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Abstract: Trigger-action apps are being increasingly used by end users to connect smart devices and online services
to create new functionality. However, these apps can cause undesirable implicit information flows (secrecy
violation) or lead to unintended accesses (integrity violation) depending on the usage context. Existing solu-
tions designed to address such risks rely on predefined rules to control and mitigate such implicit information
flows or unintended accesses. However, defining such rules is difficult for end users. In this work, we pro-
pose a learning-based approach to learn rules that flag violating situations based on the usage context. We
also propose a set of reduction steps to reduce the complexity of the learned rules. We are able to achieve a
good F1-measure in predicting both secrecy (0.91) and integrity (0.75) violations and achieve 77% and 74%
complexity reduction while maintaining 88% and 97% of the original performance of the secrecy and integrity
violation prediction, respectively.

1 INTRODUCTION

Trigger-action programming frameworks such as
IFTTT (IFTTT, 2019), Microsoft Flow (Microsoft
Corporation, 2019), and Zapeir (Zapier Inc., 2019)
are getting increasingly popular. These frameworks
enable end users to connect different IoT devices and
online services using simple conditional logic (e.g., If-
this-then-that in IFTTT) to enable new and rich func-
tionality. It has been reported that for IFTTT alone,
18 million registered users were running over 1 bil-
lion applets each month in 2020 (McLaughlin, 2021).

While these platforms provide convenience and
ease of use, there are inherent security and privacy
risks. These include unexpected or undesirable im-
plicit information flows (Surbatovich et al., 2017;
Cobb et al., 2020; Celik et al., 2018; Fernandes
et al., 2016). For example, an applet that automat-
ically uploads pictures taken by a motion-activated
smart home security camera during the day may cause
privacy violations when unexpected guests arrive or
home owners return early.

Surbatovich et al. (Surbatovich et al., 2017) high-
lighted such risks in IFTTT applets using a lattice-
based analysis framework. They used security la-
bels and information flow analysis to identify se-

crecy (confidentiality) and integrity violations. Mul-
tiple prior works have used a lattice-based model to
determine security and privacy violations in smart-
home solutions because of the simplicity and ease
of static information-flow rules (Bastys et al., 2018;
Celik et al., 2019). However, recent work by
Cobb et al. (Cobb et al., 2020) has shown that lattice-
based models cannot capture security and privacy
risks accurately due to lack of contextual information.
They discussed how contextual information such as
device location within the home can help identify the
violations more accurately.

Contextual information alone may not suffice to
accurately capture risks. We show that even with us-
age context considered, lattice-based evaluation, as
discussed in (Surbatovich et al., 2017; Cobb et al.,
2020), does not yield a unique decision on violations,
highlighting the influence of individual preferences.

Therefore, customizing security and privacy eval-
uation for each individuals’ personal preference is
going to be a necessity, which is inline with prior
work (Saeidi et al., 2020) that showed end-user
perception of security and privacy risks varies sig-
nificantly between individuals. While some exist-
ing frameworks allow such personalization (e.g., Ex-
pat (Yahyazadeh et al., 2019), IoTGuard (Celik et al.,
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2019)), where end users define policy rules through
specialised policy languages or graphical user inter-
faces, doing so is difficult for end users (Smetters and
Good, 2009; Bauer et al., 2009). The already complex
task of defining policy rules will be made much more
difficult by end users having to consider different us-
age contexts for different applets.

To address this gap, we propose a framework
for learning integrity and secrecy violation detection
rules tailored to individual preferences. We frame
the problem as a classification task that uncovers vi-
olation detection rules from a synthesized training
dataset, which includes various usage scenarios of
multiple applets created by combining different con-
textual information. Additionally, we use reduction
techniques to minimize complexity and redundancy
in the final learned rules. In summary, this work:

• Validates that integrity and secrecy violations de-
pend on both the context and user preferences using
a synthesized dataset of smart-home applets labeled
considering contextual information.

• Shows that machine learning models can learn and
generalize violation detection rules for a given user.
Our Random Forest (RF) model achieved good F1-
measure in predicting both secrecy (0.91) and in-
tegrity (0.75) violations.

• Proposes reduction techniques to decrease the com-
plexity of the learned rules, achieving a 77% and
74% decrease in complexity while maintaining 88%
and 97% of the original performance in predicting
secrecy and integrity violations, respectively.

The paper is structured as follows: Section 2 cov-
ers the threat model and lattice-based approach. In
Section 3, we outline our method for creating a la-
beled smart-home dataset. Section 4 discusses the
limitations of lattice-based models for violation de-
tection and the role of contextual information. Sec-
tion 5 presents our framework for learning violation
detection rules and reducing complexity, along with
its evaluation on the dataset. We address limitations
and future work in Section 6 and review related work
in Section 7. Finally, we conclude in Section 8.

2 THREAT MODEL AND
LATTICE-BASED APPROACH

Threat Model. In this paper, we focus on violations
that arise when unauthorized users (e.g., visitors or
outsiders) trigger smart home applets to perform un-
intended or malicious actions or to access sensitive in-
formation through them. For example, a visitor could
issue a voice command to disable security cameras,
thus compromising home security, or exploit an on-

line service linked to a smart device to expose sen-
sitive information, such as daily routines of residents
and their presence or absence at home.

Our paper categorizes the above situations as
integrity and secrecy violations and discusses how to
determine and detect them. Specifically, an integrity
violation happens if an applet1 allows unauthorized
or unintended access to a smart-home device (e.g., a
smart camera) or a resource on an online service (e.g.,
a Google spreadsheet). On the other hand, A secrecy
violation happens when an applet enables the flow
of private information to a public destination (e.g.,
uploading footage from an indoor camera, considered
private, to a shared Google folder, considered public).

Lattice-Based Approach. One of the simple and
understandable approaches that can help to identify
the violations in smart-home apps is the lattice-based
model that was proposed by prior works (Cobb et al.,
2020; Surbatovich et al., 2017). A lattice-based secu-
rity model detects integrity (undesirable access) and
secrecy violations (undesirable information flow) by
employing security labels that form a lattice, or par-
tial order, along with simple static rules based on in-
formation flow analysis (Denning, 1976). Figure 1
shows the security lattice used in (Surbatovich et al.,
2017) to analyze information flows and identify in-
tegrity and secrecy violations. The arrows in the fig-
ure indicate the permissible information flows and au-
thorized accesses. For instance, information flow is
allowed from devices or services with Public label to
those with Private label, but not vice versa (Left side
of Figure 1). Similarly, devices or services labeled
Trusted are allowed to access or control those with
Untrusted label, but not vice versa (Right side of Fig-
ure 1).

