
Beyond Rules: How Large Language Models Are Redefining
Cryptographic Misuse Detection

Zohaib Masood and Miguel Vargas Martin
Ontario Tech University, Oshawa, Canada

Keywords: Cryptographic Misuse Detection, Large Language Models, Static Analysis.

Abstract: The use of Large Language Models (LLMs) in software development is rapidly growing, with developers in-
creasingly relying on these models for coding assistance, including security-critical tasks. Our work presents
a comprehensive comparison between traditional static analysis tools for cryptographic API misuse detec-
tion—CryptoGuard, CogniCrypt, and Snyk Code—and the LLMs—GPT, Llama, Claude, and Gemini. Using
benchmark datasets (OWASP, CryptoAPI, and MASC), we evaluate the effectiveness of each tool in identi-
fying cryptographic misuses. Our findings show that GPT 4-o-mini surpasses current state-of-the-art static
analysis tools on the CryptoAPI and MASC datasets, though it lags on the OWASP dataset. Additionally,
we assess the quality of LLM responses to determine which models provide actionable and accurate advice,
giving developers insights into their practical utility for secure coding. This study highlights the comparative
strengths and limitations of static analysis versus LLM-driven approaches, offering valuable insights into the
evolving role of AI in advancing software security practices.

1 INTRODUCTION

Protecting sensitive data on digital devices from
eavesdropping or forgery relies primarily on cryptog-
raphy. To ensure effectiveness in protection, the cryp-
tographic algorithms employed must be conceptually
secure, implemented accurately, and utilized securely
within the relevant application. Despite the existence
of mature and still secure cryptographic algorithms,
numerous studies have pointed out that application
developers face challenges in utilizing the Applica-
tion Programming Interfaces (APIs) of libraries that
incorporate these algorithms. As an illustration, Lazar
et al. (Lazar et al., 2014) examined 269 vulnerabilities
related to cryptography and discovered that merely
17% are associated with flawed algorithm implemen-
tations, while the remaining 83% stem from the mis-
use of cryptographic APIs by application develop-
ers. Additional research indicates that around 90%
of applications utilizing cryptographic APIs include
at least one instance of misuse (Chatzikonstantinou
et al., 2016; Egele et al., 2013).

Software designers and developers need to tackle
this security flaw by ensuring that their applications
encrypt the sensitive data they handle and store. De-
spite the availability of educational materials (Graff
and Wyk, 2003) aimed at raising awareness and pro-

viding guidance on secure code development, many
developers remain unaware of security considera-
tions (Xie et al., 2011). Training initiatives are
not universally received by programmers (Xie et al.,
2011), and security is frequently treated as a sec-
ondary, desired goal (Whitten, 2004), rather than a
mandatory one, depending on the perceived risk and
criticality of the developed application. Typically, de-
velopers prioritize meeting functionality and time-to-
market requirements as their primary goals.

In exploring the factors contributing to this preva-
lent misuse, researchers previously triangulated find-
ings from four empirical studies, including a survey
involving Java developers with prior experience us-
ing cryptographic APIs (Nadi et al., 2016). Their
findings reveal that a significant majority of partici-
pants encountered difficulties in utilizing the respec-
tive APIs. Several other tools (Rahaman et al., 2019;
Krüger et al., 2017; Zhang et al., 2019; Kafader and
Ghafari, 2021) have been developed to detect cryp-
tographic misuses, however, the robustness of these
tools have been still in question (Zhang et al., 2023;
Ami et al., 2022). In addition to it, novice developers
have started adopting AI-assisted tools to code their
programming problems. Recent advancements en-
compass Github’s Copilot (GitHub AI Pair Program-
mer, nd), DeepMind’s AlphaCode (Li et al., 2022),

Masood, Z. and Martin, M. V.
Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection.
DOI: 10.5220/0013524100003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 179-194
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

179

Amazon’s Q Developer (Amazon Q Developer, nd),
Tabnine (Tabnine, nd), Google’s Gemini (Gem-
ini, nd), Meta’s Llama (Llama, nd), Anthropic’s
Claude (Claude, nd), Qwen’s QwenLM (QwenLM,
nd) and Open AI’s ChatGPT (ChatGPT, nd)—nine
systems capable of translating a problem descrip-
tion into code. Prior results suggest that Open AI’s
ChatGPT reliably produces Java programming solu-
tions known for their elevated readability and well-
organized structure (Ouh et al., 2023).

Prior research has primarily tested Large Lan-
guage Models (LLMs) using limited benchmark
datasets, offering an initial understanding of their per-
formance. However, a comprehensive study evalu-
ating LLM effectiveness across a broader range of
benchmarks is still lacking, and no prior work has
closely examined the quality of LLM responses, par-
ticularly their accuracy and actionability for practi-
cal use. This study addresses these gaps by ana-
lyzing LLM performance across diverse datasets and
introducing a framework to assess response qual-
ity. We assess LLM efficacy in identifying crypto-
graphic misuses and compare it with state-of-the-art
(SOTA) static cryptographic analysis tools from lit-
erature, such as CogniCrypt (Krüger et al., 2017),
CryptoGuard (Rahaman et al., 2019), and an industry-
based tool, Snyk Code (Snyk, nd). To evaluate LLM
accuracy, we used well-known benchmark datasets
for cryptographic misuse detection, namely OWASP
Bench (OWASP Benchmark, 2016) and CryptoAPI
Bench (Afrose et al., 2019). Additionally, we tested
LLM robustness in detecting mutated test cases,
where many static tools often struggle (Ami et al.,
2022), and evaluated the quality of LLM responses
using two metrics, Actionability and Specificity, to
assess whether responses can help developers identify
and fix misuses.

Our research aims to address the following
research questions (RQs):

RQ1. How effective are LLMs in detecting crypto-
graphic misuses compared to other static tools?

The static tools tested focus on slightly different
pattern sets, leading to varied trade-offs in precision
and recall, both among the tools themselves and
in comparison to LLMs. To evaluate the effective-
ness of LLMs in detecting cryptographic misuses
compared to static tools, we ran test cases from the
CryptoAPI and OWASP benchmarks. Based on the
findings, GPT had a better detection rate across both
benchmarks. For CryptoAPI, GPT missed only 3 true
instances, with CryptoGuard lagging behind at 24
misses. In the OWASP benchmark, GPT identified
all true instances, while CryptoGuard missed 40 true

misuse cases. However, for the OWASP benchmark,
GPT had a high false positive rate, indicating that no
tool is universally superior across both benchmarks.

RQ2. How robust are LLMs in detecting mutated
test cases that other static tools fail to detect?

To evaluate the robustness of LLMs, we ran test
cases from a manually curated MASC dataset (Ami
et al., 2022) against LLMs to see if LLMs can detect
these mutations of cryptographic code effectively.
Our results suggest that GPT performed better than
other LLMs in detecting cryptographic mutations.

RQ3. How do prevalent LLMs compare in detect-
ing cryptographic misuse and providing actionable,
specific guidance for developers?

To address this, we compared the performance of
LLMs across both benchmarks and a mutated dataset
to evaluate which LLM performs best. Additionally,
we introduced a method to assess whether an LLM’s
response can assist developers in fixing misuses.
Since LLMs often generate text-heavy responses that
may not effectively help developers, we implemented
a keyword-based approach to analyze LLM outputs.
This approach identifies which LLM provides more
actionable and specific guidance for developers to
address misuse instances.

