments to the initial document collection), resulting
in dSEAC (Blömer and Löken, 2019), which ensures
Forward and Backward Privacy, as well as Fork Con-
sistency.

Our work aims to improve SEAC by adding native
support for searches over multiple keywords at once
and simultaneously reducing the leakage profile while
retaining full verifiability with a reduced total number
of signatures. Intuitively, we filter immediately with
the access policy: this eliminates the leakage of docu-
ments beyond access rights and allows us to be more
expressive with keyword filtering.

Organization. In Section 2 we give some prelimi-
naries and background information on the primitives
used in our construction, which is presented in detail
in Section 3. In particular, Section 3.1 describes the
supporting structures enabling the encrypted search
and their contents, Section 3.2 describes setup and
user enrollment, Section 3.3 presents how queries are
created and processed, and Section 3.4 shows how the
results can be verified. Finally, in Section 4 we draw
our conclusions, showing how MK-SEAK improves
on SEAC and some future directions.

2 PRELIMINARIES

2.1 CP-ABE with Key Customization

In a Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) scheme, given a universe of attributes U,

users are associated with an identifier uid and a set of
attributes S⊆U. A trusted entity performs the setup,
obtaining the master secret key msk and publishing
the public parameters pp and the public key pk. This
entity then gives to each user a key κuid

S . We denote
by ABE.EncA(r) the encryption of message r for the
policy A ⊆ P (U) \ /0. A user with key κuid

S can cor-
rectly decrypt a ciphertext and obtain r if and only if
S ∈ A (i.e. the attributes satisfy the policy).

In our MK-SEAC protocol, we use an instance of
CP-ABE that allows users to customize their keys.
In this kind of CP-ABE protocol (e.g. (Agrawal and
Chase, 2017; Rouselakis and Waters, 2015)) keys can
be seen as composed of individual keys for each at-
tribute. This allows users to easily derive less power-
ful keys that do not present every attribute, and there-
fore they can delegate some of their access privileges
without having to disclose their full key. Our con-
struction requires an IND-CPA CP-ABE scheme.

2.2 Symmetric Encryption and Digital
Signature

Since asymmetric encryption schemes (and ABE in
particular) are quite expensive, a well-established hy-
brid approach (Weber, 2013) is used: the actual con-
tents of the documents are encrypted with a symmet-
ric cipher, using a key k = KDF(r) that is derived by
applying an appropriate key derivation function on a
short random message r, and only r is encrypted with
CP-ABE. In particular, our construction uses an au-
thenticated IND-CCA2 (Sahai, 1999) symmetric ci-
pher, and we denote with Sym.Enck(m) the encryp-
tion of the message m with the symmetric key k.
Sometimes we will consider separately the authenti-
cation tag of a message m produced with the authenti-
cated symmetric cipher and the key k, in these cases,
we denote it with tagk(m).

To ensure integrity and verifiability of the con-
struction (see (Blömer and Löken, 2019) for more
details about verifiability), we exploit an EUF-
CMA (Goldwasser et al., 1988) digital signature. We
will denote with Sigsk(m) the signing of message m
with secret key sk, and with Verpk(m,σ) the verifica-
tion whether σ is a valid signature for the message m
and the public key pk.

2.3 Pseudo-Random Function

Let KW be a fixed universe of keywords. Follow-
ing the original SEAC (Löken, 2017), we employ a
pseudo-random function fkU () which takes as input
the description of an ABE policy A, a set of keywords
L ⊆ KW (ordered lexicographically to have unique

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

444

representations), and outputs two-byte strings of fixed
length, in particular, the second output has the same
length of a key for the chosen symmetric encryption
scheme.

We require this function to be collision resis-
tant (Hirose, 2022), and the second output should be
indistinguishable from a byte string generated uni-
formly at random. Furthermore, we require that
some collisions on the first outputs happen with low
probability, more precisely that, for any L1,L2 ⊆ L
with /0 ̸= L1 ̸= L2 ̸= /0 and | L |≤ T , we have that
P(fkU (A,L1)1 = fkU (A,L2)1)< ε.

Note that such a function can be constructed by
exploiting a hash function with a sufficiently long out-
put. In particular, if we model the pseudo-random
first output as a uniformly random string of ℓ bytes,
then by the birthday attack (Mosteller, 2006) we
have that the collision probability given 2T inputs is
upper-bounded by 22T−8ℓ−1, so it is sufficient to take
ℓ >

2T−1−log2(ε)
8 .

This function is necessary to prevent the Cloud
Provider from getting the set of keywords Ldoc de-
scribing a document, as we will discuss in the next
section. This is possible as fkU () can be calculated by
all enrolled users since they receive the secret key kU
from the Certification Authority, but not by the Cloud
Provider unless it corrupts a user (see Appendix A for
the formal proof of the leakage of the scheme).

3 SCHEME DESCRIPTION

First, let us describe the entities involved:

• Data Owner (DO): a user that owns the Docu-
ment Batch (DB) to be outsourced encrypted on
the cloud.

• Data User (DU): a client of the service, they
generate queries based on keywords and their at-
tributes to be executed by the service provider.

• Cloud Provider (CP): a service provider, it re-
ceives the encrypted database alongside an addi-
tional structure called Index, which allows to cor-
rectly answer the DU’s queries.

• Certification Authority (CA): a trusted authority
that is in charge of authenticating the other entities
and distributing the cryptographic keys.

The idea behind MK-SEAC, inspired by SEAC,
is that the DO encrypts the set of documents to be
outsourced. The flow of the protocol is as follows:

1. Each document is characterized by one or more
keywords and a policy that prescribes which at-
tributes are required to access the document.

2. To enable efficient searches on this data, the DO
builds an index I, consisting of multiple linked
structures. Basically, the index pre-computes the
possible searches (queries) that a DU may do and
allows the CP to correctly process and answer
these queries without having access to the plain-
text data.

3. To participate, the DUs have to enroll: the CA as-
signs them the attributes that describe which doc-
uments they are entitled to access, and provides
them with the cryptographic material needed to
construct the queries and decrypt the results.