In applying a lattice-based security model to
smart-home applets, integrity and secrecy labels for
triggers and actions are assigned by responding to two
questions: who can access and who can observe the
trigger and action (Surbatovich et al., 2017). For in-
stance, when a smart device is located within a home,
it means only a restricted group of people who are
physically present in the home could either access the
device to initiate a trigger or observe the action event
if it occurs in the device. In this case, the security la-
bel of the trigger/action would be restricted physical.

To see the security rule application, consider an
applet that adds one row to the user’s Google spread-
sheet when the front door gets unlocked. In this
case, an integrity violation can occur if an unknown

1In this paper, app and applet are used interchangeably
to refer to IFTTT like recipes connecting smart-home de-
vices and online services.
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Figure 1: The integrity and secrecy (confidentiality) lattices
used in (Surbatovich et al., 2017).

person (untrusted user) unlocks the door and causes
the action of writing in the Google spreadsheet that
is allowed only by the Google spreadsheet owner (a
trusted user).

3 DATASET SYNTHESIS
METHODOLOGY

To investigate how usage context affects the accu-
racy of lattice-based integrity and secrecy violation
detection approaches, we need a trigger-action
app dataset that includes contextual information.
While smart-home datasets with smart sensor read-
ings (Washington State University, 2019) and IFTTT
app datasets (Surbatovich et al., 2017; Cobb et al.,
2020) were available, these did not include contextual
information. Therefore, we synthesized a dataset as
described below2.

Applet Selection: We chose our smart-home applets3

from two IFTTT applet datasets used in previous
work (Cobb et al., 2020; Saeidi et al., 2020). The first
dataset includes 396 unique IFTTT applets, with 218
related to smart homes, while the second includes
49 unique smart-home applets. An ideal scenario
would be to consider every applet that creates a
unique trigger and action pair. However, this would
make creating a labeled dataset very challenging as
will become evident later. To reduce the dimensions
of trigger/action events, we grouped triggers and
actions into semantic categories proposed by (Cobb
et al., 2020) with two additional subcategories (DS:A
and DS:P) to differentiate between appliances and

2This dataset will be made available to the community.
3A smart-home applet is an applet in which either the

trigger or action would happen in the smart-home environ-
ment.

printers from other IoT devices within the home.
We identified 39 unique pairs of trigger and action
semantic categories across the two datasets and
randomly sampled one applet from each pair of
trigger and action semantic categories across both
datasets (Cobb et al., 2020; Saeidi et al., 2020) to
create a semantically representative applet dataset.
Thus we picked 39 applets which represent the 39
unique pairs of semantic categories across the two
datasets.

Contextual Factors: Next step in creating a suit-
able dataset for our analysis is identifying contex-
tual factors that might influence or impact what might
be a considered a violation in smart-home trigger-
action apps. We identified a set of six contextual
factors that can have a potential impact on integrity
and secrecy violations by reviewing existing relevant
work (Naeini et al., 2017; Lee and Kobsa, 2016; Lee
and Kobsa, 2017; He et al., 2018; Saeidi et al., 2020;
Cobb et al., 2021; Jin et al., 2022). These selected
factors were also listed as the most mentioned con-
texts in a recent survey on contextual access controls
in homes (He et al., 2021). However, we note that this
set is not meant to be exhaustive but just a reasonable
starting point to illustrate the proposed approach.

• Trigger Location. The area in the home where
the trigger event can occur has security and pri-
vacy implications as it defines who can access the
trigger (Saeidi et al., 2020). This contextual factor
includes Living Room and Kitchen that are con-
sidered public areas, and Bedroom and Bathroom
that are considered private areas.

• Action Location. The area in the home where the
action event occurs also has security and privacy
implications as it defines who is able to observe
the action. Similar to Trigger Location, this factor
includes public areas (Living Room, Kitchen) and
private areas (Bedroom, Bathroom).

• Time. The time of day an end user uses the applet
can impact security and privacy, as cameras may
capture more sensitive footage at specific times.
We consider three values for this factor: Morning,
Afternoon, and Night.

• Online Service Trustworthiness/Secrecy.
This factor includes two situations when the trig-
ger/action occurs in online services. For triggers,
online service trustworthiness indicates whether
the trigger event is initiated by trusted or untrusted
online services. For instance, in an applet that
flashes a light when a new feed item matches the
app rule, there might be security/privacy concerns
if the RSS feed is from an untrusted website. For
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actions, when these are reported/logged in online
services, online service secrecy indicates whether
the information available in online services is pri-
vate or shared with others. For instance, in an ap-
plet that uploads a Facebook post when the user
arrives home, there might be privacy concerns if
the Facebook post is on a public page.

• Trigger Device/Service. The trigger device or
service refers to the resource that initiates trigger
events. It is essential to identify the trigger device
or service to determine who has access to it and
what kind of information may be exposed. For
instance, if the trigger is a voice command acti-
vated through a voice assistant like Alexa, anyone
in close proximity to the device can initiate the
command. To identify the device or online ser-
vice used by the applet, we utilized the semantic
categories proposed by (Cobb et al., 2020) (e.g.,
Semantic label “V” for triggers that are “voice”
activated based on verbal interactions with a smart
assistant such as, Alexa, Siri).

• Action Device/Service. This factor refers to the
resource where the action events take place. The
type of device or service, along with its features,
can have an impact on privacy and security im-
plications. For instance, having access to a light
would be less sensitive than having access to a se-
curity camera. Similar to Trigger Device/service
we used the semantic labels proposed by (Cobb
et al., 2020) to identify the type of device and ser-
vice for action event.

• Homeowner Presence. Whether the homeowner
is home or away. We consider this factor to iden-
tify potential people who are likely to use or trig-
ger the applet. This and the next factor can help
identify if the applet is triggered by home mem-
bers, visitors or others (outsider, etc.).