Our main contributions from this work are as fol-
lows:

• We are the first to conduct a comprehensive eval-
uation of the effectiveness of LLMs in detect-
ing cryptographic misuses, comparing their per-
formance to that of SOTA static analysis tools. It
highlights the strengths and weaknesses of LLMs
compared to static tools, offering insights into
their reliability and applicability for secure soft-
ware development.

• We assess the robustness of LLMs by evaluating
their ability to detect cryptographic misuse in mu-
tated test cases that static tools often miss. This
contribution explores whether LLMs can adapt to
variations in misuse patterns, providing an under-
standing of their resilience and potential superior-
ity in handling unconventional or complex misuse
scenarios.

• To systematically assess the practicality of LLM-
generated guidance, we develop a keyword-based
framework that scans LLM responses for action-
able elements. This framework serves as a tool to
measure the usability of LLM outputs for devel-
opers, supporting the identification of models that
best fulfill developers’ needs in addressing cryp-
tographic misuse. To the best of our knowledge,

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

180

this is the first work that explores the actionability
and specificity of LLM responses.

In the next section, we cover the motivation for
our work. Section 3 discusses background and related
work. Section 4 explains the methodology, while Sec-
tion 5 presents the results and findings. Section 6 cov-
ers the discussion, followed by Section 7 on ecolog-
ical validity. Section 8 mentions the limitations and
future directions, and finally we conclude our paper
in Section 9.

2 MOTIVATION

To proactively identify vulnerabilities before soft-
ware release, individuals without specialized exper-
tise—such as software developers or quality assur-
ance teams—are likely to integrate cryptographic
API misuse detectors, commonly known as crypto-
detectors, into the Continuous Integration/Continuous
Delivery (CI/CD) pipeline. Examples of these de-
tectors include CryptoGuard (Rahaman et al., 2019)
and CogniCrypt (Krüger et al., 2017). Consequently,
the incapability of a crypto detector to identify an in-
stance of misuse that it claims to detect has a direct
impact on the security of end-user software. We illus-
trate this challenge with an example.

Imagine Johnny, a Java developer utilizing Cryp-
toGuard [8], an advanced crypto detector, to pinpoint
cryptographic vulnerabilities in his software before
its release. In one of his applications, Johnny opts to
employ the DES cipher, outlined as follows:

Cipher cipher = Cipher . getInstance (“des”);

This signifies an instance of misuse involving the
use of the vulnerable DES cipher. CryptoGuard falls
short in recognizing this vulnerability because Johnny
utilizes “des” instead of “DES” as the parameter (Ami
et al., 2022). However, this presents a concern be-
cause the difference in lower case for the parameter
lacks functional significance, as Java officially sup-
ports both upper case and lower case. Due to Crypto-
Guard’s oversight of this vulnerability, Johnny might
erroneously believe that his application is secure and
may proceed with releasing it to end-users.

The same example was tested with ChatGPT
by providing a starting prompt “Can you detect
cryptographic API misuse in the given Java code?”.
ChatGPT generated the following response:

“The line of code you provided initializes a
Cipher object in Java using the DES (Data Encryp-
tion Standard) algorithm. However, it’s important

to note that DES is considered insecure for many
applications due to its small key size (56 bits) and
vulnerability to brute-force attacks. It is generally
recommended to use more secure algorithms like AES
(Advanced Encryption Standard) instead.”

In other words, these static tools for cryptographic
misuse detection could have fundamental flaws pre-
venting them from detecting even straightforward in-
stances of crypto-API misuse found in applications.
On the other hand, ChatGPT’s accurate response to
such test cases raises a curiosity to test whether LLMs
can effectively detect cryptographic misuses better
than these static analysis tools. To extend it, novice
developers intrigued by the power of LLMs capabil-
ities, have started adapting to the technology by us-
ing such platforms to look for coding solutions. With
the increasing use of AI to look for code solutions
by novice developers, little research is done in this
area to explore whether prominent platforms, such
as ChatGPT, are effective in detecting these crypto-
graphic misuses. It will also likely conclude whether
the code provided by these LLMs for cryptographic
problems is secure or not. This insight guides our
approach to systematically compare widely known
crypto detectors with LLMs.

Although early analysis showed promising results
for Open AI’s ChatGPT, an intensive study was con-
ducted to conclude the effectiveness of LLMs in
detecting cryptographic misuses. LLMs can gen-
erate and understand code in various programming
languages, however, static tools and benchmarking
datasets used for comparison in our study rely only
on Java. Therefore, the scope of our work is limited
to Java as a programming language.

3 BACKGROUND

Recently, security researchers have expressed signif-
icant interest in externally validating static analysis
tools (Zhang et al., 2023; Ami et al., 2022). Specifi-
cally, there’s a growing recognition that while static
analysis security tools are theoretically sound, they
can be “soundy” in practice. This means they consist
of a core set of sound decisions but also include cer-
tain strategically unsound choices made for practical
reasons, such as performance or precision consider-
ations (CryptoGuardOSS, 2020). In this section, we
provide a brief overview of the static analysis tools
that will be used for comparison with LLMs. More-
over, we also discuss similar work done in this domain
so far.

CryptoGuard (Rahaman et al., 2019) expands on

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

181

Table 1: Overview of Existing Work on LLM-Based Detection.

Name Benchmarks LLM-based Detection Evaluating Quality of LLM Response
CryptoAPI MASC OWASP

Firouzi et al. (Firouzi et al., 2024) ✓ × × ✓ ×
Xia et al. (Xia et al., 2024) ✓ ✓ × ✓ ×
Our Work ✓ ✓ ✓ ✓ ✓

Soot (Soot, 2020), a widely used program anal-
ysis framework for statically analyzing Java byte-
code (Vallée-Rai et al., 1999). It targets vulnerabili-
ties associated with CWE-327, CWE-295, CWE-330,
CWE-326, CWE-798, and CWE-757, using context-
and field-sensitive backward and forward slicing for
precise detection. However, since eight of its rules
involve constant value usage, traditional slicing tech-
niques may falsely flag constants unrelated to secu-
rity. To mitigate this, CryptoGuard integrates re-
finement algorithms that reduce false positives using
cryptographic domain knowledge.

CogniCrypt (Krüger et al., 2017) employs rules
specified in a domain-specific language (DSL) called
CrySL (Krüger et al., 2021) to identify API mis-
uses. CogniCrypt translates CrySL rules into context-
sensitive, flow-sensitive, and demand-driven static
analysis, enabling users to enhance the tool’s capa-
bilities by creating new rules. In case of identified
API misuse, CogniCrypt provides guidance on its res-
olution, such as substituting an insecure parameter
value with a secure one. Its pattern set pertains to
CWE-327, CWE-295, CWE-330, CWE-326, CWE-
798, and CWE-757.

Snyk Code (Snyk, nd) is a static application secu-
rity testing (SAST) tool that helps developers identify
and fix code vulnerabilities. It integrates with devel-
opment environments, continuously scanning code-
bases and providing actionable remediation insights.
Notable for its developer-friendly approach, Snyk
Code supports popular IDEs, CI/CD pipelines, and
repositories. It uses machine learning and semantic
analysis for accurate and relevant issue detection and
supports multiple programming languages and frame-
works, ensuring versatility.

