
VKG2AG : Generating Automated Knowledge-Enriched Attack Graph
(AG) from Vulnerability Knowledge Graph (VKG)

Md Rakibul Hasan Talukder a, Rakesh Podder b and Indrajit Ray c

Department of Computer Science, Colorado State University, Fort Collins, Colorado, U.S.A.

Keywords: Attack Graph, Knowledge Graph, Security Vulnerability, Computer Network.

Abstract: Attack Graph (AG) analysis is a well-established technique to asses security threats in networked systems.
However, traditional AGs primarily rely on coarse level vulnerability information from the Common Vulner-
abilities and Exposures (CVE) repository for identifying attack paths and suggesting patch-based mitigation
strategies. This approach presents significant limitations, including unavailability of patches, compatibility
constraints, and system downtime, leaving security analysts without viable alternatives for optimized risk mit-
igation. To address this challenge, we propose two new paradigms: a novel knowledge-enriched AG frame-
work and a Vulnerability Knowledge Graph (VKG). VKG incorporate fine-grained, structured vulnerability
information that allows exploration of additional attack mitigation strategies beyond vulnerability patching in
the AG analysis. We formally define VKG and AG along with algorithms for automated knowledge build-up,
integration, and querying. To ensure seamless interoperability, we develop an interface that facilitates dynamic
knowledge transfer between VKG and AG, enabling enhanced security reasoning without introducing inter-
dependencies. We evaluate our methodology on a test network and demonstrate how the knowledge-driven
AG can improve security decision-making by providing system administrators with adaptable, scenario-based
defense mechanisms with actionable insights.

1 INTRODUCTION

Attack Graph (AG) analysis (Lallie et al., 2017) is
one of the most effective ways to evaluate the under-
lying security posture of a large networked system.
The ability to provide meaningful insights in AG anal-
ysis depends heavily on the granularity of underly-
ing information from various sources (e.g., hosts, net-
works, vulnerabilities, attack frameworks), and how
the information is synthesized and used. In the vast
majority of state-of-the-art AG analysis techniques,
vulnerability information as available from the Com-
mon Vulnerabilities and Exposure (CVE) repository
is a major source of information on potential attacks
and recommended patching as defensive measures.
However, unavailable patches, compatibility issues of
published patches with existing services, and system
downtime during patching can leave decision-makers
without sufficient alternative mitigation options. On
the other hand, in our research, we have observed that
CVE descriptions are being underutilized in many AG

a https://orcid.org/0009-0007-7820-0853
b https://orcid.org/0009-0008-7394-1369
c https://orcid.org/0000-0002-3612-7738

CVSS Score

Published Date Vendor

Software

Affected VersionReferences

Description

Software

Published Date

CVSS Score

Vendor Source of Bug

Trigger to Bug

Reason

Attacker Action

System State

Networking State

Privilege Level

Consequence

User Interaction Vulnerability
Type

Operating
System Patch AvailableReferences Affected

Version

CVSS Score

Published Date

References

Description

O
ld

 C
VE

Ite
m

iz
ed

 C
VE

N
ew

 C
VE

Figure 1: Potential of a CVE record (old & new).

analysis. As Figure 1 shows, there are many hidden
information in a CVE description that can provide
critical insights and actionable feedback for optimiz-
ing defense strategies without necessarily relying on
patching of the vulnerability. In this paper, we de-
velop a technique to better utilize CVE description for
AG Analysis.

Typically, AGs use the underlying vulnerability
information that can be readily extracted from the
CVE repository as attack attributes. The effective-

420
Talukder, M. R. H., Podder, R. and Ray, I.
VKG2AG : Generating Automated Knowledge-Enriched Attack Graph (AG) from Vulnerability Knowledge Graph (VKG).
DOI: 10.5220/0013526700003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 420-428
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

ness of AG Analysis for alleviating the patching prob-
lem is dependent on the relevancy of the extracted
information for mitigation strategies, the granular-
ity level of the vulnerability knowledge, the automa-
tion level of organizing, accessing, and transferring
knowledge, and the flexibility of interfacing with the
system. There have been some works in extracting in-
formation from vulnerability descriptions using NLP
techniques. Unfortunately, these requirements im-
posed by AG analysis have not driven the attribute
extraction and utilization process.

To mitigate this, we propose a novel technique to
create a Vulnerability Knowledge Graph (VKG) that
synthesizes more relevant attributes extracted from
CVE (shown as ‘Itemized CVE’ in Figure 1) that is
then used to drive better AG generation and analysis.
A key advantage of a separate knowledge graph is that
it is independent of the AG generation process and the
target system’s configuration. We also propose an in-
terface to seamlessly integrate information from the
VKG into AG. Our key contributions are as follows:

1. We developed an improved, detailed vulnerability
dataset, incorporating well-defined, fine-grained
attributes extracted from the CVE repository to
provide structured vulnerability information.

2. We designed a modular, flexible Vulnerability
Knowledge Graph (VKG) that formalizes the data
structure and serves as an independent, integrable
source for organizing vulnerability attributes.

3. An interface between the VKG and AG has been
designed with necessary algorithms to enable
seamless dissemination of vulnerability attributes
into AG generation automatically.

4. We evaluated the effectiveness of our approach on
a test network and discussed how it can be effec-
tive for AG analysis.