• Visitor Presence. This factor shows if the home
has a visitor or not. It helps to identify potential
people who are nearby and are able to use the ap-
plet or observe when the applet is activated, i.e.,
observe the action. We considered this and the
previous factor to understand if the applet is likely
to be visible or used by the owner, visitors or oth-
ers (outsider, etc.).

Usage Scenario: For each applet, we created
deployment and usage contexts by considering all
applicable combinations of the six contextual factors.
For example, in an applet that connects a voice
assistant like Alexa to a security camera: the trigger
device (Alexa) can be located in the living room,
kitchen, bedroom, or bathroom; the action device
(camera) can be potentially located in the living

room, kitchen, or bedroom4; the homeowner can be
absent, present and awake, or present and asleep; a
visitor may or may not be at home; and the applet can
be run in the morning, afternoon, or night.

Violation Labeling: Violation types (e.g., integrity
and secrecy) may vary in relevance across deploy-
ment and usage contexts. Generated scenarios can
be grouped into two potentially overlapping sets
for secrecy and integrity violations, each labeled as
violating or non-violating. Violating means running
the applet in the given context may potentially
lead to an unintended access (integrity violation)
or an unintended information flow (secrecy violation).

Dataset: For the 39 selected applets, we came up with
4104 applet deployment scenarios by considering all
applicable combinations of the six contextual factors.
All the generated scenarios were relevant for secrecy
violations. But, only 3666 among the 4104 were rele-
vant for integrity violations. This dataset was labeled
by two of the authors and is used to (i) empirically in-
vestigate if the lattice-based approach is sufficient to
accurately determine security and privacy violations
in trigger-action smart-home applets (Section 4), and
(ii) for evaluating our proposed learning framework
(Section 5)

4 LATTICE-BASED MODEL
LIMITATIONS

The lattice-based approach (Surbatovich et al., 2017)
which uses a simple rule-based model (described in
Section 2) to assign lattice labels and detect informa-
tion flow violations in trigger-action applets, provides
an efficient and scalable way of assessing the security
and privacy issues in a large corpora of applets. How-
ever, it is prone to inaccurate detection (both false
positives and false negative).

Cobb et al. (Cobb et al., 2020) enhanced this
lattice-based model by adding two additional lattice
labels for trusted people in the restricted physical
space (e.g., family members) and restricted online
space (e.g., household members who can control de-
vices via an app). They found that about 57% of ap-
plets to be potentially violating compared to about
35% with the original lattice. However, when they
manually inspected the violating applets, not all of the
applets raised concerns leading them to conclude that:

4We consider locations for apps that are likely to occur.
A camera in the bathroom is unlikely for most situations
and users.
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(a) semantic labels of triggers and actions can help
find risky applets more accurately, and (b) contextual
information (e.g., device location) matters when eval-
uating such violations and impacts the performance of
violation detection. Saeidi et al. (Saeidi et al., 2020)
found that in addition to usage context, users’ prefer-
ences also impact end-users perception of privacy and
security violations in trigger-action applets.

Here, we replicate the analysis done by
Cobb et al. by considering semantic labels of
triggers and actions and contextual information
to investigate the role of context in capturing the
unintended accesses or information flows. We also
show that in some cases contextual information alone
may not suffice to accurately capture risks.

In particular, two authors independently reviewed
each usage scenario, applying violation labels based
on the context across multiple labeling batches. To
ensure the validity of labeling for violation determi-
nation, in every step, the two authors discussed their
assigned labels of each applet scenario in the batch
and agreed on the final labels if their labels were not
matched. As the authors progressed through multi-
ple batches, the inter-rater reliability among them has
consistently improved and we could achieve a high
(Cohen’s K ˜.8) in the final batch. Labeling was done
under the assumption that applets are installed in a
single resident one-bedroom apartment. Under this
assumption, the resident will be the only trusted per-
son for online and physical access.

Here, we compare the violation labels ob-
tained through our context-based evaluation with
those derived by applying the same rules used by

Table 1: Comparison of context-based and lattice-based de-
tection of integrity and secrecy violations in the synthesized
dataset. TP: True Positives, FP: False Positives

Secrecy
Lattice Context Count

(T=4104)
Per%

Violating Violating (TP) 304 24%
(1248) Non-violating

(FP)
944 76% (23%)

Non-violating Violating 99 3% (2%)
(2856) Non-violating 2757 97%

Integrity
Lattice Context Count

(T=3666)
Per%

Violating Violating (TP) 498 58%
(853) Non-violating

(FP)
355 42% (10%)

Non-violating Violating 1212 43% (33%)
(2813) Non-violating 1601 57%

Cobb et al. (Cobb et al., 2020) in the lattice-based
analysis of the applets. Table 1 shows a comparison
of the resulting secrecy and integrity violations. Over-
all, for secrecy violations, we found 1248 (out of 4104
unique applet scenarios) as violating using the lattice
model. However, only 304 among those 1248 were
labeled as secrecy violation when examining the sce-
nario using contextual information. Similarly for in-
tegrity violations, we found 853 (out of 3666 unique
applet scenarios) cases as violating using the lattice-
based approach. However, when examined using con-
textual information, only 498 of them have been con-
sidered to be an integrity violation, with the remaining
355 being labeled as non-violation.

The lattice-based approach over detected viola-
tions (i.e., false positives), flagging 23% and 10% of
all applet scenarios (See the last column in the Ta-
ble 1) as secrecy and integrity violations respectively
when compared context-based evaluation. This is
somewhat unsurprising as the lattice-based approach
can be expected to be more conservative. However, a
significant number of cases that are considered viola-
tions when using context-based analysis were missed
(i.e., flagged as non-violations and hence false nega-
tives) by the lattice based approach. Specifically, 99
secrecy cases (2% of all applet scenarios) and 1212
integrity cases (33% of all applet scenarios) were
missed (see the last column in the Table 1). While
some of the missed violations can be rectified by us-
ing finer grained lattice labels, our review found that
others are a symptom of more fundamental limita-
tions of the lattice-based approach. For instance, in
a lattice-based approach, the lattice labels for the trig-
ger and action are typically assigned independently.
Such independent labeling, irrespective of the context
of use, can lead to inaccurate violation detection.