4. To search for documents, the DUs select a set of
keywords and a subset of their attributes to gener-
ate a query.

5. The CP, upon receiving a query from a DU, ex-
ploits the index to return the ciphertexts of the
documents that are associated with the selected
keywords and whose policy is satisfied by the
given attributes.

6. The DU can verify the correctness and complete-
ness of the results, by exploiting data given by the
CP and CA, which is signed by the DO.

3.1 The Index

As we remarked, the Index is the core structure of
our scheme, that enables searching on the encrypted
DB. We now present the building blocks of the index
(which are essentially encrypted dictionaries), in the
order they are visited by the CP when processing a
query:

1. A: the first structure enforces attribute-based ac-
cess control. Each node in A serves as an entry
point to all documents that have a given access
policy. By placing this structure right at the begin-
ning (in contrast with SEAC), we limit the leak-
age: a DU will learn nothing about documents to
which they do not have access.

2. K: the second structure is a set of encrypted linked
lists that is in charge of filtering the results de-
pending on the keywords specified in the query.

3. R: the third structure acts as a sort of router,
that enables efficient multi-keyword searches and
deduplicates data by routing to the same result all
the paths that lead to files that can be searched in
multiple ways.

4. D: the fourth structure is a set of encrypted linked
lists, each item containing the index of an en-
crypted document fulfilling the query and the CP-
ABE encryption of the symmetric key necessary
to decrypt it.

MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

445

Figure 1: High-level description of the index I.

5. Σ: the last structure contains all the signatures,
and allows the DU to verify the correctness and
completeness of CP’s answers to their queries.
Figure 1 presents a high-level scheme of the in-

dex’s structures and how they are linked.

3.1.1 Contents of the Index’s Structures

Each document doc in DB is associated with an
anonymous identifier iddoc, is described by a set of
keywords Ldoc ⊆ KW (we suppose KW to be known
in advance to the DO and each of the DUs), and its ac-
cess is regulated by a policy Adoc ⊆ P (A)\ /0. Denot-
ing with ptxdoc the actual contents of the document,
we have that the complete description is:

doc = (iddoc,ptxdoc,Ldoc ,Adoc). (1)

Let us now describe in detail what is contained in
each of the structures composing the Index, starting
with A, which is the first structure to be accessed when
evaluating a query.

For each access policy A for which there is a doc-
ument doc ∈ DB such that A = Adoc, we define an
entry in A:

nAA = (A,ABE.EncA(rA) ,Sym.EncKDF(rA)

(
idK

LA,1

)
),

(2)
where idK

LA,1 is an index in K. Basically, A maps every
policy to a hybrid ABE encryption of a pointer to a
linked list inside the next structure K, more precisely
to the index of the first element of the linked list. Note
that the CP can decrypt this index only if it is given an
ABE secret key that satisfies the policy: this assures
that the DUs that do not have access to the documents
with this policy will not be able to produce queries
that give the CP the ability to decrypt this index, and
thus they will not learn anything. Note that our nota-
tions explicit the link between the identifier idK

LA,1 , a
policy A, and a set of keywords LA,1, but in reality,
the value of the index does not reveal anything about
this association.

The linked lists K are organized following the par-
titions on DB induced by the distinct access policies

and sets of keywords associated with the documents.
More precisely, in K there is a linked list for each dis-
tinct access policy (and we saw how A helps the CP to
navigate to the start of the linked list given a policy),
then each element inside a single list is associated to a
different set of keywords. Formally, let us enumerate
the distinct sets of keywords associated with the doc-
uments with a given access policy: {LA,1, . . .LA,tA}=
{L : ∃ doc ∈ DB s.t.Adoc = A, Ldoc = L}, then for
i∈ {1, . . . , tA} we have that the i-th entry of the linked
list associated to A has index idKLA,i and value:

idKLA,i : Sym.EncKDF(rA)

(
idKLA,i+1

,padLA,i,0,padLA,i,1

)
,

(3)
where idKLA,i+1

is the identifier of the next element in
the list, that is associated with another set of key-
words LA,i+1. To signal the end of the list we set
idKLA,tA+1

=⊥, where ⊥ is a special value. The values
padLA,i,0,padLA,i,1 are two randomly generated byte
strings with the same length as the pseudo-random
function fkU (), they will be used to derive links and
keys to access the following structure R. Note that the
entire entry is encrypted with the same key derived
from the ABE encryption found in A.

If a DU searches for documents matching a set
of keywords L′, then a document associated with the
set L ⊇ L′ should show up in the results if the user
can access the document. This means that a doc-
ument with keywords Ldoc should be found starting
from any set L ⊂ Ldoc . However, for efficiency rea-
sons, we want to link each doc ∈ DB only once in the
pre-computed search result characterized by the pair
(Adoc,Ldoc). This is a major difference with respect to
SEAC, which gives a consistent efficiency gain. In or-
der to enable the retrieval with any subset, we exploit
the routing structure R which has an entry for each
subset but then makes each of them re-converge to the
same entry in the following structure D. This allows
multiple search paths with minimal duplicate data. In
particular we exploit the pads padLA,i,0,padLA,i,1 and
the pseudo-random function fkU () to define for each
L′ ∈ P (LA,i) \ /0 a pair (ptrRLA,i,L′ ,k

R
LA,i,L′

) that gives a
pointer in R and a symmetric key to decrypt the corre-
sponding entry:

(ptrRLA,i,L′ ,k
R
LA,i,L′

):= fkU

(
A,L′

)
⊕(padLA,i,0,padLA,i,1),

(4)
where the xor operation ⊕ is performed component-
wise. Note that this construction implies that in-
dexes in R are byte strings of fixed length and that
the properties of fkU () (see Section 2.3) assure that
we derive secure keys and that, with high probability,
ptrRLA,i,L1

̸= ptrRLA,i,L2
for L1,L2 ∈ P (LA,i)\ /0, L1 ̸= L2.