Static analysis tools often suffer from a high
rate of false positives, flagging issues that do not
pose a threat and creating a disconnect between re-
ported misuse alerts and real vulnerabilities. Chen et
al. (Chen et al., 2024) examine these limitations by
analyzing the rules, models, and implementations of
such tools, highlighting the need for improvements in
their precision and usability. In contrast, LLMs are
becoming popular for code analysis. Fang et al. (Fang
et al., 2024) found that advanced LLMs like ChatGPT
3.5 and 4.0 show promise in accurate code review.
This indicates that LLMs could reduce false positives

common in static tools, offering a more reliable alter-
native for vulnerability detection. Liu et al.(Liu et al.,
2024) highlight ChatGPT’s potential in vulnerability
management, demonstrating its effectiveness in tasks
like generating software bug report titles. As LLMs
gain popularity, researchers are exploring their use in
detecting cryptographic misuses(Firouzi et al., 2024;
Xia et al., 2024). However, no prior research has in-
vestigated how LLMs’ text-based responses help de-
velopers fix misuse instances.

Despite advances in static analysis tools for de-
tecting cryptographic misuse, gaps remain in their
coverage and adaptability to varied misuse patterns.
Existing tools struggle with mutated misuse instances,
reducing their effectiveness in real-world scenarios.
Prior research (Masood and Martin, 2024) has ex-
plored LLMs for detecting cryptographic misuses but
has been limited in model comparison. This study
extends previous work by including a broader range
of LLMs for a more thorough evaluation against
static tools and among LLMs. It introduces ROC-
annotated plots for clearer performance comparisons.
Our study evaluates static tools and LLMs using
OWASP and CryptoAPI benchmarks, testing LLMs’
robustness with mutated misuse cases. We also in-
troduce a keyword-based approach to assess the ac-
tionability and specificity of LLM responses in aid-
ing code correction. By addressing these aspects, our
work explores the potential of replacing static tools
with LLMs to help developers write secure code. Ta-
ble 1 highlights the unique contributions of our work
compared to prior research.

4 METHODOLOGY

This section describes our methodology for evaluat-
ing LLMs in cryptographic misuse detection. We as-
sessed LLMs against various datasets and further ana-
lyzed their responses to determine their effectiveness
in detecting misuse instances.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

182

4.1 Selection Criteria

4.1.1 Static Tools

A range of tools exist for detecting cryptographic vul-
nerabilities in Java code, with most prior research fo-
cusing on this language. We selected two academic
tools, CryptoGuard (Rahaman et al., 2019) and Cog-
niCrypt SAST (Krüger et al., 2017), and one industry
tool, Snyk Code (Snyk, nd). We prioritized tools that
accept JAR files and are generic, excluding Android-
specific tools. We also favored widely recognized
tools to enhance the credibility of our comparison
with LLM models. CryptoGuard and CogniCrypt
were set up on an Ubuntu VM, with CryptoGuard re-
quiring Java 8 and CogniCrypt requiring Java 11 or
higher. Snyk Code was installed as a Visual Studio
Code extension. Table 2 lists the static analysis tools
and their versions. Results from all tools were ex-
tracted as JSON files and analyzed against benchmark
labels.

Table 2: Version of Static Analysis Tools.

Tool Version

CryptoGuard 04.05.03
CogniCrypt 3.0.2 and 4.0.1
Snyk Code 2.18.2

4.1.2 Benchmark Datasets

To evaluate the tools’ effectiveness, we conducted ex-
tensive online searches for open-source benchmarks
that classify programs based on correct or incor-
rect use of cryptographic APIs. We selected three
widely used datasets: CryptoAPI Bench (Afrose
et al., 2019), OWASP Benchmark (OWASP, n.d.), and
MASC dataset (Ami et al., 2022). These datasets pro-
vide test cases for assessing cryptographic misuses in
Java programs.

• The CryptoAPI Bench (Afrose et al., 2019) con-
sists of 182 test cases, with 181 labeled and one
unlabeled. Of the labeled cases, 144 are true mis-
uses, and 37 are false misuses. The unlabeled case
was excluded from testing.

• The OWASP Benchmark (OWASP, n.d.) is a Java
test suite evaluating vulnerability detection meth-
ods, incorporating vulnerabilities from the Com-
mon Weakness Enumeration (CWE - Common
Weakness Enumeration, 2021). Version 1.2 con-
tains 2,740 Java programs, but the study focuses
on 975 programs categorized into weak cryptog-
raphy, weak hashing, and weak randomness, with
477 showing misuse and 498 showing proper use.

• The MASC dataset, designed by Ami et al. (Ami
et al., 2022), applies mutation testing to identify
vulnerabilities in crypto detectors, assessing their
ability to withstand code modifications. We man-
ually selected 30 test cases from MASC’s mini-
mal test suites, targeting five prevalent flaw types
in modern crypto detectors.

The test case outline for the benchmarking
datasets is shown in Table 3. We chose existing
benchmark datasets for two reasons: they are pub-
licly accessible, curated by diverse stakeholders, en-
suring a comprehensive and replicable empirical com-
parison, and benchmarks like OWASP Benchmark are
widely recognized and influential in the industry. Us-
ing these datasets with static analysis tools and LLMs
helped answer RQ1, while testing LLMs with muta-
tions addressed RQ2.

Table 3: Labels of Benchmarking Datasets.

Benchmarking Dataset True Labels False Labels Total

CryptoAPI Bench 144 37 181
MASC 29 1 30
OWASP 477 498 975

4.1.3 Large Language Models

The popular LLM models selected for this study
include OpenAI’s GPT, Google’s Gemini, Meta’s
Llama, and Anthropic’s Claude, chosen for their
advanced capabilities in converting text to code
and identifying vulnerabilities through code analysis.
Each misuse instance was provided with a standard-
ized prompt (details in Appendix), which included in-
formation like the method name, starting line number,
highlighted message, message description (reason for
misuse), lines of code with the misuse, and a label
indicating cryptographic misuse. The LLM responses
followed a similar pattern, providing the misuse label,
method name, starting line number, code line, high-
lighted message, cause explanation, and best prac-
tices. The LLM models and their versions are listed
in Table 4.

Table 4: Version of Large Language Models.

LLM Version Release Date

Meta’s Llama Llama 3.0 April 18, 2024
Open AI’s GPT gpt-4o-mini-2024-07-18 July 18, 2024
Google’s Gemini gemini-1.5-flash-002 September 24, 2024
Anthropic’s Claude Claude 3.5 Haiku October 22, 2024

4.2 Evaluation Metrics

Accuracy of each static tool and LLMs will be
measured by these 8 metrics: True Positive, False

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

183

Positive, False Negative, True Negative, Precision,
Recall, F1-score, and F2-score.

While the F1-score is an effective measure for
evaluating a tool’s performance, it should not be the
only criterion for tool selection. In a security context,
placing more emphasis on recall with F2-score will be
more reliable than relying solely on the F1-score. For
this reason, our study uses the F2-score alongside the
F1-score.

4.2.1 LLM Specific Metrics

Since Large Language Models generate text, tradi-
tional performance metrics such as precision, recall,
and F-score are insufficient for fully assessing their
capabilities. Therefore, in addition to these metrics,
we employed two measures influenced by Redmiles
et al. (Redmiles et al., 2020) to evaluate security and
privacy advice: Actionability and Specificity.
To evaluate these metrics, we utilized specific key-
words proposed by Rostami et al. (Rostami and Karls-
son, 2024) to deduce actionability in information se-
curity policies. We utilized their proposed list of key-
words to evaluate whether the response from LLM is
actionable. The keywords are listed in Table 5. For
instance, if the text contains words such as “should”,
“need”, or “must”, we categorize it as “Actionable”.
Furthermore, a response is considered higher “Speci-
ficity” if it includes a link to a resource (e.g., a URL)
or CWE.