2 RELATED WORK

There have been works on automating the incorpora-
tion of knowledge into Attack Graphs (AGs) in the
field of automated AG generation AttacKG+ (Zhang
et al., 2024) is a framework to generate attack knowl-
edge graph via LLM techniques based on MITRE
TTP definitions. But the proposed framework did
not pay sufficient attention to the detail of vulner-
ability weakness information. There were attempts
(Inokuchi et al., 2019; Jing et al., 2017) to incorporate
automatic extraction of vulnerability descriptions to
extend MulVal’s (Ou et al., 2005) capability to gener-
ate AG. Their definition of attack status (or condition)
either is not in granular details (Inokuchi et al., 2019)

or has some limited fixed pre-defined values (Jing
et al., 2017). In recent years, there have been few
works to build knowledge graphs from vulnerability
repositories. Anders et al. construct the knowledge
graph by performing NER using a pre-trained model
and relationship extraction between entities (Anders
et al., 2023). VulKG, is constructed from vulnera-
bility descriptions to find a weakness (CWE) chain
in a graph (Yin et al., 2024). SecKG2vec provides
a combination of structural and semantic embedding
models to find the relationship between CVE, CWE,
and CAPEC (Liu et al., 2025). However, VulKG or
SecKG2vec were not developed to interface with AG,
insufficient to meet the required vulnerability knowl-
edge requirements for AG analysis.

The purpose of generating an AG is to perform
various analyses, such as analyzing large networks
efficiently (Ou et al., 2006), improving cyber-attack
modeling (Lallie et al., 2017), enhancing scalabil-
ity (Jia et al., 2015), risk analyzing (Poolsappasit
et al., 2011) or providing any mitigation solutions
(Ray et al., 2023; Bashir et al., 2024). However, the
main drawback the security researchers or system ad-
ministrators face is a structural and granular vulnera-
bility knowledge about the system/network. This in-
formation is critical for a resource-constrained envi-
ronment where performing cost-effective analysis for
patching or mitigating vulnerabilities is crucial. In
this paper, we address these issues and demonstrate
how our proposed method can solve these problems.

3 VULNERABILITY
KNOWLEDGE GRAPH (VKG)

CVE is the largest and widely used vulnerability
repository, where each record represents a vulnera-
bility in a semi-structured form. Our proposed Vul-
nerability Knowledge Graph (VKG) provides a more
structured and automation-compatible form of vulner-
abilities that preserves in-detail CVE information.

3.1 CVE Dataset for VKG

Currently, CVE records are semi-structured. The
data items we can retrieve directly from CVE (‘New
CVE’) records are: publishing date, description,
CVSS score, references, vendor, software, and af-
fected versions. Though recent CVEs provide vendor,
software and version information as individual data
items, the older ones mention them only in the de-
scription (as ‘Old CVE’ shown in Figure 1).

The most significant but poorly defined data item
of the CVE record is description. It contains the most

VKG2AG : Generating Automated Knowledge-Enriched Attack Graph (AG) from Vulnerability Knowledge Graph (VKG)

421

valuable information about the vulnerability. So, we
break the description item into multiple data items
with precise definitions. We also propose a few addi-
tional data items to address a vulnerability in a more
exhaustive manner. The additional items that can be
extracted from CVE description are marked with • in
the Table 1. Considering the new definition of a CVE
record, we build the most comprehensive and in-detail
vulnerability dataset, to the best of our knowledge.

We built fine-detailed dataset based on the de-
fined data types in Table 1. We have performed
prompt engineering via OpenAI Batch APIs on the
pre-processed data and extracted the desired data
items according to defined data types. The detailed
mechanism to extract the redefined data from vulner-
ability description is beyond the scope of this work.

3.2 Structure of VKG

The VKG is defined as a tuple where V is a set of
nodes (vertices) and E denotes relationships (edges)
between those nodes.

V KG = ⟨V,E⟩

where,

V = {v1,v2,v3....vn},E = {(vi,v j)|vi,v j ∈V, i ̸= j}

Note that throughout this paper, we will use the
terms vertex and node interchangeably, so the words
relationship and edge.

Assumption: The definition of the VKG is based
on the dataset described in the previous sub-section
3.1. The incremental data items (as columns) in the
dataset can be easily integrated into the VKG.

3.2.1 Nodes, Types, Groups

Depending on the data types (Table 1), each vertex (or
node), v ∈ V is associated with exactly one data type
t ∈ T , where T is a set of all vertex types.

T = {V R,S,SV,SR,R,SS,NA,UI,P,OS,AA,T R,C,V T}

Type can be represented as function where each node v
corresponds to exactly one type t,

Type : V → T

So, Vt ⊆ V represents the set of vertices of type t ∈
T . For example, Vtr is a set of vertices of type Trigger,
Vss is a set of vertices of type System State.

A group (G) is a collection of vertices of specific
types. We have identified five necessary characteris-
tics that essentially denote five groups of certain data
types. A group is expressed as a tuple of vertices of
pre-defined types. The elaboration of each group with
permitted vertex types is given below:

Identity (I): An identity tuple is a group of three types
of vertices: vvendor, vso f tware and vso f tware version - which
provides sufficient identification information about the
vulnerability.
Origin (O): The origin tuple consists of two types of
vertices, vsource and vreason - pointing exactly where and
why the vulnerability exists.
Exploiting Conditions (EC): This group includes,
but not limited to five types of vertices that repre-
sent necessary conditions to exploit the vulnerability:
voperating system, vsystem state, vnetwork access, vuser interaction
and vprivilege
Actions (A): Any tuple from this group contains two
vertices: vtrigger and vattacker action - that denotes the initi-
ation of the exploitation and manifestation of the attack
respectively.
Consequence (C): This tuple has only one element
vconsequence representing consequence of the exploita-
tion.