As anticipated, the third structure R routes all the

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

446

different ways to obtain the documents associated
with a set of keywords as a search result (i.e., any
search that specifies a subset of this set) to the same
pointer to these documents. In particular, the informa-
tion necessary to retrieve and decrypt the documents
is stored (encrypted) in D, so R maps the pointers ex-
tracted from K as in Equation (4) to the correct ele-
ments of D, simultaneously providing the key to de-
crypt it. So, for every ptrRLA,i,L′ where /0 ̸= L′ ⊆ LA,i,
in R we have the association:

ptrRLA,i,L′ : Sym.ÊnckR
LA,i ,L′

(
ptrDLA,i,1,k

D
LA,i

)
, (5)

where iddoc
LA,i,1 is the pointer to the first element of an

encrypted linked list in D, kDLA,i is the key to decrypt the

elements of that list, and Sym.Ênc() is the symmetric
encryption function modified with the CTX construc-
tion (Chan and Rogaway, 2022) (where the authenti-
cation tag is substituted by a hash of key, nonce, and
tag) to have key commitment. This variant assures
that a valid decryption is obtained only with the cor-
rect key, in particular, we are assured that we will not
succeed in decrypting entries in R with the wrong key,
and this will allow the CP to process queries correctly
(see Section 3.3.2).

Finally, in D we have an entry for each doc ∈ DB,
organized in linked lists where each list gathers all the
documents that share the same access policy and set
of keywords (and thus a correct response to any search
query will always return either none of them or all of
them together). Formally, let us enumerate the ids of
the documents with access policy A associated with
the set of keywords LA,i:{

iddoc
LA,i,1, . . . , id

doc
LA,i,tLA,i

}
={

iddoc : ∃doc ∈ DB s.t.Adoc = A, Ldoc = LA,i
}
, (6)

then for j ∈ {1, . . . , tLA,i} we have that the j-th entry
of the linked list is:

iddoc
LA,i, j : Sym.EnckDLA,i

(
iddoc

LA,i, j+1,abeLA,i, j,

Sym.Enc
KDF

(
rLA,i

)(kLA,i, j

))
, (7)

where abeLA,i, j is a byte string of fixed length (equal
to the longest ABE encryption among all access poli-
cies actually used in DB) that, for j > 1 is simply a
string of zeros, while for j = 1 it encodes the (possi-
bly padded) encryption ABE.EncA+

doc

(
rLA,i

)
. A+ =

A & read is a stricter policy enriched with the at-
tribute read that prevents the CP to decrypt the docu-
ments (see Section 3.3.1). This string serves to avoid
duplicate encryptions, and, without revealing (with

the length of the ciphertext) which entries of D are
the start of the lists, it lets the DU recover the random
value rLA,i from which they can derive the symmetric
key to decrypt all the per-document keys in the list: in
fact in the encrypted DB we find the documents saved
as:

iddoc
LA,i, j : Sym.EnckLA,i, j

(
ptxiddoc

LA,i, j

)
. (8)

As in K, we signal the end of the list by setting
iddoc

LA,i,tLA,i+1 =⊥.

3.1.2 Signatures

The last structure of the index, Σ, contains the verifi-
cation data, used to check the accuracy and complete-
ness of the search results. In Σ we have, for every
policy A mentioned in DB:

A : (checkA,SigskuidDO
(checkA)), (9)

where uidDO identifies the DO that uploaded the DB,
skuidDO its private signing key, and

checkA :=

(
ABE.EncA+(rcA) ,

Sym.EncKDF(rcA)

(
uidDO,

(
LA,i,t dA[i]

)tA

i=1

))
,

t dA[i] := H
(
tagkLA,i , j

(ptxiddoc
LA,i , j

)
∥∥∥tLA,i

j=1

)
(10)

is basically an ABE hybrid encryption that allows the
DUs to see which sets of keywords are associated with
at least one document with access policy A, and for
each of these sets gives the hash of the concatenation
of all the authentication tags of each document that
is associated to that set of keywords and policy. As
we will see in Section 3.4, these values will enable
verifiability. Note that a straightforward encryption
leaks the length of the plaintext, which in this case
gives away how many different sets of keywords are
associated with every policy. To avoid this we pad the
plaintexts so that the size of each checkA is the same
for every A.

3.2 Enrollment

The CA is responsible for authenticating and en-
rolling the users (the DO and the DUs), and maintain-
ing a public structure (CL) that acts as a public key
infrastructure and allows the CP to authenticate users.
After running the Setup of the CP-ABE scheme (Sec-
tion 2.1, the CA initializes CL with the public param-
eters pp and the public key pk.

MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

447

When a user asks to enroll in the system, first of
all, they are associated with a unique identifier uid.
The user is supposed to have autonomously generated
a signing key pair (skuid,pkuid), and to send pkuid with
the enrollment request. The CA associates the user to
an appropriate set of attributes Auid that describes the
user’s roles and permissions and generates the user’s
ABE secret key κuid

Auid∪{read}
. Finally, the CA sends

back to the user the shared user key kU and the CP-
ABE secret key κuid

Auid∪{read}
, and publishes in CL the

association uid : pkuid.
The contents of CL should be signed by the CA

to ensure authenticity. A simple approach would be
to sign each entry separately, however, more complex
designs akin to Certificate Transparency Logs (Lau-
rie, 2014) may bring desirable features such as batch
signing, or monitoring and accountability (i.e., inde-
pendent monitors and co-signers can help in keeping
the CA honest).

3.3 Search Queries

Noticing that the set of used access policies {A :
∃doc ∈ DB s.t.Adoc = A} is publicly available as the
indexes of A, we order its elements into a Policy List
PL and assume that it is distributed to every enrolled
user (signed by the CA to ensure authenticity). This
does not worsen the leakage profile, since CP-ABE
ciphertexts already leak the associated policy.

At a high level, a query is characterized by a set
of keywords L⊆ KW and the set of attributes A ⊆U
that the DU wants to use for the search, looking for all
documents that are associated to those keywords and
that can be accessed with that attribute set:

{doc ∈ DB s.t.L⊆ Ldoc ∧A ∈ Adoc}. (11)

Our privacy requirements are that the CP should not
learn the contents of the documents that match the
query, nor the set of keywords L.