Table 5: Actionable Keywords.

Keywords

never
need
should
not
forbidden
must
shall

For example, one of the mutated test cases re-
places AES with DES by replacing “A” with “D”. The
misuse line is as follows:

Cipher c = Cipher. getInstance (‘‘ AES’’.
replace (‘‘ A’’, ‘‘D’’)) ;

For this particular case, GPT gave the misuse de-
scription as:
“The usage of “AES”.replace(“A”, “D”)‘ is a signif-
icant misuse. This expression incorrectly modifies the
string that is supposed to define the algorithm name,
changing it from ”AES” to ”DES”. Since ”DES” is
a less secure algorithm, this can lead to vulnerabili-

ties in the encryption implementation realized by this
code. This does not represent a proper way to specify
or select cryptographic algorithms, as it can easily be
manipulated or misunderstood.”

The presence of an actionable keyword “not” in
GPT’s response provides clear feedback to developers
to fix this misuse instance.

In contrast, the absence of actionable keywords in
an LLM response may limit developers’ ability to un-
derstand and address the misuse effectively. For in-
stance, GPT provided the following response in an-
other case where AES was replaced by DES:
“The issue arises because the program allows for the
selection of weak ciphers (like DES) through method
chaining without any safeguards or validation mech-
anisms to ensure that only strong ciphers are used.
This directly impacts the security posture of the ap-
plication by making it susceptible to various crypto-
graphic attacks, thereby constituting a cryptographic
misuse.”

Here, the lack of actionable keywords may limit
the guidance that novice developers need, reducing
the response’s effectiveness in directing them toward
an appropriate fix and failing to emphasize the poten-
tial consequences of the misuse.

4.3 Experiments

Figure 1 shows our evaluation methodology for LLM-
based cryptographic misuse detection. The method-
ology is divided into three sections: LLM vs Static
Tools, Comparing LLMs, and Evaluating LLM re-
sponses.

Source Code

LLM

Static Analysis
Tools

Reports
Generated

Report Analysis

Prompt

CLI

Figure 1: Evaluation Methodology for Comparing Static
Tools with LLMs.

4.3.1 LLM vs Static Tools

We began our experiments by testing LLMs and static
tools with the CryptoAPI and OWASP benchmarks to
evaluate their effectiveness in detecting cryptographic
misuses, using the evaluation metrics outlined in the
metrics section. This helped us understand how well
each approach identifies cryptographic misuses and

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

184

allowed us to compare the strengths of LLMs with
those of static tools. This contributed to our findings
on RQ1.

4.3.2 Comparing LLMs

In the second phase of our experiments, we tested
LLMs using mutated test cases from the MASC
dataset, along with CryptoAPI and OWASP bench-
marks, to evaluate their effectiveness in detecting
cryptographic misuses. This enabled us to assess
the robustness of these LLMs in identifying crypto-
graphic misuse across varied and altered scenarios,
concluding our findings for RQ2.

4.3.3 Evaluating LLM Responses

Additionally, we analyzed the responses of LLMs us-
ing the Actionability and Specificity metrics. If a re-
sponse from an LLM contained a keyword from Ta-
ble 5, it was considered actionable. The number of
actionable responses in a particular dataset represents
the total actionability of the LLM for that dataset. To
determine the Specificity of an LLM response, we
manually reviewed each response to check if the LLM
provided a link, referenced a CWE, or included rec-
ommended code that could assist developers in fixing
the misuse. If the response from an LLM contained
a link, CWE reference, or fixed code, it was consid-
ered specific. The number of test cases with specific
responses in a particular dataset indicates the speci-
ficity of the LLM and is compared with other LLMs
to assess specificity.

This comprehensive approach offered a clearer
understanding of the responses provided by LLMs,
assessing whether each response qualified as action-
able advice for developers. Additionally, it revealed
whether any links provided by the LLMs effectively
guide developers to relevant resources for addressing
specific cryptographic misuses, thus contributing in-
sights for RQ3.

5 RESULTS AND FINDINGS

In this section, we present the results of our work
on detecting cryptographic misuses for CryptoAPI
and OWASP benchmarks, gathered using the selected
static tools and GPT. Furthermore, we extended the
results by comparing LLMs on the MASC dataset to
determine which LLM performed better. We also an-
alyzed the responses from LLMs to gain insights into
which one offered more actionable and specific ad-
vice.

5.1 LLMs vs Static Tools

5.1.1 CryptoAPI Benchmark

For CryptoAPI benchmark, GPT 4-o-mini achieved
the highest F1-score of 87.6%, F2-score of 93.5%,
and a recall of 97.9%, accurately detecting 141 out
of 144 misuse cases. CryptoGuard followed with an
F1-score of 84.8%, F2-score of 83.9%, and a recall of
83.3%, missing 24 misuse cases. Detailed metrics are
shown in Table 6.

Figure 2: Tools Comparison on CryptoAPI Benchmark.

GPT 4-o-mini’s high accuracy suggests its effec-
tiveness as an alternative to traditional static analy-
sis tools for cryptographic misuse detection. Unlike
static tools that depend on fixed rules, GPT 4-o-mini
utilizes advanced pattern recognition and contextual
adaptability, enabling it to handle complex misuse
cases with high precision and recall, although it shows
a slightly higher rate of false positives.

Figure 3: Detection Results for CryptoAPI Benchmark
Across Different Tools.

This adaptability allows GPT 4-o-mini to outper-
form static tools like CryptoGuard and CogniCrypt,
which are constrained by predefined rules and may
miss specific misuse types, such as Java’s Secret Key
Factory or Hostname Verifier API cases. Key metrics
are illustrated in Figure 2 and Figure 3.

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

185

Table 6: Evaluation Metrics for CryptoAPI and OWASP Benchmark.

Benchmark Tool True Positive False Positive False Negative True Negative Precision (%) Recall (%) F1 Score (%) F2 Score (%)

CryptoAPI

GPT 4-o-mini 141 37 3 0 79.2 97.9 87.6 93.5

CryptoGuard 120 19 24 18 86.3 83.3 84.8 83.9

CogniCrypt 4.0.1 113 28 31 9 80.1 78.5 79.3 78.8

CogniCrypt 3.0.2 110 31 34 6 78.0 76.4 77.2 76.7

Snyk Code 93 30 51 7 75.6 64.6 69.7 66.5

OWASP

CryptoGuard 437 27 40 471 94.2 91.6 92.9 92.1

GPT 4-o-mini 477 498 0 0 48.9 100.0 65.7 82.7

Snyk Code 477 498 0 0 48.9 100.0 65.7 82.7

CogniCrypt 4.0.1 259 200 218 298 56.4 54.3 55.3 54.7

CogniCrypt 3.0.2 259 475 218 23 35.3 54.3 42.8 49.0

Finding 1 RQ1: GPT 4-o-mini achieved the high-
est F-score (F1-score: 87.6%, F2-score: 93.5%)
among tools for CryptoAPI benchmark, showing
strong cryptographic misuse detection despite not
being specialized, followed closely by Crypto-
Guard. Snyk Code and CogniCrypt had higher er-
ror rates, making them less reliable overall.