3.2.2 Relationships, Edges

To understand the relationships in VKG, it is important
to realize that our knowledge graph is generated based
on published existing vulnerabilities (CVEs). So, each
vertex contains information about the associated CVEs
it has extracted from. Another important fact is that
multiple CVEs can correspond to a single vertex. For
example, a vertex vaa = Execute remote code can be at-
tacker action for more than one CVE.

All the edges are directional. The connecting nodes
for an edge have f rom → to relationships between
them. Observing the nature of relationships between
different data types, we find two kinds of relationships
(edges): static and dynamic. There are some types
of nodes (e.g., vendor, software, software version) that
maintain a fixed relationship with their related nodes.
For example, for specific software (e.g., Windows), the
vendor is always fixed (Microsoft), and this ownership
relation does not change across multiple CVEs. The
edge from vvr = Microsoft to vs = Windows is consid-
ered as a static edge. Edges from vendor to software
(V − S) and software to software version (S− SV) rep-
resent static relationships in the VKG:

V −S⊆ {(vvr,vs)|vvr ∈Vvr,vs ∈Vs}
S−SV ⊆ {(vs,vsv)|vs ∈Vs,vsv ∈Vsv}

It seems logical to deduce that the elements in Iden-
tity (I) tuple present static edges between them, which
indicates key identification properties for any vulnera-
bility. V−S and S−SV can be combined in a 3-member
tuple I:

I = {(vvr,vs,vsv)|vvr ∈Vvr,vs ∈Vs,vsv ∈Vsv}
The rest of the tuple groups contain dynamic rela-

tionships between the elements of the tuple. For exam-
ple, the nodes for Exploiting Condition tuples do not

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

422

Table 1: Definition of different attributes of a vulnerability.• marked item can be extracted from CVE description
No. Data Type Definition Example
1 cve id Unique identifier CVE-2020-12510
3 published date Date-time when published in CVE repository 2020-11-19T00:00:00
4 cvss score Vulnerability severity score assigned by NVD. It ranges from 1 to 10 7.3
5 vendor raw Name of the vendor that owns the software Beckhoff
6 software raw Vulnerable software name TwinCat XAR 3.1
7 vendor• Alt. vendor name Beckhoff
8 software• Alt. software name TwinCAT XAR 3.1
9 software version• Affected versions by the specific vulnerability. E.g., before version x.x , upto version y.y, from

x through y, x.x and prior etc.
all versions

10 operating system• If vulnerability requires any OS specification to get exploited. E.g., Linux, windows,iOS, etc. Windows
11 source • Security bug where the initial weakness originates from. E.g., endpoint, webpage, API, compo-

nent, service, process, file, module, etc. Strongly specific to software and version
Default installation path and permissions

12 reason• Reason why the bug exists. E.g., improper validation, improper neutralization of input, etc.
Weakly specific to certain vulnerability. Multiple bugs can have common reason.

Installation path permissions allow local
user modification

13 trigger• Initial action that exploits the security bug. Should be specific to the source of vulnerability Execution of TcSysUI.exe during user login
14 attacker action• Manifestation of attack. Additional details or steps to the trigger. May or may not be specific to

the vulnerable software’s security bug
Replace TcSysUI.exe with malicious code

15 user interaction• If any interaction is required from the user. Yes/No value. Detail of required interaction if Yes Yes, requires login by a high-privileged user
16 system state• Required system configuration information for exploitation. Can be specific, like configuration

cache enabled in GitHub Actions workflows and generic, like target device with physical access
Installation path at C:\TwinCAT with insuf-
ficient permissions

17 network access• Type of access required to exploit the vulnerability. E.g., local access, remote access, network
access with HTTP or TLS or IIOP or T3 protocols, etc. Not strictly specific to the vulnerability

Local access

18 privilege• Level of privilege required to exploit the vulnerability. Can be generic, like user-level authen-
ticated, admin-level authenticated, unauthenticated, etc. Can be specific, like user must have
’clusters, get’ RBAC access (CVE-2023-40029)

Less privileged local account

19 vulnerability type• Type of vulnerability. Can be compared to CWE (Common Weakness Enumeration) Privilege Escalation
20 consequence• Consequence of successful exploitation. Can be specific, like ability to sign in admin web

portal. Can be generic malicious code execution
Allows execution of malicious code by
higher-privileged users

have any fixed edges between certain values for any
data types like network access and privilege. Though
an edge exists between vna = local access and vp = with
less privileged local account for CVE-2020-12510, it is
not true across all CVEs.