3.3.1 Query Generation

Let
(
AA ,i

)nA
i=1 be the list of policies that are satisfied

by the set of attributes A ⊆U, taken in the same order
as they appear in PL. A query payload for the set of
keywords L ⊆ KW and the set of attributes A ⊆U is
computed as:

Q =
(

κ
uid
A , fkU

(
AA ,1,L

)
, . . . fkU

(
AA ,nA ,L

))
, (12)

where uid is the identifier of the DU that is making the
query. Note that the properties of CP-ABE (see Sec-
tion 2.1) assure that the DU is only able to generate
queries for attribute sets A such that A ⊆ Auid, i.e.,
users can search only for documents to which they

have access. Note also that in order to prevent the CP
from accessing the documents, we always assume that
read /∈ A . To request the search, the DU sends to the
CP the signed query: (Q,Sigskuid

(Q)).

3.3.2 Query Processing

When the CP receives a query (Q,Sigskuid
(Q)) from a

DU with identifier uid, first of all it verifies that the
query comes from an authorized user. The CP obtains
from CL the verification key pkuid associated with the
user (if the id is not found, the query is ignored be-
cause the user is not enrolled), then uses this key to
verify the signature Sigskuid

(Q).
Once the request has been authenticated, the CP

follows the order given by PL to visit the entries in A
and decrypt those that can be accessed with κuid

A . Note
that usually the set of attributes A is encoded inside
the ABE private key, so it is not necessary to try to
decrypt every entry in A, and that the CP decrypts the
entries associated to (AA ,1, . . . ,AA ,nA) in order.

Each of these successful decryptions gives the in-
dex to an entry in K (see Equation (2)), which (once
decrypted) eventually gives a list of pair of pads (see
Equation (3)): one for each of the sets of keywords
associated to that policy.

Let A be the policy currently used, i.e., we
have decrypted the entry in A associated with A
and from K we have obtained the list of pairs(
(padLA,1,0,padLA,1,1), . . . ,(padLA,tA ,0

,padLA,tA ,1
)
)

.
For each of these pairs, the CP computes
fkU (A,L) ⊕ (padLA,i,0,padLA,i,1), where fkU (A,L)
is taken from Q, and interprets the result as a
pointer to an entry in R and the key to decrypt it
(see Equation (4)). Then, the CP searches in R the
entry corresponding to this pointer and (if it exists)
tries to decrypt it with the aforementioned key. By
construction of R (see Equation (5)), the CP obtains
a valid pointer and a valid decryption if and only if
L⊆ LA,i (i.e. the set of keywords is a match), and the
value obtained by the decryption encodes a pointer to
an entry in D and the key to decrypt it.

By decrypting that entry (and following the linked
list), the CP obtains a CP-ABE encryption of the
key-encrypting key and a list of pairs consisting of
a pointer to an encrypted document in the DB and the
wrapping of the key to decrypt it (see Equation (7)).
The CP fetches the ciphertexts from the DB (see
Equation (8)) and appends to the list of results the CP-
ABE-wrapped Key-Encrypting Key (KEK) and all the
ciphertexts together with the corresponding wrapped
key. When all the results have been retrieved, the CP
adds, for verifiability reasons, all the entries in Σ cor-
responding to the visited policies (AA ,1, . . . ,AA ,nA).

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

448

Note that the DU is able to obtain the KEK from
the CP-ABE wrapping, and with this to obtain all the
document keys, therefore to decrypt all the documents
in the results.

3.4 Verifiability

As previously mentioned, a desirable property is to
allow the DU to verify the completeness and correct-
ness of the results returned by the CP on processing
their search queries. In practice, the DU should be
able to verify that in response to the query Q as in
Equation (12), the CP sends a result that gives the set
of documents defined in Equation (11). Let us now
prove that the data taken from Σ ensures the verifia-
bility of the results.

First, note that the unforgeability of the signatures
assures that the CP cannot tamper with the data in Σ,
and that the DU knows, thanks to PL, which elements
of Σ should be returned within the query response.
Then, note that the DU should be able to correctly de-
crypt the checkA, and the corresponding plaintext al-
lows to verify that it is the correct entry (CP-ABE en-
cryptions contain the policy) and that it has been cre-
ated by the DO (the symmetric encryption provides
the user identifier, that can be used to get the verifica-
tion key form CL).

At this point, the DU organizes the documents re-
ceived according to the partition induced by the dis-
tinct access policies and sets of keywords associated
with them. For each policy A let (LA,1, . . . ,LA,tA) be
the list of set of keywords given by the decryption of
checkA (see Equation (10)). Now, for each LA,i such
that L⊆ LA,i, the DU concatenates the authentication
tags (from the authenticated symmetric encryptions)
of all the documents in the results that are associated
with LA,i. This concatenation follows the same (arbi-
trary, but pre-determined) order of the document iden-
tifiers used in Equations (6), (7) and (10). This byte
string is then hashed and the result is compared with
the digest contained in checkA: if the two correspond
then we are sure that the results included all the doc-
uments with policy A and set of attributes LA,i, and
also that these documents have not been modified af-
ter the DO has uploaded them and created the entry in
Σ. Therefore, by performing the checks for every pol-
icy and corresponding sets of attributes, the DU can
indeed check the correctness and completeness of the
results.

Finally, we require the DO to sign the whole index
and all encrypted documents. This signature will be
kept by the CA and gives to the DO full responsibility
on the data (a malicious DO could blame the CP for
data malformed at origin).

3.5 Security

MK-SEAC has a quite permissive threat model,
where only one entity is supposed truly honest.
Specifically, our assumptions are the following:

• The DO is assumed to delete its data once the en-
crypted batch and the Index have been uploaded
on the cloud. To search for data it should act as a
simple DU. Note that the DO signs everything, so
it can be blamed for a poorly computed index or
corrupted encrypted data.

• The DUs can be corrupted, the leakage profile
is analyzed in Appendix A. Note that colluding
users cannot access more data than the union of
what they could read individually.

• The CP can be malicious, in the sense that any
deviation from the proscribed behaviour is de-
tectable.

• The CA is assumed to be honest. This assump-
tion could be mitigated by decentralizing this
role through secure multiparty computation tech-
niques, which are outside of our scope.
This model is stronger compared to the one

in (Löken, 2017), where the CP has to be honest but
curious to ensure the completeness of search results,
and a malicious DO could upload corrupted data and
blame the CP for the incorrectness of search result.