5.1.2 OWASP Benchmark

For OWASP benchmark, CryptoGuard achieved the
highest F1-score of 92.9%, F2-score of 92.1%, with a
precision of 94.2% and a recall of 91.6%, effectively
detecting true misuse cases while minimizing false
positives. Snyk Code and GPT 4-o-mini followed
with an F1-score of 65.7% and F2-score of 82.7%,
where the higher F2-score reflects stronger emphasis
on recall, highlighting GPT 4-o-mini’s ability to catch
more misuse cases despite lower precision. Results
are summarized in Table 6.

Figure 4: Tools Comparison on OWASP Benchmark.

GPT 4-o-mini’s high false positive rate stems from
its text-based responses, which frequently suggest
best practices even when no misuse is present. This

Figure 5: Detection Results for OWASP Benchmark Across
Different Tools.

led to labeling cases as “TRUE” due to best practice
recommendations, even without actual misuse, reduc-
ing its precision in identifying true misuse cases. Ad-
ditionally, the OWASP test cases had a higher average
line count compared to CryptoAPI test cases, increas-
ing the amount of code GPT had to analyze. With
longer code samples, GPT often provided general rec-
ommendations rather than focusing solely on detect-
ing cryptographic misuses, leading to more false posi-
tives. However, GPT performed more accurately with
smaller code samples than with longer ones. Fig-
ure 4 and Figure 5 illustrate the key metrics for tools
tested on the OWASP Benchmark, showcasing Cryp-
toGuard’s superior performance compared to other
tools.

Finding 2 RQ1: CryptoGuard outperforms other
tools on the OWASP benchmark with a 92.1% F2-
score, while GPT and Snyk Code lag behind at
82.7%, demonstrating CryptoGuard’s higher accu-
racy in detecting cryptographic misuses.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

186

Figure 6: TPR vs FPR for Static Tools and GPT.

5.1.3 ROC Comparison

Receiver Operating Characteristic (ROC) curves help
visualize and compare the trade-off between true and
false positives across different detection thresholds.
It provides an intuitive way to assess how well each
model distinguishes between correct and incorrect
cryptographic API usage. The comparison of static
tools with GPT across the CryptoAPI and OWASP
benchmarks revealed varied performance. Crypto-
Guard effectively balanced true positive detection and
false positive reduction, outperforming other tools, as
shown in Figure 6. GPT 4-o-mini had high recall
but also a high false positive rate, indicating chal-
lenges with precision in LLM-based vulnerability de-
tection. CogniCrypt and Snyk Code performed simi-
larly to random guessing on CryptoAPI. CogniCrypt
struggled with diverse misuse instances, leading to
higher false positives. The CryptoAPI results were
affected by an imbalance in misuse instances. Reduc-
ing false positives is crucial for practical use, and fu-
ture research should include probability mechanisms
for more accurate comparisons.

Finding 3 RQ1: CryptoGuard demonstrates a
good balance between detecting true positives and
minimizing false positives, outperforming other
tools and GPT in some cases.

5.1.4 Time Comparison

The benchmarks were run on tools configured in an
Ubuntu VM hosted on a laptop with the following
specs: Windows 11 OS, i7-1255U CPU (1.70 GHz),

16 GB RAM. The VMs used for the tools had 10 GB
RAM, an 8 GB JVM heap, and 4 processors.

Test cases were executed on GPT via an API, and
response times for each benchmark were recorded.
Static analysis tools, including CryptoGuard, Cog-
niCrypt, and Snyk Code, were run using CLI com-
mands and Visual Studio Code extension. The time
taken by each tool for both benchmarks is shown in
Table 7.

Table 7: Execution Time of Tools for CryptoAPI and
OWASP Benchmark.

Tools CryptoAPI OWASP

CryptoGuard 1m 48s 10m 59s

CogniCrypt 3.0.2 54s 16m 35s

CogniCrypt 4.0.1 1m 7s 23m 26s

Snyk Code 8s 52s

GPT 4-o-mini 8m 45s 71m

Snyk Code was the fastest tool across both bench-
marks, with execution times of 8 seconds for Cryp-
toAPI and 52 seconds for OWASP. CryptoGuard per-
formed well on the CryptoAPI benchmark (1m 48s)
but took longer on the OWASP benchmark (10m 59s).
GPT 4-o-mini had the longest execution times, re-
quiring 8m 45s for CryptoAPI and 71 minutes for
OWASP, highlighting a trade-off between detection
accuracy and slower processing speed, which could
limit scalability for large datasets.

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

187

Finding 4 RQ1: Snyk Code is the fastest tool for
both benchmarks, followed by CryptoGuard. GPT
4-o-mini, while strong in detection, has slower
processing speeds, limiting its scalability for larger
datasets.

5.2 Comparing LLMs with Datasets

The performance of selected LLMs was evaluated on
benchmark datasets, including mutated test cases, to
identify the best model. GPT 4-o-mini was accessed
via API, while Gemini 1.5 Flash, Llama 3.0, and
Claude Haiku 3.5 were accessed via chat interfaces.
The models were tested on 30 random test cases from
the CryptoAPI and OWASP benchmarks, as well as
30 manually curated MASC test cases.

For the CryptoAPI benchmark, Claude achieved
the highest F2-score of 94.3% and recall of 100%, fol-
lowed by GPT (97.9% recall, 93.5% F2-score), and
Gemini with the lowest F2-score of 85.5%. For the
OWASP benchmark, GPT led with an F2-score of
82.7%, followed by Gemini at 81.1%, while Llama
and Claude had the lowest F2-scores, both at 76.9%.
All LLMs demonstrated perfect recall (100%), with
Claude showing better performance for the Cryp-
toAPI benchmark and GPT performing better for the
OWASP benchmark, as detailed in Table 8.

On the mutation dataset (MASC), GPT and
Claude both achieved 100% recall and an F2-score
of 99.3%, detecting all 29 true misuse cases. Gemini,
however, had the lowest performance with a recall of
79.3% and an F2-score of 82.7%, identifying 23 out
of 29 misuse cases. These results emphasize the ef-
fectiveness of LLMs in scenarios where static tools
face challenges.

Finding 1 RQ2: Claude and GPT achieved com-
parable F2-scores of 99.3% on the MASC bench-
mark, performing better than other LLMs and in-
dicating similar effectiveness in detecting cryp-
tographic misuses. GPT outperformed all mod-
els on the OWASP benchmark with an F2-score
of 82.7%, while Claude delivered the best results
on the CryptoAPI benchmark with an F2-score of
94.3%.

5.2.1 ROC Comparison

Among LLMs, Gemini 1.5 Flash performs better than
the others, correctly categorizing false instances as

1Gemini, Llama, and Claude were evaluated against
random 30 test cases for CryptoAPI and OWASP datasets.

false and falling to the left of the random guessing
line (Figure 7 to Figure 9).

Figure 7: TPR vs FPR of LLMs for CryptoAPI.

Figure 8: TPR vs FPR of LLMs for OWASP.