Consider two groups of applets: (i) applets con-
necting a voice assistant (e.g., Alexa) to online ser-
vices (e.g., Google Calendar) to enable end users to
write into online services via a voice command (e.g.,
adding a to-do list to Google Calendar), (ii) applets
connecting a smart IoT device within the home (e.g.,
smart lock) to online services (e.g., Google Calendar)
to notify or log the status of the IoT device (e.g., when
the smart lock gets unlocked, add an event to Google
Calendar).

In both groups of applets, suppose given the con-
textual information, the integrity label for the action
is trusted implying that only a trusted user (e.g., the
owner) can modify the Google Calendar. In this sit-
uation, if anyone but the homeowner triggers the app
(interacts with the assistant or unlocks the lock), the
lattice-based analysis will mark both groups of ap-
plets as violating applets (information flows from un-
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trusted to trusted). While this kind of reasoning can
capture the violations related to the first group of ap-
plets, it does not accurately model the second group
of applets. For instance, if homeowners install (smart
lock app) for surveillance purposes, they would like
to monitor whenever the lock gets unlocked regard-
less of who is triggering the event. Hence, even if an
unauthorized person (untrusted source) triggers writ-
ing to Google Calendar (a trusted resource), from a
user perspective this is a valid usage and not a viola-
tion.
As these examples show, even if one were to integrate
contextual information into the lattice-based model
approach of (Surbatovich et al., 2017; Cobb et al.,
2020), such a model still cannot accurately detect vio-
lations. In other words, contextual information alone
may not lead to accurate decisions about violations;
user perspectives must also be taken into account, and
both trigger and action events need to be considered
together for a more accurate evaluation.

To accommodate such multiple attribute evalua-
tion, we propose to employ rule expression that en-
ables us to evaluate many different attributes together.
Further, to provide such personalization we investi-
gate how learning-based techniques perform in iden-
tifying violations.

5 LEARNING DETECTION
RULES

We explore how machine learning classification
techniques can effectively learn end-user preferences
to identify applet usage scenarios that may lead to
violations based on contextual information. Recall
from Section 4 how determining violations not only
depends on the context of use, but also individuals’
preferences. We propose a framework that can learn
violation detection rules by taking into account both
these factors to create a more personalized and flexi-
ble way to determine integrity and secrecy violations.
More specifically, we examine the effectiveness of
our learning framework to learn the violations from
end-users’ decisions on a set of applets and identify
violations for unseen apps. Two criteria, inspired by
prior work (Beckerle and Martucci, 2013; de Fortuny
and Martens, 2015) in rule mining and extraction in
access control, are used to assess our framework.

Classification Performance. The model’s perfor-
mance reflects how accurately the generated rules
by the framework can classify usage scenarios as
violating or non-violating.

Complexity. As our goal is to help end users by auto-
matically learning violation detection rules, it is im-
portant that these rules not be overly complex to un-
derstand or to maintain. Prior literature (Smetters and
Good, 2009; Bauer et al., 2009) showed that end users
are more comfortable with fewer number of rules and
those that are simpler to understand. We use rule com-
plexity as a way to evaluate how effective our frame-
work is in reducing the complexity of final rules in
terms of their length and number.

5.1 Learning to Identify Violations

We define the problem of violation identification as
a supervised classification problem. Specifically, we
aim to learn a “rule” that maps a tuple of a trigger,
action, and a set of contextual factors to binary labels
specifying whether or not the use case is a violation.

Classifier Selection. Several popular supervised
classification models such as Decision Tree, Random
Forest, Support Vector Machines, and Logistic
Regression can potentially be used to create a
context-based prediction model (Sarker et al., 2019).
Among these models, we decided to explore tree-
based models such as Decision Tree and Random
Forest, as they are easier to interpret as a set of rules
and thus more suitable for our application. However,
we also used a subset of other popular classification
models, including Support Vector Machines and
Logistic Regression, to baseline the performance
of tree-based models and measure how well they
perform compared to other models. Hence, for
each classification problem (integrity and secrecy
violation respectively), we investigated the above
four algorithms.

Dataset. We used the synthesized dataset described
in Section 3 to train and evaluate our machine learn-
ing models. The dataset consists of 39 applets and
is divided into two subsets, each corresponding to a
type of violation: integrity and secrecy. Each record
(row) in the dataset includes 8 contextual factors (See
Section 3).

Since the “Online Service Trustworthi-
ness/Secrecy” feature applies only to applets
connecting online services with IoT devices, we
combined it with trigger/action location for online
service events. This approach eliminated null values
in the dataset for applets without online services.
Table 2 shows the feature values in the datasets.

The final dataset is a set of tuples in the form of
< T S,AS,T L,AL,T,V P,HP,V L > where

• TS → trigger device/service,

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

434



Table 2: Features and their values in the final datasets.

Features
Trigger Device/Service (TS)*= {V: Voice command, WT: Weather or time, N: News-ish, DS: Sensing IoT device state, DS:S: Home
security, DS:A: Appliances, DS:L: Lights, E: Environment sensing, IC: Intentional communication, P: Change personal device state,
OAcc: Sensing online account state}
Action Device/Service (AS)*= {DS: Changing IoT device state, DS:S: Home security, DS:L: Lights, DS:A: Appliances, DS:P: Printer,
E: Environment sensing, L: Log or notify, P: Change personal device state, OC: Outgoing communication}
Trigger Location (TL) = {Trusted/Private Online Service, Untrusted/Public Online Service, Kitchen, Living Room, Bathroom, Bed-
room}
Action Location (AL) = {Trusted/Private Online Service, Untrusted/Public Online Service, Kitchen, Living Room, Bathroom, Bed-
room}
Time (T) = {Morning, Afternoon, Night}
Visitor Presence (VP) = {Visitor, No-visitor}
Homeowner Presence (HP) = {Present-awake, Present-asleep, Absent}
Violating class label (VL) = {Violating, Non-violating}
* DS categories (S: Security, A: Appliances, L: Lights) are subtypes of IoT device states.

Table 3: Dataset. V: Violating, NV: Non-Violating.