4 CONCLUSIONS

We have presented a novel protocol that combines
Searchable Encryption and Attribute-Based Encryp-
tion to enable easier retrieval with fine-grained pri-
vacy and access control in remote storage. Simi-
larly to SEAC, MK-SEAC allows the outsourcing of a
searchable document collection to a third party with-
out compromising data confidentiality. Both static
protocols ensure the completeness of the search re-
sults and the secrecy of the keywords. The main con-
tributions of our work are native support for searches
over multiple keywords at once, rather than the single-
keyword query permitted by SEAC, while consider-
ing a stronger threat model (see Section 3.5) and re-
ducing the leakage profile of the structure (see Ap-
pendix A). These improvements come at the cost of
a new structure R, whose size grows exponentially
with the number of keywords that describe a single
document, although every single entry has a quite
small size. The construction also retains full verifi-
ability while reducing the total number of signatures
required. The overall efficiency in terms of crypto-
graphic operations needed to upload a batch, process-

MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

449

ing a query operation, and verifying a set of results is
similar to the one in SEAC (see Appendix B).

Optimizations. The multi-keyword searches en-
abled by MK-SEAC are effectively queries where
the individual keywords are combined with a logi-
cal AND. In SEAC, the same result can be achieved
by making a query for each single keyword and then
combining the results by intersecting the individ-
ual responses. Besides the straightforward efficiency
gains offered by MK-SEAC, obtained by performing
a single query instead of multiple ones followed by
post-processing, another benefit is the reduced leak-
age. In fact, MK-SEAC does not reveal anything
about which documents are associated with a single
keyword (not even in a masked form as in SEAC) un-
less a user specifically searches for a single keyword,
and also in this case the CP is not able to understand
that the search concerns a singleton instead of a big-
ger set of keywords.

When considering combined queries that use the
logical OR instead of the AND, MK-SEAC still of-
fers some advantages, but to a lesser extent. With
the OR, the individual results should be combined
with a union instead of an intersection, and indeed
this is the standard approach both for SEAC and MK-
SEAC. However, in MK-SEAC it is possible to avoid
some redundant computations by exploiting the parti-
tion on the documents induced by the policies. In fact,
since the control of the policies is performed imme-
diately in MK-SEAC (contrarily to SEAC where the
masked keyword is checked first), we can exploit the
fact that the sets of documents associated with differ-
ent access policies are disjoint, and fully parallelize
the search over each policy. Moreover, when com-
bining searches for documents sharing the same pol-
icy A, but characterized by different sets of keywords
L1 and L2, we can note that if, by XORing the pads
found in an entry of K with fkU (A,L1), we obtain a
pointer and a key that lead to successful decryption
of an entry in R, then it is useless to xor same pads
with fkU (A,L2). In fact, we would either obtain noth-
ing (if L2 is not a match) or the same result as before.
Therefore it is sufficient to check again only entries in
K which did not match with previously checked sets.

Future Work. The first natural extension, on which
we are already working, is to allow the update of doc-
ument batches in a dynamic setting. While an ap-
proach similar to the one used in dSEAC would fit
our case too, there are hints that many optimizations
are possible, e.g., by craftfully reusing parts of the
indexes in subsequent updates. We are also working
on a proof-of-concept implementation to empirically

test and validate the construction and compare it with
SEAC.

Another feature we would like to introduce is to
optimize searches in a scenario where there is a sec-
ond set of keywords that are supposed to be less sen-
sitive and therefore would require less protection. In
particular, less stringent privacy on these keywords
could allow for more expressive queries on them, such
as interval searches and regular expressions.

An interesting line of work could be exploring
other possibilities regarding the structures of the in-
dex, to improve the efficiency or reduce the overhead.
However it should be considered that improvements
are likely to come at the cost of increased leakage,
and there will be time-space tradeoffs. For example,
the aggregation of data in the encrypted linked list K
could reduce overhead but would likely leak the num-
ber of keywords per policy corresponding to at least
one document in the batch. Padding could preserve
time efficiency and privacy, at the cost of increased
space. We envision more possibilities in improving
the router R, e.g., by exploiting more sophisticated
cryptographic primitives or via clever tricks. How-
ever, note that currently the structure is already quite
light and the XOR operations are arguably as efficient
as it gets.

Finally, one could investigate the insertion of an
LLM module to improve the labeling of documents
and aid users in generating more accurate and efficient
queries by selecting the best sets of keywords.

ACKNOWLEDGEMENTS

This work was partially supported by the project
”METAfora: Metodologie e tecnologie di rap-
presentazione per il metaverso” (CUP code
B69J23000190005), funded by the Italian Ministero
delle Imprese e del Made in Italy and coordinated
by BIT4ID S.r.l., and by the project SERICS
(PE00000014), under the MUR National Recovery
and Resilience Plan funded by the European Union -
NextGenerationEU.

REFERENCES

Agrawal, S. and Chase, M. (2017). Fame: Fast attribute-
based message encryption. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 665–682, New
York, NY, USA. Association for Computing Machin-
ery.

Bethencourt, J., Sahai, A., and Waters, B. (2007).
Ciphertext-policy attribute-based encryption. In 2007

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

450

IEEE Symposium on Security and Privacy (SP ’07),
pages 321–334.

Blömer, J. and Löken, N. (2019). Dynamic searchable
encryption with access control. In Foundations and
Practice of Security: 12th International Symposium,
FPS 2019, Toulouse, France, November 5–7, 2019,
Revised Selected Papers, page 308–324, Berlin, Hei-
delberg. Springer-Verlag.

Chan, J. and Rogaway, P. (2022). On committing
authenticated-encryption. In European Symposium
on Research in Computer Security, pages 275–294.
Springer.

Goldwasser, S., Micali, S., and Rivest, R. L. (1988).
A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Comput-
ing, 17(2):281–308.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. CCS ’06. Association for
Computing Machinery, New York, NY, USA.

Hirose, S. (2022). Collision-resistant and pseudorandom
function based on merkle-damgård hash function. In
Park, J. H. and Seo, S.-H., editors, Information Se-
curity and Cryptology – ICISC 2021, pages 325–338,
Cham. Springer International Publishing.