O = {(vsrc,vr)|vsrc ∈Vsrc,vr ∈Vr}
EC = {(vos,vss, ...,vp)|vos ∈Vos,vss ∈Vss, ...,vp ∈Vp}

A = {(vtr,vaa)|vtr ∈Vtr,vaa ∈Vaa}
C = {(vc)|vc ∈Vc}

All the elements in the tuple (Except C) are in an or-
dered relationship. Order between data types in tuples
I, O, and A are considered fixed, though Exploitation
Condition data types can be in different order. In this
work, we do not present implementation mechanism to
extract order relationships between EC tuples from spe-
cific CVEs; rather, we have assumed a common order
for the test implementation. The generation of tuples
for a group is performed by invoking cve-id as input to
different functions. Each function takes cve-id as input
and provides an ordered tuple as output.

fI : ID→ I, id ∈ ID, i ∈ I
fO : ID→ O, id ∈ ID,o ∈ O
fEC : ID→ EC, id ∈ ID,ec ∈ EC
fA : ID→ A, id ∈ ID,a ∈ A
fC : ID→C, id ∈ ID,c ∈C
where, ID = {cve− id1,cve− id2,cve− idn}

3.3 Implementation of VKG

The implementation of VKG is similar to any other
graph. Iteratively instantiating nodes and edges accord-
ing to the definition results in the whole VKG. Before

executing the VKG generation (algorithm 1), the dataset
and configuration file must be ready. Details about the
dataset and its attributes are explained in sub-section
3.1.
VKG Config: The configuration file VKG.config pre-
serves the definition and rules for generating the
VKG from VKG-Dataset. The VKG implementa-
tion provides the flexibility to incorporate changes
or regenerate VKG conveniently. The generation al-
gorithm 1 and other functionality algorithms 2, 3,
and 4 need no changes. For example, a new data
type certificate expired has been introduced into the
dataset. To include this data type into ‘EXPLOIT-
ING CONDITIONS’ in VKG, only the VKG.config file
needs to be updated.
VKG Generation: This procedure takes the dataset
and config file as input and returns the VKG as out-
put. The initialization process pulls the configuration
of types, groups, and static edge types into the vari-
ables. Then, iteratively for each CVE record, a list of
vertices is constructed according to the list of vertex
types. No new vertex is created if there is already an
existing vertex of the same type containing the same se-
mantic meaning. Vertices of the same type having com-
mon semantic meaning are consolidated into one repre-
sentative vertex. As a result, instead of creating vertex
for all the CVEs of the same data type, fewer vertices
are created to represent data items containing exactly
equal or similar meanings. A list of cve ids and refer-
ences of neighboring nodes are stored at each vertex.
After creating vertices for each CVE record, static and
all other edges are created according to CVE record and
VKG.config. Vertices and edges instantiated for each
CVE are merged to obtain the VKG.

VKG2AG : Generating Automated Knowledge-Enriched Attack Graph (AG) from Vulnerability Knowledge Graph (VKG)

423

Algorithm 1: VKG Generation.
Input: (VKG-Dataset, VKG.config)
Initialization:
v types← initialize vertex types(V KG.con f ig.types);
groups← initialize groups(V KG.con f ig.groups);
static edges con f ig,non static edges con f ig←

initialize edge vertex types(V KG.con f ig.st edges
types,V KG.con f ig.non st edges types);

all vertices← [];
all edgess← [];
Output: V KG← (all vertices,all edgess);
for each cve in VKG-Dataset do

cve vertices← [] ;
for each type in v types do

v data← get data(cve[type]);
vertex←∅
if get vertex(cve[cve-id],type) is ∅ then

rep vertex← get representative vertex(type,v data);
if rep vertex is ∅ then

vertex← create vertex(type, type.group,
v data,cve[cve− id]);

else
vertex← add cve id to rep vertex(rep

vertex,cve[cve− id]);
end

end
add to cve vertices(vertex);

end
all edges← create edges(static edges con f ig,

non static edges con f ig,cve vertices);
all vertices← merge(cve vertices);

end

VKG Functionality: The structure of VKG serves part
of the compatibility, and the rest is served by providing
query-in-VKG capability. Defining and implementing
VKG as a graph provides the built-in analysis capability
as any generic graph, like traversal, shortest path, node
analysis, etc. To extract vulnerability knowledge and in-
terface with AG, 3 query functionalities have been pro-
vided and defined below:

• get-group(cve id,group-name): This procedure
(Algorithm 2) extracts the tuple of vertices speci-
fied by a cve id and a group name. This procedure
is used in mapping attributes of pre-conditions and
post-conditions to generate the AG (Algorithm 5).

Algorithm 2: Get Specific Group by CVE ID.
Input: (cve-id,VKG.config.groups[‘group name’])
Initialization:
group←{group name : group name, tuple : ()};
Output: group;
for each type in VKG.config.groups[group name] do

vertex← get vertex(cve− id, type);
add to group tuple(vertex,group.tuple);

end
reorder tuple elements i f required(group);

• get-all-groups(cve id, VKG.config): This proce-
dure (Algorithm 3) provides more automation while
extracting the vertices for a specific CVE. All the
vertices wrapped in tuples are returned in a list. The
list can be iteratively used without knowing the ac-
tual group name.

• find-path(cve id): The purpose of this method (Al-
gorithm 4) is to get all the vertices for a CVE in the
order of progression from identification to conse-
quence.