Violation V NV Total
Secrecy 403 3701 4104
Integrity 1710 1956 3666

• AS → action device/service,

• TL → trigger location,

• AL → action location,

• T → the time of the day,

• VP → visitor presence,

• HP → homeowner presence, and

• VL → violating class label

Table 3 shows the details of the dataset. For
integrity violation, there are 1710 and 1956 records
for violating (V) and non-violating (NV) classes,
respectively. For secrecy violation, the dataset
includes 403 violating (V) and 3701 non-violating
(NV) instances. Finally, to prepare the datasets
for the experiments, we transformed all categorical
features into numeric values using Label Encoder
method. For example, the values of the feature Time
(Morning, Afternoon, and Night) gets translated into
numeric values (0,1,2). While one-hot encoding
is a recommended encoding method for categorical
variables, this method will impact the complexity
of tree-based machine learning models by adding
dummy variables with values of 0 and 1 and the re-
sulting growth of trees in the direction of zero values.
To be sure, besides numeric encoding, we used One-
Hot Encoding and repeated all experiments. While
we could achieve better performance with other
machine learning models like SVM with one-Hot
Encoding, we did not observe a significant difference
in the performance of the RF model. However,
one-hot encoding influenced the complexity of the
learned rules and caused a significant decrease in the
performance after application of rule reduction steps

due to the presence of rules including zero values
for dummy variables. Our findings are consistent
with the experience of others (Gorman, 2017) that
indicated one-hot encoding would not have better
performance compared with a numeric encoding
when the cardinality of categorical variables is
smaller than 1000 for tree-based models.

Training Setup. The synthesized datasets for secrecy
violations is unbalanced between the number of vio-
lating and non-violating cases. To address this, we
applied random oversampling to the minority class
to create a better-balanced dataset and improve clas-
sification performance (Chawla et al., 2002). Fur-
ther, we used a nested cross-validation approach for
model evaluation and hyper-parameter optimization
that helps to overcome the problem of overfitting
the training dataset. Specifically, the outer cross-
validation procedure helps to evaluate the model on
unseen data, while the inner cross-validation helps
with finding optimal model parameters.

Within the outer cross-validation procedure, we
split the dataset into K = 5 folds. In each iteration,
we used the K−1 folds (80% of the entire dataset) for
training the model and one fold (20% of the dataset)
for testing it. The held-out fold helps to validate
model performance on unseen data. We split the
dataset using the Stratified-Group-K-Fold split tech-
nique to keep the distribution of both violating and
non-violating samples the same in the training and
testing splits. Specifically, we selected a subset of the
applets (and all combinations of the contextual fac-
tors) for the training and testing split, such that each
split had the same rate of violating and non-violating
samples. We used the applet number that identifies a
unique applet as the group factor. We computed the
average performance scores across all K trials to re-
port the final evaluation scores.

Next, in the inner cross-validation, we evaluated
different hyper-parameter combinations to find the
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Table 4: Classification results using different classification models.

Secrecy Integrity
Model Precision Recall F1 Precision Recall F1
RF 0.93 0.91 0.91 0.77 0.75 0.75
DT 0.93 0.92 0.92 0.75 0.76 0.75
SVM 0.90 0.89 0.90 0.66 0.65 0.65
LR 0.83 0.83 0.83 0.53 0.53 0.52

Table 5: Classification and complexity results using Random Forest (R#: The number of rules, V: Violating, NV: Non-
Violating)

Precision Recall F1 WSC (V, NV) R# (V, NV)
Secrecy 0.93 0.91 0.91 2065.8, 2522.6 167, 197
Integrity 0.77 0.75 0.75 8340.2, 8382.8 629, 611

best-performing model. We used grid search to
train each model on the training set and identify
the optimal settings for each classifier model. To
achieve that, we split the training dataset (i.e., 80%
of total data obtained from the outer cross-validation
procedure) into K′ subsets. Then we fit the model
K′ times on the K′ − 1 folds and evaluated it on
the K′th fold. Using Scikit-Learn GridSearchCV,
we evaluated all hyper-parameter combinations and
ran the K-fold-CV (K′ = 5) process for each of the
combinations.

Performance Evaluation. We implemented our
framework using Python and ran the experiments on
a 64-bit macOS 10.12 machine having 16 GB RAM
and Intel Core i5 processor. We conducted all experi-
ments on the synthesized data set, which was labeled
by two of the authors. We performed each experiment
10 times and report the average of the evaluation met-
rics in our experiments. We used precision, recall,
and F1-measure metrics to measure the performance
of the models’ prediction.

Table 4 shows the details of the results for the
best performance of each model (when testing on ap-
plets in the 20% data split). When predicting in-
tegrity violations, all models except Logistic Regres-
sion (LR) performed well, with Random Forest (RF)
and Decision tree (DT) doing the best–an F1-measure
of 0.75, followed by Support Vector Machine (SVM,
F1-measure = 0.65). For secrecy violations, DT per-
formed the best (F1-measure = 0.92), followed by RF
(F1-measure = 0.91), and then SVM and LR with
F1-measures of 0.90 and 0.83, respectively. These
models had similar precision and recall values, show-
ing that the models are well balanced in the number
of false positives and false negatives they generate.
Given the “good” performance of the classification
models, we believe that a learning framework is a vi-
able solution in learning from users’ security and pri-
vacy preferences in a given use context from a set of
applets and applying this learning to identify viola-

tions in other applets.
For both types of violations the tree-based learn-

ing models performed better indicating that viola-
tion detection based on the usage context is not a
linear problem. The RF model consistently demon-
strated higher precision in detecting integrity viola-
tions, while both models (RF and DT) performed sim-
ilarly for secrecy violations. Although secrecy viola-
tion dataset is imbalanced, RF showed slightly better
generalization than DT due to its ensemble structure,
which reduces variance and helps prevent overfitting.
However, it is important to note that RF does not in-
herently address class imbalance and additional tech-
niques might be necessary to improve fairness. We
focus on the RF model in the rest of the paper due to
its overall stability and performance.