Laurie, B. (2014). Certificate transparency: Public, verifi-
able, append-only logs. Queue, 12(8):10–19.

Li, H., Yang, Y., Dai, Y., Yu, S., and Xiang, Y. (2020).
Achieving secure and efficient dynamic searchable
symmetric encryption over medical cloud data. IEEE
Transactions on Cloud Computing, 8(2):484–494.

Löken, N. (2017). Searchable encryption with access con-
trol. Proceedings of the 12th International Conference
on Availability, Reliability and Security.

Mosteller, F. (2006). Understanding the Birthday Problem,
pages 349–353. Springer New York, New York, NY.

Rouselakis, Y. and Waters, B. (2015). Efficient statically-
secure large-universe multi-authority attribute-based
encryption. In Böhme, R. and Okamoto, T., editors,
Financial Cryptography and Data Security, pages
315–332, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Sahai, A. (1999). Non-malleable non-interactive zero
knowledge and adaptive chosen-ciphertext security. In
40th Annual Symposium on Foundations of Computer
Science (Cat. No.99CB37039), pages 543–553.

Sahai, A. and Waters, B. (2004). Fuzzy identity based en-
cryption. Cryptology ePrint Archive, Paper 2004/086.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In Pro-
ceeding 2000 IEEE Symposium on Security and Pri-
vacy. S&P 2000, pages 44–55.

Weber, S. G. (2013). Designing a hybrid attribute-based en-
cryption scheme supporting dynamic attributes. Cryp-
tology ePrint Archive, Paper 2013/219.

Yin, H., Li, Y., Deng, H., Zhang, W., Qin, Z., and Li, K.
(2023). Practical and dynamic attribute-based key-
word search supporting numeric comparisons over en-
crypted cloud data. IEEE Transactions on Services
Computing, 16(4):2855–2867.

APPENDIX

A Leakage in MK-SEAC

In this section, we want to describe the leakage that
our scheme incurs, considering an adversary that can
take control of the server and is able to corrupt users.
We describe such leakage through three leakage func-
tions.

The first one (Equation (13)) depicts the leakage
of enrolling an honest user, that simply coincides with
the user identifier uid, which is published by the CA.

In MK-SEAC the leakage of corrupting an hon-
est user or enrolling a dishonest one coincides (Equa-
tion (14)), and it contains the private information of
the user and all the data the adversary can derive.
In particular, the adversary obtains the user’s iden-
tifier uid and their set of attributes Auid . Using the
user’s private ABE keys, the server can decrypt part
of the index, discovering the linking between a doc-
ument doc, its identifier iddoc, and its keywords Ldoc ,
for each document doc in the batch that is accessible
by the corrupted user. Similarly, taking advantage of
the knowledge of the private key κuid

Auid
, the adversary

can decrypt some nodes in Σ, finding out, for each
pair of policy and set of keywords, the digest of the
concatenation of the tags of the corresponding docu-
ments. Moreover, since the adversary knows the pri-
vate key kU , it can generate the pseudo-random func-
tion fkU (Adoc,Ldoc).

The next leakage function (Equation (15)) de-
scribes the leakage caused by the DO updating a doc-
ument batch. Here, the adversary learns the encrypted
index, and therefore the cardinality of its structures.
In particular, from the cardinality of D, the adversary
learns the number of documents in DB1.

The last leakage function (Equation (16)) de-
scribes the leakage caused by searches. By sending
a query, the user leaks their identifier uid and the sub-
set of their attributes used in the query, A . Then, by
processing the query, the adversary discovers the eval-
uation fkU (Ai,Li) and the binding between the identi-
fier of the document iddoc and its access policy Adoc,
for each document doc in the batch that satisfies the
query.

The proof of the following theorem is inspired
by (Löken, 2017) and constructs a real experiment
Real and a simulated one Sim. The idea is to prove
that an adversary is unable to distinguish between
them unless it is able to break either the symmetric or
the ABE encryption. The strategy consists of having

1This leakage could be mitigated by inserting dummy
entries in D.

MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

451

LHJ(U) = uid (13)

LCOR(uid) =

(uid,Auid),
{doc, iddoc, Ldoc, : doc ∈ DB} ∧ Auid satisfies Adoc },
{A,L,H({tagk(ptxiddoc) ∈ DB : Adoc = A, Ldoc = L}) : Auid satisfies A}
{ fkU (Adoc,Ldoc) , Adoc, Ldoc : doc ∈ DB}

 (14)

LUP(DC) =

(
#A, #K, #R, #D, #Σ,
{A : ∃ doc ∈ DB, Adoc = A}

)
(15)

LSE(uid,A ,{Ai,Li}i∈{1,...,k}) =

 (uid,A),
{ fkU (Ai,Li) : i ∈ {1, ...,k}},
{ fkU (Adoc,Ldoc) , iddoc, Adoc : doc ∈ DB ∧ Ldoc ⊃ Li ∧ Auid sat. Adoc}

(16)

the simulated experiment gradually take over compu-
tations originally performed by the real one, in a se-
ries of hybrid scenarios.

Theorem A.1. MK-SEAC is (LUP,LCOR,LSE)-
semantically secure against static adversaries if in-
stantiated with IND-CPA ciphertext-policy attribute-
based encryption, and IND-CCA2 symmetric encryp-
tion.

Proof. We start by constructing a simulator S such
that, for any polynomial-time adversary Adv, if Adv
is able to distinguish between Realstatic

MK−SEAC,Adv
(k)

and Simstatic
MK−SEAC,Adv,S (k) with non-negligible proba-

bility, then Adv breaks the static security of ABE or
Sym’s indistinguishability against eavesdropping at-
tacks. The simulator S can be constructed in this way:

Setup. Compute (pp, pk,msk)← Setup(1k) and
give pp to Adv.

Index. If no LCOR(uid) leakage occurs, create
bit strings bsLi for each set of keywords occurring
in LSE(uid,A ,{Ai,Li}i∈{1,...,k}) leakage, such that
the bit strings bsLi are distinct and of length k. If
LCOR(uid) leakage occurs, set bsLi = Li for each key-
word in Li that occurs in LCOR(uid). Remember the
mapping from id(Li) to bsLi .