Algorithm 3: Get All Groups by CVE ID.
Input: (cve-id,VKG.config.groups)
Initialization:
groups← []
Output: groups
for each group name in VKG.CONFIG.groups do

group←
V KG.get group(cve− id,V KG.con f ig.groups[group name]);

add to groups(group);
end

Algorithm 4: Find Path for CVE ID.
Input: (cve-id,VKG.config)
Output: path
Initialization:
groups←V KG.get all groups(cve− id,V KG.con f ig.groups);
path← ();
for each group in groups do

for each vertex in group do
add to path(vertex, path);

end
end

4 AG GENERATION FROM VKG

An Attack Graph (AG) is a hierarchical representation
used in network vulnerability management to showcase
the potential sequences and combinations of attacks that
could compromise a system. To perform any type of
“what-if analysis”, the most crucial step is generating a
detailed and structured AG. In this section, we define an
AG and explain the architecture behind automatically
generating AG from VKG.

4.1 Attack Graph (AG)

Traditionally, AG is defined as a Directed Acyclic
Graph (DAG), where the nodes represent specific states
or conditions of interest to an attacker, while the edges
indicate the cause-consequence relationships. The AG
simplifies the understanding of complex attack scenar-
ios by using explicit conjunctive and disjunctive branch
decompositions, offering a clear picture of the hierar-
chies present between attacker sub-goals. We are fol-
lowing the state-of-the-art definitions of attribute, at-
tack, and AG (Dewri et al., 2007).

Definition 1. The attribute-template (ST) refers to the
underlying categories or characteristics that make up
attributes of hosts, vulnerabilities, connections, etc.,
such as:

• host-level attribute-template (SH): associated with
host name, software, versions, etc.

• vulnerability-level attribute-template (SV): associ-
ated with CVEs, exploits, triggers, sources, etc.

• network-level attribute-template (SC): associates
with connectivity, port, IP address, access, etc.

For a network with multiple hosts, an attribute tem-
plate is defined as ST = SH

⋃
SV

⋃
SC. This attribute

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

424

template helps in systematically structuring and orga-
nizing the critical information of a network.

Definition 2. An attribute (s) is a specific instance de-
rived from a broader category of properties (attribute-
template) concerning the network’s hardware or soft-
ware configuration, host-id, port, IP, access, etc., which
can be either true or false. We denoted S as the set of
attributes where s ∈ S.

Each attribute-template (ST) points to a set of at-
tributes S that consists of particular types of attributes.

Definition 3. Given a set of attributes S, attack (A) is
defined as a mapping A : S× S→ {true, false}. a ∈ A
is defined as a tuple of ⟨pre(a), post(a)⟩ and is valid if
pre(a) ̸= post(a) and post(a) is true iff pre(a) is true.
pre() ⊆ S and post() ⊆ S are the pre-conditions and
post-conditions of the attack, respectively.

Each attack is a result of exploring some vulnerabil-
ities in the network. For an attack to be successfully ex-
ecuted, an attacker has to satisfy the pre-conditions that
lead to exploitation and thus resulting post-conditions,
which an attacker leverages to launch further attacks in
the network. Once we sum up all the attacks and their
conditions, we can construct an AG.

Definition 4. Given a set of all attacks A , the Attack
Graph G is defined as a tuple G = ⟨N ,E⟩, where,

• N is the set of nodes such that each node n ∈ N
represents a state or condition of a host in the
network, captured by a function φ(n) = sn where
sn ⊆ S.

• E ⊆ N ×N is the set of directed edges. An edge
e = (ni,n j) ∈ E exists if and only if there exists
an attack a ∈ A such that: ⟨pre(a), post(a)⟩ =
true, φ(ni) ⊆ pre(a), and φ(n j) ⊆ post(a)
and pre(a), post(a)⊆ S.

The relationship between nodes and edges can be
expressed as:

1. For every edge e = (ni,n j), ni and n j are distinct
nodes where:

∃a ∈ A : [φ(ni)⊆ pre(a)]∧ [φ(n j)⊆ post(a)].

2. Each edge e may also capture logical dependencies
between attacks:
• Conjunctive (AND) dependencies: for e =
(ni,n j) is active if pre(a) =

⋃
ni∈N φ(ni)⊆ S.

• Disjunctive (OR) dependencies: e =
(ni,n j) is active if pre(a)⊆ φ(ni).

As we define AG as DAG, we assume that attacks
have no cyclic dependencies. However, for real-world
scenarios with feedback or loops, G may contain cy-
cles. Now to automatically construct the attacks and AG
from the VKG, we define a mapping function called λ

which maps the vertices value of VKG to an attribute
for the AG.

Definition 5. We define a mapping function λ, that
maps the vertices of VKG to the attributes of AG, such
as λV : V → S and groups (G) of VKG to attribute-
template of AG, λG : G→ ST . For each vertex v ∈ V
in VKG, there exists an attributes s ∈ S in AG, captured
by the function λV ,

∀v ∈V |λV : v→ s, where s ∈ S

Similarly, λG maps groups (G) in VKG to attribute-
templates in AG as,

λG : I→ SH

λV : {Vvr,Vs,Vsv}→ Sh ⊆ S;
λG : {O,EC,A,C}→ SV

λV : {{Vsrc,Vr},{Vos,Vss, ...,Vp},
{Vtr,Vaa,},Vc}→ Sv ⊆ S;

We assume that the connectivity template SC can
be obtained by using any network scanner. The in-
formation about vulnerability can be obtained from
VKG. So, we have the complete attribute-template ST =
SH

⋃
SV

⋃
SC. An attack a ∈ A on a node ni ∈N is de-

fined by a set of tuples ⟨pre(a), post(a)⟩. From VKG
we can obtain all the Identity (I) vertices as the host-
level attributes:

λ
1
V : {vvr,vs,vsv}→ φ(ni)

Also, the pre(a) ⊆ S is related to the vulnerability and
host-level attributes, which can be obtained from the
VKG’s Identity (I), Origin (O), Exploiting Conditions
(EC), Actions (A) group of vertices.