5.2 Violation Rule Complexity

Machine learning systems typically appear as “black
boxes” to end users (Kulesza et al., 2015) leav-
ing users unable to understand their behavior, which
creates a knowledge gap regarding model out-
puts (Miller, 2019). In this paper we chose to in-
vestigate tree-based learning models, which make it
easier to interpret the model’s “decision-making” as
conditional (IF-THEN) rules. Another advantage is
that end users may also extract and employ these rules
in existing frameworks for controlling IFTTT applets
(e.g., SOTERIA (Celik et al., 2018), IoTGuard (Ce-
lik et al., 2019), Expat (Yahyazadeh et al., 2019)) that
require users to provide a set of rules.

Several previous works have used Decision
Tree (DT) and Random Forest (RF) algorithms for
anomaly detection or access control policy min-
ing (Bui and Stoller, 2020) for similar reasons. Here,
we selected RF as it was the model with the best per-
formance in our experiments (See Table 4).

However, RF models can create very large rule
sets. Therefore, to create a manageable set of vi-
olation detection rules for human consumption, we
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reduce the complexity of extracted rules from the
trained RF model through a series of steps. We use
Weighted Structural Complexity (WSC) as a metric
to measure the complexity of learned rules. WSC
was introduced for studying complexity of mined po-
lices in Role-Based Access Control (RBAC) (Mol-
loy et al., 2010) and Attribute-Based Access Control
(ABAC) (Xu and Stoller, 2014) systems. Informally,
for a given rule set, WSC is a sum of the WSC for all
of its rules. For each rule, WSC is a weighted sum of
the number of elements (features) in that rule. Here,
we set the weight for all features to be 1.

As Table 5 shows, the best performing RF models
contain about 364 and 1240 rules (totaling rules
for violating and non-violating cases) for secrecy
and integrity detection, respectively. The WSC
metric for these rules is around 4588 and 16723,
respectively. Given the high complexity of the final
rules, we aim to reduce both the number of rules and
the WSC score through a series of reduction steps
applied to the extracted rules for each prediction class.

Extracting Rules. We convert each decision tree in the
RF model into a set of rules by traversing each distinct
path from the root to a leaf node representing a pre-
diction class (violating, non-violating). Each rule will
be in the form of a conditional statement (Equation 1),
where each condition is associated with a node on the
path. We split the final ruleset into two sets, where
each set includes the rules for each prediction class.
One example of an extracted rule from the violating
class for integrity violation is shown in Equation 2.

R =


IF ( f1 < v1) AND ( f2 < v2) AND . . .

THEN C
where fi is a contextual factor,
vi ∈ (0,vmaxi) and vmaxi is the
maximum encoded numeric value of fi,
and C is the prediction class


(1)

Transforming Rules. In this step, to make the ap-
plication and evaluation of the reduction steps
easier, we transform each rule into a form that
enables us to compare their attributes. In this step,
we replace each condition in the rule of the form
( fi < or >= vi), where vi is a splitting point, with
a triple of Fi = [ fi, li,ui], where li and ui are the
lower-bound and upper-bound values meaning the
minimum and maximum numeric values that the
feature fi can have, respectively. The final rule
will be a vector < F1,F2, ...,Fn,C > where C is the
prediction class. The transformation of the rule in
Equation 2 is shown in Equation 3. For instance,
the condition (Homeowner − Presence <= 0.5)
in R1 indicates that this factor only takes 0 value

meaning ‘the homeowner is present and awake.’ This
condition will be transformed to a triple in the form
of (Homeowner−Presence,0,0).

Reducing Redundant Features. The Random Forest
approach generates each decision tree based on ran-
domly selected features or combinations of features
at each node in each tree (Breiman, 2001). That is,
some features can be selected multiple times to split a
node. Hence, each rule can have multiple similar fea-
tures. To reduce the complexity of the rules, in this
step we merge the redundant features by selecting the
least upper bound and the greatest lower bound of the
feature values. For instance, in rule R1 in Equation 3,
Trigger-Semantic is a redundant feature that can be
replaced with a single triple (Trigger-Semantic, 4, 8).

R1 = [ IF (Homeowner - Presence ≤ 0.5)
AND (Trigger - Semantic > 3.5)
AND (Trigger - Semantic ≤ 8.5)
AND (Visitor - Presence ≤ 0.5)
AND (Trigger - Location ≤ 4.0)
THEN prediction - class = 1 ] (2)

R1 = [ (Homeowner - Presence,0,0),
(Trigger - Semantic,4,8),
(Trigger - Semantic,0,8),
(Visitor - Presence,0,0),
(Trigger - Location,0,4),
prediction - class = 1 ] (3)

Reducing Subset Rules. The RF approach creates
multiple trees, and it is possible to have similar rules
across multiple trees or for a rule extracted from one
tree to be a subset of a rule extracted from a different
tree. Given two rules R1 and R2, R1 is a subset of rule
R2, if the interval of values of each feature in R1 is
a subset of interval of values of the same feature in
R2. In such a case, having both rules R1 and R2 is
redundant. In this step, we eliminate such redundant
rules by removing the less restrictive one, in this case
R1.

Reducing Similar Rules: In this step we search for
similar rules in the ruleset and prune rules such that it
does not decrease the quality of the ruleset. We define
a ruleset quality metric by combining two metrics, F1-
measure and WSC, based on Van Rijsbergen’s effec-
tiveness measure (Van Rijsbergen, 1979), as was also
done by (Karimi et al., 2021). The ruleset quality met-
ric is defined as follows:
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Table 6: Comparison of performance and complexity results of the lattice-based approach and violating and non-violating
rules before and after reduction. (R#: The number of rules, V: Violating, NV: Non-Violating)

Lattice-based Approach
Precision Recall F1 WSC (V, NV) R# (V, NV)

Secrecy 0.64 0.64 0.54 due to simplicity of the lattice
Integrity 0.54 0.58 0.47 the complexity is too small

Original Rules
Precision Recall F1 WSC (V, NV) R# (V, NV)

Secrecy 0.93 0.91 0.91 2065.8, 2522.6 167, 197
Integrity 0.77 0.75 0.75 8340.2, 8382.8 629, 611

Post-reduction Rules
Precision Recall F1 WSC (V, NV) R# (V, NV)

Secrecy 0.81 0.81 0.80 432.2, 635.4 67, 76
Integrity 0.74 0.73 0.73 2194.2, 2220 251,242

Q = (
α

F1−measure
+

1−α

∆WSC
)−1 (4)

In the above equation, α shows the importance of
F1-measure metric over the ruleset complexity, and
∆WSC shows the relative reduction in WSC score of
the ruleset compared to the original ruleset. In each
step, we select a rule from one tree and find a similar
rule in other trees.