For each set of keywords–access structure pair
(Li,A) that occurs in LCOR(uid) or implicitly in
LSE(uid,A ,{Ai,Li}i∈{1,...,k}), create an encrypted list
DL[Li,A], using the same symmetric key through the
variation of Li. Add to this list references to docu-
ment ciphertexts from D such that the access struc-
ture of the corresponding plaintext document is A and
the document contains Li according to LCOR(uid) or
LSE(uid,A ,{Ai,Li}i∈{1,...,k}). Randomly map the list
of DL nodes in an array D′ of size |D|, and encrypt all
nodes. Remember the list head’s locations and key.
Fill empty array cells D′ with dummy entries.

For each of the list heads in D′, consider the
set of keywords describing the document, Li. For
each element in the power set of Li, except the
empty set, that occurs in LCOR or implicitly in
LSE(uid,A ,{Ai,Li,{Pj} j∈Ji}i∈{1,...,k}), create a node
in RL[Li,A]. Using jolly pointers, map all the new
nodes in RL[Li,A] to the corresponding list head in
D′. Randomly map the list of RL nodes in an array
R′ of size |R|, and encrypt all nodes. Remember the
list head’s locations and key. Fill empty array cells R′

with dummy entries.
For each of the list heads in D′, consider

the set of keywords describing the document,
Li, that occurs in LCOR(uid) or implicitly in
LSE(uid,A ,{Ai,Li}i∈{1,...,k}). Generate an encrypted
linked list KL[A] and utilize the jolly pointers to map
the list heads’ to all the nodes in RL that contained an
element of the power set of Li beside /0. Randomly
map the list of KL nodes in an array K′ of size |K|, and
encrypt all nodes. Remember the list head’s locations
and key. Fill empty array cells K′ with dummy entries.

For each A linked to the set of keywords Li by the
leakage functions, or implicitly publicly known, gen-
erate a node in AL and map them to the corresponding
entries of K′. Then randomly map the list of AL nodes
in an array A′ that should have the exact size |A|, and
encrypt all nodes.

Set Index′ = (A′,K′,R′,D′).
Ciphertext collection: For each plaintext docu-

ment doc contained in any LCOR(uid), encrypt doc
under policy A+

doc. For each document doc that occurs
in LUP(DC) but not in any LCOR(uid), encrypt 0|doc|

under policy A+
doc. Let D′ be the set of ciphertexts gen-

erated from documents or based on document lengths.
Keys: For each distinct (uid,Auid) in

LCOR(uid) or in LSE(uid,A ,{Ai,Li}i∈{1,...,k}),
compute the user secret key

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

452

ukuid ←MK-SEAC.KeyGen(pp,msk,uid,Attruid).
Trapdoors: For each

LSE(uid,A ,{Ai,Li}i∈{1,...,k}) compute
(uid,Li)←MK-SEAC.Trpdr(pp,ukuid ,bsLi),
where ukuid was created before and bsLi is the same
as in the index generation.

Output: The simulator S outputs (Index′),
the set of user secret keys generated due to
LCOR(uid) and the set of trapdoors generated due to
LSE(uid,A ,{Ai,Li}i∈{1,...,k}).

Hybrids. We denote game Realstatic
MK−SEAC,Adv

(k) by
Hyb0, meaning a hybrid game, partially taken over by
the simulator. Starting in hybrid Hyb1, the simulator
S gets to compute pp. From Hyb2 onward, we have S
compute corrupted user’s secret keys. Similarly, start-
ing with Hyb3, S produces the trapdoors requested by
honest users. Computations of D′ are performed by
S from Hyb4 onward. Starting with Hyb5, S gets to
compute the references to lists DL[Li,A] for RL[Li,A].
S takes over the computation of R from Hyb6 on-
ward. From Hyb7 onward, S takes over the compu-
tation of the references to lists RL[Li,A] for KL[A].
The remaining computations of K are performed by
S from Hyb8 onward. From Hyb9 onward, S com-
putes the references to list AL for KL[A]. Finally,
from Hyb10 onward, S takes over the entire computa-
tion of A. Hence, hybrid Hyb10 resembles experiment
Simstatic

MK−SEAC,Adv,S (k).

Indistinguishability of Hybrids. We first note that
Adv does not know the key kU for the pseudo-random
function fkU () unless Adv corrupts some user. In case
Adv corrupts a user, S knows all keywords occurring
in DB from the LCOR leakage. Then, bsLi = Li for
every leaked set of keywords Li. In case Adv does not
corrupt a user, it cannot evaluate function fkU () on its
own. Nevertheless, the unique choice and consequent
use of bsLi ensures the consistency of the simulator’s
answers to queries.

Hybrids Hyb0 and Hyb1 cannot be distinguished
because the real experiment and S perform the same
computations. For the indistinguishability of Hyb1
and Hyb2, we note that if no user is corrupted, i.e.
no LCOR leakage occurs, the computations of both the
real experiment and S are non-existent in this step.
Otherwise, the simulator executes the same algorithm
on the same inputs as the real experiment. In either
case, Hyb1 is indistinguishable from Hyb2. Hybrids
Hyb2 and Hyb3 are indistinguishable because the sim-
ulator in Hyb3 performs the same computations as the
real experiment in Hyb2.

Adv cannot distinguish D from D′, and thus
Hyb4 from Hyb3, because, both ABE and Sym are

IND-CPA. Some documents from DB may be asso-
ciated with policies that are satisfied by the attributes
of some corrupt user. Such documents are directly en-
crypted in D as well as D′ by utilizing hybrid encryp-
tion. For all other documents, their respective cipher-
texts in D are computationally indistinguishable from
the encryptions of 0-bit strings of the relevant length
that take their place in D′.

The computational indistinguishability of Hyb5
from Hyb4 follows, since Hyb5 performs the same
computations as the real experiment in Hyb4.

The computational indistinguishability of Hyb6
from Hyb5 follows considering that Sym is IND-CPA.
If the adversary corrupts a user, there is no differ-
ence between the real experiment’s remaining compu-
tations of R in Hyb5 and the simulator’s corresponding
computation of R′ in Hyb6. In case the adversary does
not corrupt any user, the arguments for the indistin-
guishability of Hyb3 and Hyb4 analogously hold for
the indistinguishability of hybrids Hyb5 and Hyb6.