λ
2
V : {{vvr,vs,vsv},{vsrc,vr},{vor,

vss, ...,vp},{vtr,vaa}}→ pre(a)

And the post(a) ⊆ S of the node ni is nothing but the
Consequences (C) described in VKG.

λ
3
V : {vc}→ post(a)

As previously defined, the pre- and post-conditions
are a subset of attributes for AG. We automatically iden-
tify which group of vertices in VKG can be used for pre-
and post-conditions, and by using λ, we populate the
values for AG. The architecture and algorithm to gener-
ate AG from VKG are discussed in the next section.

4.2 Architecture for AG Generation

Figure 2 illustrates the overall architecture for automat-
ically generating AG from VKG. How the VKG is con-
structed is described in Section 3 along with algorithms
for VKG Generation (algorithm 1), finding groups (al-
gorithms 2, 3) and paths (algorithm 4).

The algorithm for generating AG from VKG (al-
gorithm 5) systematically constructs an AG based

VKG2AG : Generating Automated Knowledge-Enriched Attack Graph (AG) from Vulnerability Knowledge Graph (VKG)

425

Network
Configuration

(Host,
Vulnerability,
Connectivity)

CVE Dataset –
from NVD,

MITRE

1. NLP, LLM
2. Redefined
Ontology for

CVEs

Vulnerability
Knowledge

Graph Dataset

Vulnerability
Knowledge

Graph
Configurations

VKG
Generation

Algorithm (1)

VKG
GET_GROUP
Algorithm (2)

VKG
GET_ALL_GRO
UP Algorithm (3)

VKG
GET_CVE_PATH

Algorithm (4)

AG Generation
Algorithm (5)

Vulnerability
Knowledge

Graph

Attack Graph

Figure 2: Overall architecture for VKG to AG generation.

Algorithm 5: Attack Graph Generation from VKG.
Input: (VKG, Network Scan Data)
Output: (Attack Graph G = (N ,E)
Initialization:
N ← [], E ← [], cve list← [];
for each n in N do

n← each host from network scan data;
cve list← cve ids for each node n;

end
pre(a)← [], post(a)← [];
for each n in N do

for each cve id in cve list do
groups←V KG.get all groups(cve− id,V KG.con f ig.groups)

for each group in groups do
if group.group name ==′ Consequence′ then

G←V KG.get group(cve id, group.group name)
for each v in G.tuple do

if v.v data ==∅ then
skip;

end
post(a)←{v.type : v.v data};

end
end
else

G←V KG.get group(cve id, group.group name)
for each v in G.tuple do

if v.v data ==∅ then
skip;

end
pre(a)←{v.type : v.v data};

end
end

end
end

end
for each e in E do

for i = 0 to i = n+1, i++ do
e← connections between (ni ,ni+1) ∈N ;
if e ==∅ then

if post(ai).value match any pre(ai+1).value then
e← (post(ai));

end
end

end
end

on vulnerability information derived from both net-
work scan data and the VKG. For each CVE, rele-
vant groups from the Vulnerability Knowledge Graph
(VKG) are retrieved: “Consequence” data is stored
as post-conditions (post(a)), while others are stored
as pre-conditions (pre(a)). Edges are created between
nodes if any post(a) of one matches a pre(a) of the
next, forming a valid attack path. The algorithm out-
puts a graph G = (N ,E), where N is the set of nodes
representing hosts in the network and E is the set of
edges representing potential attack paths.

5 EVALUATION

In this section, we demonstrate the effectiveness of our
approach by applying it to a test network.

5.1 Test Network & Host Information

Figure 3 shows the test network we used in this study.
We employ the topology of a server-based network.
The network is divided into two sub-networks: Sub-
Network 1 (demilitarized zone), and Sub-Network 2
(trusted zone). A DNS Server, Mail Server, and Web
Server are located in the DMZ (demilitarized zone). W-
1 & W-2 are services or applications (on a machine) in
the Web Server, M-1 & M-2 for the Mail Server, and
D-1 & D-2 for DNS Server. There are three servers in
the TZ (trusted zone): the FTP Server with F-1, F-2, &
F-3, Database Server with S-1, S-2 & S-3, and Admin
Server with A-1 & A-2. Table 2 lists the vulnerabilities
present in this network.

Figure 3: Topology of Test Network.