In contrast, GPT-4-o-mini, Llama 3.0, and Claude
3.5 Haiku are closer to the random guessing line,
correctly identifying true instances but misclassify-
ing false ones. These results are influenced by class
imbalance in MASC, where true instances dominate,
and only a single false instance is present. Addition-
ally, the results are affected by the fact that, apart from
GPT, all other LLMs were tested against only a subset
of misuse instances from the CryptoAPI and OWASP
benchmarks. While LLMs show potential, reducing
false positives and addressing class imbalance remain
crucial for ensuring a fair comparison.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

188

Table 8: Comparison of LLMs on Different Benchmarks.1

Benchmark LLM True Positive False Positive False Negative True Negative Precision (%) Recall (%) F1 Score (%) F2 Score (%)

CryptoAPI
GPT 4-o-mini 141 37 3 0 79.2 97.9 87.6 93.5

Llama 3.0 22 7 1 0 75.9 95.7 84.6 91.0

Claude 3.5 Haiku 23 7 0 0 76.7 100 86.8 94.3

Gemini Flash 1.5 20 5 3 2 80.0 87 83.3 85.5

MASC
GPT 4-o-mini 29 1 0 0 96.7 100 98.3 99.3

Llama 3.0 28 1 1 0 96.6 96.6 96.6 96.6

Claude 3.5 Haiku 29 1 0 0 96.7 100 98.3 99.3

Gemini Flash 1.5 23 0 6 1 100 79.3 88.5 82.7

OWASP
GPT 4-o-mini 477 498 0 0 48.9 100 65.7 82.7

Llama 3.0 12 18 0 0 40 100 57.1 76.9

Claude 3.5 Haiku 12 18 0 0 40 100 57.1 76.9

Gemini Flash 1.5 12 14 0 4 46.2 100 63.2 81.1

Figure 9: TPR vs FPR of LLMs for MASC.

Finding 2 RQ2: Gemini strikes a good balance
between detecting true positives and minimizing
false positives, although GPT and other LLMs out-
perform it with higher recall and F-scores.

5.3 Evaluating LLM Responses

Actionability and Specificity were used to evaluate
LLM responses. Actionability was determined by
checking for actionable keywords, while Specificity
was assessed by the inclusion of CWE references, ex-
ternal resources, or fixed code. The percentage of
actionable and specific responses was calculated for
each benchmark to compare LLMs. The results for
actionability and specificity across benchmarks are
presented in Table 9.

GPT 4-o-mini provided the most actionable re-

sponses on MASC (63.3%) and CryptoAPI (61.4%)
but had 0% specificity across all benchmarks, indicat-
ing a lack of detailed guidance. Llama 3.0 achieved
the highest actionability on OWASP (90.0%) but also
showed no specificity. In contrast, Claude 3.5 Haiku
excelled in specificity, scoring 43.3% on OWASP
and 46.7% on MASC, while maintaining high action-
ability on OWASP (86.7%) and moderate levels on
CryptoAPI (53.3%). Overall, GPT 4-o-mini demon-
strated strong actionability but lacked detailed guid-
ance. Llama 3.0 performed best in actionability for
OWASP, while Claude 3.5 Haiku balanced action-
ability with the highest specificity by providing CWE
references, external links, or fixable code for crypto-
graphic misuses.

Figure 10: GPT Actionable Keywords Occurence.

Figures 10 to 13 shows the occurrence of action-
able keywords for the selected LLMs. The most fre-
quently used keywords across benchmarks are “not”
and “should”. In both the OWASP and CryptoAPI
benchmarks, “should” is common, with 996 instances
in GPT for OWASP, and a lower but consistent pres-

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

189

Table 9: Actionability and Specificity of LLMs Across Benchmark Datasets.

Benchmark LLM Actionable Responses Specific Responses Total Responses Actionability (%) Specificity (%)

CryptoAPI GPT 4-o-mini 162 0 264 61.4 0.0
Llama 3.0 14 2 30 46.7 6.7
Claude Haiku 3.5 16 2 30 53.3 6.7
Gemini Flash 1.5 9 2 30 30.0 6.7

MASC GPT 4-o-mini 19 0 30 63.3 0.0
Llama 3.0 15 2 30 50.0 6.7
Claude Haiku 3.5 15 14 30 50.0 46.7
Gemini Flash 1.5 7 7 30 23.3 23.3

OWASP GPT 4-o-mini 1584 0 1909 83.0 0.0
Llama 3.0 27 0 30 90.0 0.0
Claude Haiku 3.5 26 13 30 86.7 43.3
Gemini Flash 1.5 21 6 30 70.0 20.0

Figure 11: Gemini Actionable Keywords Occurence.

Figure 12: Llama Actionable Keywords Occurence.

Figure 13: Claude Actionable Keywords Occurence.

ence across other benchmarks, providing positive ac-
tionable feedback for developers. Similarly, “not”
appears frequently, especially in OWASP, with 1404
instances in GPT, providing negative actionability
and guiding developers on cryptographic misuses.
“Forbidden” and “shall” were the least used key-
words across different benchmarks for the selected
LLMs, highlighting a focus on suggestion and nega-
tion, guiding actions to consider or avoid. Less fre-
quent keywords, such as “need”, “must”, “never”
and “shall”, suggest a preference for softer language
rather than strict requirements.

Finding RQ3: GPT 4-o-mini excels in action-
ability across multiple benchmarks, providing ac-
tionable feedback on things to consider and avoid,
but lacks specificity. In contrast, while Claude
3.5 Haiku exhibits lower actionability, it provides
greater specificity compared to other LLMs.

6 DISCUSSION

Strengths of Large Language Models. LLMs
have an inherent advantage over static analysis tools
as static tools rely on a rule-based approach. Any
deviations of misuse instance from a rule will likely
cause the tool to miss it. However, LLM detection
capability is not particular to a specific rule set, and
it can detect misuse instances in a variety of code
as highlighted by the results of mutated test cases.
Similarly, LLMs are not specific to a certain program-
ming language. It can read and understand various
programming languages as opposed to static analysis
tools that are specific to a programming language.
LLMs do not have a framework dependency and now
integrations are being supported to adopt LLMs for
various frameworks which will likely increase its
usage in software development. Even though LLMs
currently have a high false positive rate for detecting

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

190

cryptographic misuses, this is likely to improve
as they are trained on more data. Better accuracy
than static analysis tools in detecting true alerts for
security context shows LLMs can be utilized in this
domain.

Benchmark Inconsistencies. Our analysis of the
CryptoAPI benchmark revealed inconsistencies, in-
cluding missing test cases in the dataset that were
listed in the label sheet, such as CredentialInStringB-
BCase2.java and PredictableSeedsABPMCase2.java.
This mismatch can lead to false negatives and mis-
represent the tools’ effectiveness. Additionally, some
Java test cases lacked corresponding labels, causing
tools to detect misuse without reference. To ensure
consistency, we excluded these unlisted test cases,
emphasizing the need for a comprehensive, standard-
ized dataset to properly evaluate tool effectiveness
across all Java API categories.

7 ECOLOGICAL VALIDITY

7.1 Applicability to Real World
Scenarios

Our experiments utilized the OWASP Benchmark, a
well-known open-source Java suite that serves as a
standard for assessing application security. The Cryp-
toAPI benchmark was also included based on a re-
view of previous studies, where it has been exten-
sively used. Additionally, the MASC dataset was se-
lected to capture the diverse ways in which code can
be written by developers. The results obtained from
these benchmarks provide insights into the effective-
ness of different tools and LLMs in detecting vul-
nerabilities across various domains. Our focus was
specifically on cryptographic misuses, making the re-
sults highly relevant for comparing our tool with both
industry-standard and academic tools, many of which
are evaluated against these benchmarks. Since these
benchmarks are commonly used, their results are a
reliable measure of a tool’s accuracy in identifying
cryptographic misuses.