Hybrids Hyb7 and Hyb6 are indistinguishable be-
cause the simulator in Hyb7 performs the same com-
putations as the real experiment in Hyb6.

Hybrid Hyb8 is computationally indistinguishable
from Hyb7 since Sym is IND-CPA. Additionally,
fkU () is a pseudo-random function and the bit-wise
XOR of a bit-string x with the image of a pseudo-
random function is a CPA-secure symmetric encryp-
tion scheme. Therefore, dummy entries cannot be dis-
tinguished from non-dummy entries in K and K′, un-
less keys for such entries, images of fkU () , are known.
Adv can obtain such images either by computing them
using the key of a corrupted user or by extracting the
image from a trapdoor. The former option requires
Adv to corrupt a user (except with negligible proba-
bility), in which case Adv can distinguish all dummy
entries from non-dummy entries for both K and K′ and
the simulation ensures keywords underlying the la-
bels and decryption keys are exactly the same in both
cases. In case the adversary does not corrupt a user,
Adv lacks the keys to fkU () , so it cannot check that the
image it holds is an image of the keyword known to
Adv but not to S .

For the indistinguishability of hybrids Hyb8 and
Hyb9, we observe that the adversary Adv performs the
same computations as the real experiment in Hyb8.

The computational indistinguishability of Hyb10
from Hyb9 follows considering that both ABE and
Sym are IND-CPA. If the adversary corrupts a user,
there is no difference between the real experiment’s
remaining computations of A in Hyb9 and the simu-
lator’s corresponding computation of A′ in Hyb10. In
case the adversary does not corrupt any user, the argu-
ments for the indistinguishability of Hyb3 and Hyb4

MK-SEAC: Multi-Keyword Searchable Encryption with Access Control

453

analogously hold for the indistinguishability of hy-
brids Hyb9 and Hyb10.

In conclusion, all our hybrids are computationally
indistinguishable. Thus, for sufficiently large k, no
probabilistic polynomial time adversary Adv can dis-
tinguish between experiments Realstatic

MK−SEAC,Adv
(k) by

Hyb0 and Simstatic
MK−SEAC,Adv,S (k) with probability non-

negligible in k.

B Efficiency of Query Processing

In this section we report the cardinality of the struc-
tures composing the index and the number of crypto-
graphic operations that the DO, the DU and the CP
have to compute in order to upload a batch of docu-
ments and process a query operation respectively.
Let us introduce the following notation:

ADB ={Adoc : doc ∈ DB},
ALDB ={(Adoc,Ldoc) : doc ∈ DB}

mt =
k

∑
i=1
| {(Ai,L) ∈ ALDB} |,

md =|{doc ∈ DB: ∃ i s.t. (Adoc,Ldoc)=(Ai,Li)}| .

Then, for what concerns the cardinality of the
structures in the index, we have:

Proposition B.1. Let ADB and ALDB be defined as
above, then the structures of the index of MK-SEAC
have the following cardinalities:

1. | A | = | ADB |,
2. | K | = | ALDB |,
3. | D | = | DB |,
4. | Σ | = | ADB |,
5. | R | = ∑(L,A)∈ALDB

(
2|L|−1

)
.

Proving this proposition should be straightfor-
ward. Indeed, as previously noted, the pairs of poli-
cies and maximal set of keywords induce a partition
in the set of documents.

Proposition B.2. The number of cryptographic oper-
ations required by a DO to update a batch are:

(| A |+ | ALDB |+ | Σ |) ·EABE+

+(| A |+ | K |+ | R |+2 | D |+ | DB |+ | Σ |) ·ESym+

+(| Σ |) ·Sg.

For the CP to process a query request are needed:

1 ·Sv + k ·DABE +(k+2mt +md) ·DSym

operations, while, for a DU to complete a search, we
require:

1 ·Sg +(1+ k) ·Sv +(| ALDB |+k) ·DABE+

+(md + k) ·DSym

operations, where Sg and Sv are respectively the num-
ber of signature generations and verifications, DSym is
the number of symmetric decryptions and DABE is the
number of ABE decryptions. While EABE and ESym
are the numbers of ABE and symmetric encryptions.

Proof. In updating a batch, the DO has to build the
index and encrypt it. Note that each node in A and
in Σ requires an ABE encryption (see Equations (2)
and (9))2. Moreover, the structure D contains the ABE
encryption of the keys required to retrieve the docu-
ments. Documents that share the same keywords and
policy also share the same key (see Equation (7)), thus
the DO has to compute an ABE encryption for each
pair of policy and set of keywords occurring in the
batch, that is | ALDB |.

Then, the DO has to symmetrically encrypt the
remaining structures. All structures require a sym-
metric encryption per node, besides D, which requires
two encryptions. The batch itself is symmetrically en-
crypted. Finally, it has to produce a signature for each
node in Σ.

When processing a query, the CP has to check
the signature of the issuer. Then, it decrypts with
ABE the entries of A corresponding to the k poli-
cies in the query. To visit the inner layers of the
index, it has to symmetrically decrypt the k identi-
fiers Sym.EncKDF(rA)

(
idK

LA,1

)
in A to access the cor-

responding lists in K. Then, it decrypts the content of
such lists in K, for a total of mt decryptions. For each
of these nodes, it tries to decrypt the pointed node in R,
which requires mt additional symmetric decryptions.
Whenever this decryption succeeds, it then decrypts
the corresponding nodes in D, for a total of md nodes.

Finally, the DU has to sign its query. Then, upon
receiving the results, it has to check the signatures of
the CP and one signature for each of the k policies oc-
curring in the query. Then, it has to decrypt in ABE
the first entry of the Σ nodes, which are again k, and
the final entries of the D nodes that the CP visited dur-
ing the search, that is, abeLA,i, j. Finally, it has to de-
crypt a symmetric ciphertext for each node in Σ - to
retrieve the hash of the concatenations of the docu-
ment tags - and each document received.

2Since we are using hybrid encryption, note that each
ABE (en/de)cryption requires a symmetric (en/de)cryption,
which are already included in Proposition B.2.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

454