Table 2: Vulnerabilities (CVE ID) on each server.
Host System Config: Vulnerabilities
Web Server
(192.168.1.1)

W-1: Script execution. (CVE-2020-11026)

W-2: Remote code execution. (CVE-2020-5902)
DNS Server
(192.168.2.1)

D-1: Remote Code Execution. (CVE-2021-26897)

D-2: Remote Code Execution. (CVE-2020-0718)
Mail Server
(192.168.3.1)

M-1: SQL Injection (CVE-2023-3087)

M-2: Unauthorized access and modification due to type
juggling issue. (CVE-2023-6875)

Database Server
(192.168.4.1)

S-1: SQL Injection. (CVE-2024-26026)

S-2: Denial of Service. (CVE-2022-3931)
S-3: Improper validation of cstrings. (CVE-2021-20329)

Admin Server
(192.168.5.1)

A-1: Incorrect privilege assignment. (CVE-2020-1989)

A-2: Privilege Escalation. (CVE-2020-15264)
FTP Server
(192.168.6.1)

F-1: Privilege Escalation. (CVE-2021-1572)

F-2: Backdoor. (CVE-2021-33540)
F-3: Directory Traversal. (CVE-2020-29026)

5.2 VKG for Test Network

To incorporate the vulnerability knowledge into the AG
for the test network, we extract the vulnerability sub-
graphs from the generated global VKG. Depending on
each host configuration in the test network, the ex-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

426

Vendor: WordPress

Software: WordPress Version: before 5.4.1
(patched in versions
5.4.1 and prior minor

releases)

Source: Media section
file upload

Reason: special crafted
file name handling

Trigger: uploading files
with a specially crafted

name

User Interaction: No

Network Access: Local

Privilege: Authenticated
user with file upload

privileges

W1-
Webserver

(WordPress)
CVE_id: CVE-

2020-11026

Consequences: Arbitrary
script execution upon

accessing the uploaded file

Vendor: F5 Networks

Software: BIG-IP Version:15.0.0-15.1.0.3,
14.1.0-14.1.2.5, 13.1.0-

13.1.3.3, 12.1.0-12.1.5.1,
11.6.1-11.6.5.1

Source: Traffic
Management User

Interface (TMUI) or
Configuration utility

Reason: undisclosed
pages vulnerable to RCE

Trigger: Accessing
unspecified vulnerable

pages

User Interaction: No

Network Access: Remote

Privilege:
Unauthenticated

W2-
Webserver
(BIG-IP)

CVE_id: CVE-
2020-5902

Consequences: Execution
of arbitrary code on the

server

Attacker Action: Execute
remote code

Attacker Action:
uploading files with a
specially crafted name

Webserver
IP:192.168.1.1
CompromisedOR

AND

AND

Mail Server
IP:192.168.3.1
Compromised

Database
Server

IP:192.168.2.1
Compromised

Via Router-3

Via Router-1

System Config (AG)
VKG: Identity

V
ul

ne
ra

bi
lit

y
In

fo
 (A

G
)

V
K

G
: O

rig
in

, E
xp

lo
iti

ng
 C

on
di

tio
ns

, A
ct

io
ns

V
ul

ne
ra

bi
lit

y
In

fo
 (A

G
)

V
K

G
: O

rig
in

, E
xp

lo
iti

ng
 C

on
di

tio
ns

, A
ct

io
ns

System Config (AG)
VKG: Identity

System Config (AG)
VKG: Consequence

System Config (AG)
VKG: Consequence

Figure 4: Automatically generated knowledge-enriched Attack Graph (for Web Server).

tracted sub-graphs are different. First, we run a vul-
nerability scanner on each host that provides the CVE
identifiers (CVE IDs) for potential vulnerabilities (Ta-
ble 2). Using the CVE IDs, we search for the sub-
graphs on VKG using algorithms 2 and 3. The ex-
tracted sub-graph for each CVE contains all the fine-
detailed vulnerability information in the form of nodes
and edges. All the vulnerability-related information can
be extracted from VKG by querying through cve id or
system information.

5.3 AG for Case Study

Once we gather all the information about the network,
hosts, and vulnerabilities, we construct AG using al-
gorithm 5. We extract the related vertices from VKG
and automatically generate the attack vector for CVE-
2020-11026 and CVE-2020-5902 associated with Web
Server. The post-conditions, derived from the VKG’s
“Consequence” vertices, indicate the final state of ex-
ploitation, leading to Web Server compromise. Since
the vulnerabilities in WordPress and BIG-IP are in-
dependent of each other, the compromise of the Web
Server is represented with an ‘OR’ logic.

Once the Web Server is compromised, the attacker
can leverage its connectivity to other systems. Informa-
tion from the network scan reveals that the Web Server
connects to the Mail Server via Router 3, and the Mail
Server is connected to Database Server via Router 4.
This allows the attacker to penetrate further into the
network, expanding the AG as additional systems are
compromised. The iterative nature of this process illus-
trates how vulnerabilities propagate through a network,
enabling gradual and systematic construction of the AG
illustrated in Figure 4.

5.4 Discussion

Our knowledge-based AG is enriched with more com-
prehensive content, providing deeper insights for net-
work and system administrators. For instance, a con-
ventional AG might represent an attack vector for Web
Server as follows: ‘Exploit CVE-2020-11026→ Script
execution in WordPress → Web Server (W-1) compro-
mised’ or ‘Exploit CVE-2020-5902→ Remote code ex-
ecution in F5 BIG-IP → Web Server (W-2) compro-
mised’. The rest of the graph in traditional AG follows:
[CVEs]→ [exploitations]→ [compromise].

Our AG addresses previously mentioned limitations
by offering actionable alternatives to patch vulnerabil-
ities. For example, instead of simply recommending
‘patching CVE-2020-5902’, from our knowledge-based
AG, sys-admin can obtain multiple alternatives, such as
modifying the TMUI, altering the configuration utility,
upgrading the BIG-IP version, restricting network ac-
cess from remote to local, or changing the authentica-
tion privileges, etc. Any of this information can provide
a suggestion to mitigate the vulnerability according to
the on-premise scenario. These options provide sysad-
mins with greater flexibility to formulate optimal miti-
gation strategies.