The increasing adoption of LLMs by novice de-
velopers, often in place of traditional search engines,
reflects a shift in how coding solutions are sourced.
Many coding environments, such as Visual Studio
Code, now integrate LLM-based assistants like Chat-
GPT, allowing developers to prompt these models di-
rectly. With LLMs offering quick, context-specific
answers, novice developers increasingly rely on these
tools not only for general coding guidance but also
for secure coding practices, including cryptographic

implementations. As more developers turn to LLMs
for solutions, they inherently depend on the models’
security accuracy to prevent cryptographic misuses in
their code. At the same time, integrating LLM-based
detection into the CI/CD pipeline ensures that cryp-
tographic issues are automatically flagged before de-
ployment. This helps teams enforce secure coding
practices continuously, reduces the risk of introduc-
ing security flaws into production code, and addresses
cryptographic vulnerabilities as part of the develop-
ment lifecycle with minimal manual effort from de-
velopers. Therefore, it becomes critical to evaluate
how well LLMs address security contexts, ensuring
that the solutions provided are both effective and safe.
Understanding this trend highlights the real-world im-
portance of our work, which assesses the quality and
security of LLM responses in situations where devel-
opers may not be aware of potential misuses.

7.2 Threats to Validity

Threats to Internal Validity The scope of our findings
may be limited by the specific tools and datasets cho-
sen for testing. To address this, we plan to expand
our evaluation by including additional tools and test-
ing them on examples drawn from real-world cryp-
tographic code. Another potential limitation is data
leakage, as the open-source benchmarks used for test-
ing might have been utilized in the training of LLMs,
potentially affecting our results; however, the high
number of false positives suggests otherwise. In the
future, we plan to evaluate test cases by anonymiz-
ing class names to prevent any possible data leakage.
LLMs may hallucinate non-existent vulnerabilities or
incorrect patterns, leading to false positives that re-
quire manual verification. Additionally, the action-
ability and specificity metrics evaluated in our study
may not fully translate into practical guidance for de-
velopers to fix code in every instance.

Threats to External Validity Our results may not
generalize beyond the specific tools and datasets used
in this study. To address this, we plan to expand our
evaluation by incorporating additional tools and real-
world cryptographic benchmarks. Additionally, our
findings are specific to Java and may not apply in the
same way to other programming languages. More-
over, we tested for mutations in test cases that were
specific to Java as a programming language, the accu-
racy of detecting mutant misuses might not apply to
other programming languages.

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

191

8 FUTURE WORK

Future research could explore testing LLMs on real-
world codebase benchmarks, such as the Apache
CryptoAPI benchmark, to assess performance on
complex cryptographic scenarios. Expanding the
study to include newer versions of LLMs, particu-
larly those specialized in code generation, may pro-
vide insights into the benefits of using code-focused
models over general-purpose ones. Additionally, test-
ing LLMs on benchmarks in other programming lan-
guages could reveal language-specific strengths and
limitations.

9 CONCLUSION

Cryptographic misuses in software pose sig-
nificant security risks. Our study investigated
how LLMs compare with traditional static anal-
ysis tools in detecting such vulnerabilities. We
evaluated their performance across established
benchmarks—CryptoAPI, OWASP, and MASC—and
found that LLMs, particularly GPT, often achieved
higher accuracy than static tools like CryptoGuard,
especially on the CryptoAPI and MASC datasets.
However, CryptoGuard outperformed LLMs on the
OWASP dataset, highlighting that no single approach
is universally superior.

While LLMs show strong potential, their rela-
tively high false positive rate may hinder adoption
by overwhelming developers with alerts. To address
this, we introduced Actionability and Specificity as
complementary metrics, offering deeper insight be-
yond precision and recall. Results showed that GPT
offered more actionable suggestions, while Claude
excelled in specificity—underscoring trade-offs in
LLM-generated guidance. Integration of LLMs into
CI/CD pipelines or development environments could
enhance secure coding practices, but their effective-
ness will rely on reducing false positives and improv-
ing contextual relevance. As these models evolve,
they could complement existing tools and provide
real-time, intelligent support for secure software de-
velopment.

ACKNOWLEDGEMENTS

We thank the support of a Discovery Grant from the
Natural Sciences and Engineering Research Council
of Canada (Grant # RGPIN/005919-2018) and the
Vulnerability Research Centre at the Communications
Security Establishment.

REFERENCES

Afrose, S., Rahaman, S., and Yao, D. (2019). CryptoAPI-
Bench: A Comprehensive Benchmark on Java Cryp-
tographic API Misuses. In 2019 IEEE Cybersecurity
Development, pages 49–61.

Amazon Q Developer (n.d.). Amazon Q Developer. https://
aws.amazon.com/q/developer/. Retrieved August 21,
2024.

Ami, A. S., Cooper, N., et al. (2022). Why Crypto-detectors
Fail: A Systematic Evaluation of Cryptographic Mis-
use Detection Techniques. In 2022 IEEE Symposium
on S&P, pages 614–631.

ChatGPT (n.d.). ChatGPT. https://chat.openai.com/. Re-
trieved August 21, 2024.

Chatzikonstantinou, A., Ntantogian, C., et al. (2016). Eval-
uation of Cryptography Usage in Android Applica-
tions. In Proceedings of the 9th EAI International
Conference on Bio-Inspired Information and Commu-
nications Technologies, BICT’15, page 83–90, Brus-
sels, BEL. ICST.

Chen, Y., Liu, Y., et al. (2024). Towards Precise Report-
ing of Cryptographic Misuses. In Proceedings 2024
NDSS.

Claude (n.d.). Claude. https://claude.ai/. Retrieved Decem-
ber 21, 2024.

CryptoGuardOSS (2020). cryptoguardoss/cryptoguard.
https://github.com/CryptoGuardOSS/cryptoguard.
[Online; accessed August 21, 2024].

CWE - Common Weakness Enumeration (2021). CWE -
Common Weakness Enumeration. https://cwe.mitre.
org. [Online; accessed August 21, 2024].

Egele, M., Brumley, D., et al. (2013). An Empirical Study
of Cryptographic Misuse in Android Applications. In
Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13,
page 73–84, New York, NY, USA. Association for
Computing Machinery.

Fang, C., Miao, N., et al. (2024). Large Language Models
for Code Analysis: Do LLMs Really Do Their Job?
In 33rd USENIX Security Symposium, pages 829–846,
Philadelphia, PA. USENIX Association.

Firouzi, E., Ghafari, M., et al. (2024). ChatGPT’s Poten-
tial in Cryptography Misuse Detection: A Compar-
ative Analysis with Static Analysis Tools. In Pro-
ceedings of the 18th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Mea-
surement, ESEM ’24, page 582–588, New York, NY,
USA. ACM.

Gemini (n.d.). Gemini. https://gemini.google.com/. Re-
trieved August 21, 2024.

GitHub AI Pair Programmer (n.d.). GitHub AI Pair Pro-
grammer. https://copilot.github.com. Retrieved Au-
gust 26, 2024.

Graff, M. G. and Wyk, K. R. V. (2003). Secure Coding:
Principles and Practices. O’Reilly & Associates, Inc.,
USA.

Kafader, S. and Ghafari, M. (2021). Fluentcrypto: Cryptog-
raphy in easy mode. In 2021 ICSME, pages 402–412.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

192

Krüger, S., Nadi, S., et al. (2017). CogniCrypt: Support-
ing developers in using cryptography. In 2017 32nd
IEEE/ACM International Conference on ASE, pages
931–936.

Krüger, S., Späth, J., et al. (2021). CrySL: An Extensible
Approach to Validating the Correct Usage of Crypto-
graphic APIs. IEEE Transactions on Software Engi-
neering, 47(11):2382–2400.