We measure the similarity between two rules R1
and R2 based on Jaccard similarity which is defined
as follows: J(R1,R2) = |R1 ∩ R2|/|R1 ∪ R2|. We
define two rules as similar if their Jaccard similarity
is more than 80%, which means the size of their
common feature values is more than 80% of the
size of the union of their feature values5. To prune
similar rules in each step, we pick two rules from two
different trees in the RF model and calculate their
similarity. If the similarity score is more than 0.8, we
decide to remove one of the two rules depending on
how much each of the rules will improve the quality
score of the rules set.

Combining Rules: While in the Reducing Subset
Rules step, we aimed to remove the rules that are
a subset of other rules in the ruleset, it is likely to
have rules with similar value intervals for all features
except one. This happens because, for each rule,
the algorithm only searches the subset rule until it
finds the first one. Hence, the algorithm will not find
all subset rules for each rule. In the last step, we
calculate the union of each two rules in the set having
the same set of features and are different in interval
value of only one feature. We add the union rule to
the ruleset and remove the other two rules.

Rule Reduction Evaluation. We assess rule reduction
by comparing the final reduced rules with the original

5Other work in access control mining (Karimi et al.,
2021) have used a 50% threshold, but we chose to be more
conservative to preserve prediction performance.

rules (extracted rules from the RF model before rule
reduction) based on rule complexity (number of rules
and WSC), similarity, and prediction performance.

Table 6 represents the precision, recall, F1-
measure, WSC score, and the number of rules be-
fore and after reduction steps for both secrecy and
integrity violations. Our proposed rule reduction pro-
cess could reduce the WSC and the number of rules
by about 77% (from 4588 to 1067) and 61% (from
364 to 143), respectively, while still obtaining 88% of
the original F1-measure for secrecy violations. For
integrity violations we could decrease the WSC by
about 74% (from 16723 to 4414), and the number of
rules by about 60% (from 1240 to 492) on average,
and achieve about 97% of the original F1-measure.
Comparing the final rules before and after rule reduc-
tion steps with the lattice-based approach, while the
lattice-based approach employs simple rules (recall
from Section 2) to identify violations, it does not per-
form well when predicting violations obtaining F1-
measure 0.54 and 0.47 for predicting secrecy and in-
tegrity violations, respectively.

These findings suggest that we can simplify
learned rulesets with minimal performance loss. Fu-
ture work will explore how users can fine-tune these
rules to their preferences and assess their maintain-
ability as new applets are installed.

6 DISCUSSION

6.1 Deployment Challenges

Collecting Contextual Information. Our proposed
approach requires usage context data (e.g., location,
time, presence etc.). The interplay among users,
the physical environment, and devices creates a
dynamic context, making it challenging to identify
and collect relevant information. While smart home
devices can likely provide this data, collecting it in
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a real system may not always be easy or possible.
Existing frameworks like SmartThings enable users
to define and collect some contextual information
allowing them to set variables such as “home mode”
or designate device locations on a map. Similarly,
the presence of visitors can be detected using motion
sensors or features in smart-home apps (e.g., party
mode) (Chi et al., 2020). However, such functionality
varies by IoT frameworks and may not be available
in all frameworks. Additionally, users may opt not to
provide or update this information. So, along with
our rule learning module, we need to include options
for end users to identify such common situations
depending on the existing framework or include a
dedicated module to collect such information from
sensors.

Collecting Labelled Data for Training. Another de-
ployment challenge is access to enough training data
labelled by the the end user. Such data can potentially
be collected from the end-user during the first few
days or weeks of training phase post deployment.
For instance, in a similar work HAWatcher (Fu et al.,
2021), the required data (22,655 events) is collected
during the three weeks of training phase. In another
work AEGIS (Sikder et al., 2019), the authors created
their required dataset consisting of over 55000
events in a 10-day period for anomaly detection in
smart homes. Data collection can include collecting
contextual information and user’s preferences of al-
lowing or not allowing an applet to run in that context.

Enforcement Mode. Violation detection approaches
can be categorized into inline or offline based their
enforcement mode. Inline approaches prevent po-
tential violations by intercepting requested actions at
runtime necessitating app or framework instrumenta-
tion to be able to intercept actions in real-time. But,
this mode also provides easy access to current con-
textual information. This approach taken by previous
works such as Expat (Yahyazadeh et al., 2019), and
IoTGuard (Celik et al., 2019).

On the other hand, our approach can be deployed
in a monitoring or advisory mode, collecting contex-
tual data through sensors and app logs, and notifying
users of potential violations. This reduces the burden
of having to instrument the apps or the frameworks
but does not prevent or block actions that can cause
violations. AEGIS (Sikder et al., 2019) is an example
of prior work using this deployment mode.

Multiple User Home Environment. We evaluated
our approach with a synthesized dataset for a sin-
gle resident home. However, smart homes config-

ured for multiple residents face greater challenges.
For instance, different roles in the home (e.g., kids,
teenagers, and spouses) would have different levels
of access to devices. Prior work, Kratos (Sikder et al.,
2020), has proposed an access control for such an en-
vironment. This framework introduces a formal pol-
icy language enabling users to define access control
policies with their priorities. However, this approach
still needs manual effort by the end user to define the
policies. Further, gathering sufficient contextual in-
formation to identify which user is interacting with
the applet complicates the deployment of the learning
framework. One solution could be using multiple sen-
sors to collect contextual data. Previous research on
daily activity recognition (Dahmen et al., 2017) has
shown it’s possible to learn the location and activi-
ties of home members using data from smart sensors.
However, both the learning approach and the contex-
tual factors used may need to change significantly to
accommodate multi-user home environments.