Our dataset encompasses over 1,500+ categorized
CVEs, which, while not exhaustive, continues to ex-
pand as part of an ongoing effort.

6 CONCLUSION

In this work, we have addressed the challenges of en-
hancing Attack Graph (AG) analysis by integrating
more in-depth and meaningful vulnerability informa-

VKG2AG : Generating Automated Knowledge-Enriched Attack Graph (AG) from Vulnerability Knowledge Graph (VKG)

427

tion to support improved security planning. To achieve
this, we developed an architecture that leverages a sep-
arate Vulnerability Knowledge Graph (VKG), which
provides fine-grained, structured insights into system
weaknesses. Unlike traditional approaches, our VKG is
built on a comprehensive, in-depth vulnerability dataset
and designed to function independently from the AG
while enabling seamless knowledge transfer. We for-
mally defined the structure of both graphs along with
the algorithms for generation and querying, ensuring a
granular-level integration of vulnerability attributes into
the AG without introducing inter-dependencies. The fu-
ture goal is to develop automated mechanisms for up-
dating the VKG with emerging vulnerabilities, ensur-
ing its continued relevance and accuracy. Additionally,
incorporating a feedback loop from AG to VKG could
enable dynamic refinement of vulnerability insights, fa-
cilitating more advanced reasoning and analysis.

REFERENCES

Anders, Lison, P., and Moonen, L. (2023). Construct-
ing a knowledge graph from textual descriptions of
software vulnerabilities in the national vulnerability
database. In Alumäe, T. and Fishel, M., editors,
Proceedings of the 24th Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 386–391,
Tórshavn, Faroe Islands. University of Tartu Library.

Bashir, S. K., Podder, R., Sreedharan, S., Ray, I., and Ray,
I. (2024). Resiliency graphs: Modelling the interplay
between cyber attacks and system failures through ai
planning. In 2024 IEEE 6th International Conference
on Trust, Privacy and Security in Intelligent Systems,
and Applications (TPS-ISA), pages 292–302. IEEE.

Dewri, R., Poolsappasit, N., Ray, I., and Whitley, D. (2007).
Optimal security hardening using multi-objective op-
timization on attack tree models of networks. In Pro-
ceedings of the 14th ACM conference on Computer
and communications security, pages 204–213.

Inokuchi, M., Ohta, Y., Kinoshita, S., Yagyu, T., Stan, O.,
Bitton, R., Elovici, Y., and Shabtai, A. (2019). De-
sign procedure of knowledge base for practical attack
graph generation. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications
Security, Asia CCS ’19, page 594–601, New York,
NY, USA. Association for Computing Machinery.

Jia, F., Hong, J. B., and Kim, D. S. (2015). Towards
automated generation and visualization of hierarchi-
cal attack representation models. In 2015 IEEE In-
ternational Conference on Computer and Informa-
tion Technology; Ubiquitous Computing and Commu-
nications; Dependable, Autonomic and Secure Com-
puting; Pervasive Intelligence and Computing, pages
1689–1696. IEEE.

Jing, J. T. W., Yong, L. W., Divakaran, D. M., and Thing,
V. L. L. (2017). Augmenting mulval with automated
extraction of vulnerabilities descriptions. In TENCON

2017 - 2017 IEEE Region 10 Conference, pages 476–
481.

Lallie, H. S., Debattista, K., and Bal, J. (2017). An em-
pirical evaluation of the effectiveness of attack graphs
and fault trees in cyber-attack perception. IEEE
Transactions on Information Forensics and Security,
13(5):1110–1122.

Liu, X., Guo, X., and Gu, W. (2025). Seckg2vec: A novel
security knowledge graph relational reasoning method
based on semantic and structural fusion embedding.
Computers & Security, 149:104192.

Ou, X., Boyer, W. F., and McQueen, M. A. (2006). A scal-
able approach to attack graph generation. In Proceed-
ings of the 13th ACM conference on Computer and
communications security, pages 336–345.

Ou, X., Govindavajhala, S., and Appel, A. W. (2005). Mul-
VAL: A logic-based network security analyzer. In
14th USENIX Security Symposium (USENIX Security
05), Baltimore, MD. USENIX Association.

Poolsappasit, N., Dewri, R., and Ray, I. (2011). Dy-
namic security risk management using bayesian attack
graphs. IEEE Transactions on Dependable and Secure
Computing, 9(1):61–74.

Ray, I., Sreedharan, S., Podder, R., Bashir, S. K., and Ray, I.
(2023). Explainable ai for prioritizing and deploying
defenses for cyber-physical system resiliency. In 2023
5th IEEE International Conference on Trust, Privacy
and Security in Intelligent Systems and Applications
(TPS-ISA), pages 184–192. IEEE.

Yin, J., Hong, W., Wang, H., Cao, J., Miao, Y., and Zhang,
Y. (2024). A compact vulnerability knowledge graph
for risk assessment. ACM Trans. Knowl. Discov. Data,
18(8).

Zhang, Y., Du, T., Ma, Y., Wang, X., Xie, Y., Yang, G.,
Lu, Y., and Chang, E.-C. (2024). Attackg+:boosting
attack knowledge graph construction with large lan-
guage models. arXiv 2405.04753, Available from
https://arxiv.org/abs/2405.04753.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

428