6.2 Future Work

Learned Rules as Predefined Rules. Several studies
have proposed solutions for detecting violations
in smart-home environments (Celik et al., 2019;
Yahyazadeh et al., 2019). These solutions need
manually defined violation detection rules or poli-
cies. Some of these solutions enable users to define
such policies using policy languages (Yahyazadeh
et al., 2019). However, defining such policies is a
complex task for users. For instance, study (Cao
and Iverson, 2006) shows that defining intended
access as an access control rule is a complex task
with a heavy cognitive workload for users. Another
study (Mazurek et al., 2010) shows that users find
specifying fine-grained access control policies a dif-
ficult task. In these cases, learned violation detection
rules can be used as predefined or suggested rules
in those frameworks. This requires studying the
feasibility of modifying rules learned for one user
for use by another user and efficient mechanisms for
doing so.

Dynamic Security Labels. Discussion in Section 4
showed that static (context agnostic) lattice labels
used by prior lattice-based approaches (Surbatovich
et al., 2017; Cobb et al., 2020) could not always de-
termine the violations associated with trigger-action
apps accurately. The context of use varies among
different individuals, which would determine the
appropriate lattice label for an individual and their
specific use scenario. For example, a trigger device
in a living room might have a trusted label when
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only family members and an untrusted label when
having a guest. In another example, the owner may
assign a trusted label even if a guest is at home
because she/he trusts the guest. One approach could
be learning the lattice labels based on the usage
context and individual preferences. In this approach,
the labels of the triggers and actions would change
based on the detected context and customized based
on individuals’ preferences.

Actual Violations vs Mis-Classifications. The pro-
posed framework based on usage context has shown
promising results in detecting violations. However,
further research is needed to determine if users per-
ceive misclassified violations as actual violations. A
large-scale user study can help identify these prefer-
ences and determine if the misclassified violations are
actual violations for most users. Even if the study
were to show that the misclassified violations are not
actual violations, it emphasizes the importance of
users’ preferences in determining violations. There-
fore, it’s crucial to allow users to modify rules or train
the model based on their needs, creating an adaptive
learning environment for better performance and out-
comes. This approach will enable us to create a learn-
ing environment that adapts to users’ preferences, ul-
timately leading to better performance and outcomes.

7 RELATED WORK

Our work aims to help end users detect undesir-
able or unintended access to information and appli-
cations/devices enabled through the use of trigger-
action frameworks in smart homes.

Much work has been done to identify security
and privacy risks in smart homes and more gen-
erally in IoT eco-systems. Among those, one of
the most closely related to our work is by Surba-
tovich et al. (Surbatovich et al., 2017), who employed
lattice-based information flow analysis to evaluate the
potential integrity and secrecy violations in a 20K
IFTTT dataset. They employed security labels for
triggers and actions and determined the violations us-
ing information analysis. Their result showed more
than 50% of the IFTTT applets would potentially
cause a violation. More recently Cobb et al. (Cobb
et al., 2020) adjusted the security lattice by adding
two more fine-grained labels to the lattice. While
they showed that IFTTT applets are not as risky as
initially portrayed in (Surbatovich et al., 2017), they
found that the lattice-based approach still has signif-
icant false positives and negatives. They acknowl-
edged that more contextual information is needed to

better evaluate the secrecy and integrity violations in
smart homes. Our work shows that even with contex-
tual information, determining violations depends on
users’ preferences and isn’t straightforward.

Other works have addressed security and privacy
risks in smart-home environments using model check-
ing. For instance, SOTERIA (Celik et al., 2018) uses
the state model of an individual or set of apps to check
safety, security, and functional properties and iden-
tify violations. IoTGuard (Celik et al., 2019) pro-
poses a dynamic policy-based enforcement system to
evaluate user-defined safety, security, and functional
properties using model checking. SAFECHAIN (Hsu
et al., 2019) uses model-checking to discover the priv-
ilege escalation and privacy leakage threats across IoT
apps. While SAFECHAIN uses the security labels
proposed by Surbatovich to define the threats, it can
consider the actual attribute values of the rules and
decrease the false positive rate in privacy leakage de-
tection compared to the lattice-based approach. How-
ever, all the above solutions rely on static predefined
rules. If these rules are predefined by system design-
ers, then end user preferences will be unaccounted for.
On the other hand, tasking end users to define such
rules would be burdensome. Our work would ease
making policy rules for these existing solutions.

There are also works that focused on implicit
and explicit interaction across IoT applications. For
instance, IoTMon (Ding and Hu, 2018) uses risk
analysis to discover the potential physical chan-
nel interaction across IoT apps. In another work,
Wang et al. (Wang et al., 2019) propose a tool, iR-
uler, to identify vulnerabilities among trigger-action
rules. They use the NLP technique to find the in-
formation flows between actions and triggers across
IFTTT applets. HomeGuard (Chi et al., 2020) lever-
ages SMT solvers to discover cross-app interference
threats. This solution ranks identified threats using
risk analysis, allowing end users to evaluate them by
risk scores. However, it does not detect threats in in-
dividual applets. HAWatcher (Fu et al., 2021) uses
data mining to predict anomalies in smart IoT device
behavior but only detects malfunctions and assumes
all installed smart home apps are benign.

Further, most of the above solutions did not pay
attention to the ease of use of their systems. Our goal
was to reduce the complexity of the rules and gen-
erate more explainable rules for users to deploy and
manage. The rule reduction techniques that we used
are similar to those used in other research areas like
access control systems (e.g., (Karimi et al., 2021)) to
extract simple access control policies.
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8 CONCLUSION

This paper presents a learning framework for pre-
dicting integrity and secrecy violations in smart-home
IFTTT applets. The framework considers contextual
factors (location, time, app trustworthiness, and pres-
ence of visitors and homeowners) that impact these
violations. Trained on a synthesized dataset, the pro-
posed framework was able to detect integrity viola-
tions with an average of 0.77 precision, 0.75 recall,
and 0.75 F1-measure, and secrecy violations with an
average of 0.93 precision, 0.91 recall, and 0.91 F1-
measure. We also showed that a learning framework
that accounts for contextual factors and users’ pref-
erences performs better than using lattice-based ap-
proaches. Future work will explore how mined rules
can help users refine their privacy and security prefer-
ences and how these rules can be transferred to other
users with similar privacy attitudes for scalability.
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