Lazar, D., Chen, H., et al. (2014). Why does cryptographic
software fail? A case study and open problems. In
Proceedings of 5th Asia-Pacific Workshop on Systems,
APSys ’14, New York, NY, USA. ACM.

Li, Y., Choi, D., et al. (2022). Competition-
level code generation with AlphaCode. Science,
378(6624):1092–1097.

Liu, P., Liu, J., et al. (2024). Exploring ChatGPT’s Capabil-
ities on Vulnerability Management. In 33rd USENIX
Security Symposium, pages 811–828, Philadelphia,
PA. USENIX Association.

Llama (n.d.). Llama. https://www.llama.com/. Retrieved
September 21, 2024.

Masood, Z. and Martin, M. V. (2024). Beyond static tools:
Evaluating large language models for cryptographic
misuse detection.

Nadi, S., Krüger, S., et al. (2016). Jumping through hoops:
why do Java developers struggle with cryptography
APIs? In Proceedings of the 38th International Con-
ference on SE, ICSE ’16, page 935–946, New York,
NY, USA. Association for Computing Machinery.

Ouh, E. L., Gan, B. K. S., et al. (2023). ChatGPT, Can
You Generate Solutions for My Coding Exercises? An
Evaluation on Its Effectiveness in an Undergraduate
Java Programming Course. In Proceedings of the 2023
Conference on Innovation and Technology in Com-
puter Science Education V. 1, ITiCSE 2023, pages 54–
60, New York, NY, USA. Association for Computing
Machinery.

OWASP Benchmark (2016). OWASP Benchmark. https://
owasp.org/www-project-benchmark/. Accessed May,
2024.

QwenLM (n.d.). QwenLM. https://qwenlm.ai/. Retrieved
December 21, 2024.

Rahaman, S., Xiao, Y., et al. (2019). CryptoGuard: High
Precision Detection of Cryptographic Vulnerabilities
in Massive-sized Java Projects. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 2455–2472,
New York, NY, USA. Association for Computing Ma-
chinery.

Redmiles, E. M., Warford, N., et al. (2020). A Comprehen-
sive Quality Evaluation of Security and Privacy Ad-
vice on the Web. In 29th USENIX Security Sympo-
sium, pages 89–108. USENIX Association.

Rostami, E. and Karlsson, F. (2024). Qualitative Con-
tent Analysis of Actionable Advice in Information
Security Policies – Introducing the Keyword Loss of
Specificity Metric. Information & Computer Security,
32(4):492–508.

Snyk (n.d.). Snyk Code — Code Security Analysis and

Fixes - Developer First SAST. https://snyk.io/product/
snyk-code/. Retrieved August 20, 2024.

Soot (2020). Soot. https://github.com/soot-oss/soot. Ac-
cessed: August 26, 2024.

Tabnine (n.d.). Tabnine. https://www.tabnine.com. Re-
trieved August 21, 2024.

Vallée-Rai, R., Co, P., et al. (1999). Soot - a Java byte-
code optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’99, page 13.
IBM Press.

Whitten, A. (2004). Making Security Usable. PhD the-
sis, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA, USA.

Xia, Y., Xie, Z., et al. (2024). Exploring Automatic Crypto-
graphic API Misuse Detection in the Era of LLMs.

Xie, J., Lipford, H. R., et al. (2011). Why do program-
mers make security errors? In 2011 IEEE Symposium
on Visual Languages and Human-Centric Computing,
pages 161–164, Los Alamitos, CA, USA. IEEE Com-
puter Society.

Zhang, L., Chen, J., et al. (2019). CryptoREX: Large-scale
Analysis of Cryptographic Misuse in IoT Devices. In
22nd International Symposium on RAID, pages 151–
164, Chaoyang District, Beijing. USENIX Associa-
tion.

Zhang, Y., Kabir, M. M. A., et al. (2023). Automatic De-
tection of Java Cryptographic API Misuses: Are We
There Yet? IEEE Transactions on Software Engineer-
ing, 49(1):288–303.

APPENDIX

LLM Prompt. Large Language Models (LLMs)
received standardized prompts for each test case from
the three benchmarks to ensure their responses were
consistent. The specific prompt used for each test
case is shown in Listing 1. During the experiments,
we kept the default settings for model hyper-
parameters like temperature, Top P, and frequency
penalty to maintain each model’s natural response
style. Responses from GPT 4-o-mini were collected
automatically through an API, while responses from
Llama, Claude, and Gemini were gathered manually
from its chat interface.

1 I want you to detect "
Cryptographic misuses" in the
given Java code by considering
the cryptographic misuse
definitions below.

2

3 Cryptographic misuses are
deviations from best practices
while incorporating

Beyond Rules: How Large Language Models Are Redefining Cryptographic Misuse Detection

193

cryptographic algorithms into
your software that could
potentially be exploited by an
adversary. Broadly ,
cryptographic misuses can be
referred to as bad programming
practices that create
vulnerabilities and are
associated with design flaws
and unsafe architectural
choices.

4

5 Identify the following for each
cryptographic misuse and
include it in your response.
Follow the same template for
reporting multiple misuses.

6

7 1- Include a label as YES/NO if
there are specifically
cryptographic misuses in the
given code or not.

8 2- Include the name of the method
containing the misuse.

9 3- Specify a message highlighting
the type of misuses. Provide a
description in the explanation
as to why it is highlighted as
a misuse.

10 4- State the line from the code
containing the misuses.
Specifically mention the
starting line number that is
causing misuse.

11

12 Code:
13 // Code for Each test case is

placed here

Listing 1: Prompt Used to Query LLMs

LLM Responses. The responses from the LLMs
were fairly similar in format due to the structured
prompt, though some variations were observed. For
instance, in certain cases, the explanation for misuse
from GPT 4-o-mini appeared under tags such as
“Misuse Description”, while in others, it was labeled
as “Explanation” or a similar term. An example
of this can be seen in Listing 3, which shows the
response for the CryptoAPI Bench test case listed
in Listing 2. The misuse in this instance involves
using the DES algorithm and the “DES” string to
initialize the key. The detailed findings are discussed
in Section 5.

1 public class BrokenCryptoABMCCase1
2 {
3 public static void main(String

[] args) throws
NoSuchPaddingException ,

NoSuchAlgorithmException ,
InvalidKeyException

4 {
5 BrokenCryptoABMC1 bc = new

BrokenCryptoABMC1();
6 String crypto = "DES/ECB/

PKCS5Padding";
7 String cryptokey = "DES";
8 bc.go(crypto , cryptokey);
9 }

10 }

Listing 2: CryptoAPI Bench Test Case:
BrokenCryptoABMCCase1.java

1 Response:
2 1- **Label**: YES
3 2- **Method containing the misuse

**: main
4 3- **Message highlighting the type

of misuses**: Use of weak
cryptographic algorithm and
mode of operation

5 **Explanation**: The code uses
DES (Data Encryption
Standard) in ECB (Electronic
Codebook) mode , which is

considered weak and insecure
. DES itself has been
deprecated due to its small
key size and susceptibility
to brute -force attacks ,
while ECB mode exposes
patterns in plaintext since
identical plaintext blocks
produce identical ciphertext
blocks. This can lead to

serious vulnerabilities ,
allowing attackers to
perform cryptanalysis or
deduce information about the
plaintext. Best practices

recommend using stronger
algorithms (e.g., AES) and
secure modes of operation (e
.g., GCM or CBC with proper
IV management).

6 4- **Line from the code containing
the misuses**: 10-11 (Lines

mentioning ‘String crypto = "
DES/ECB/PKCS5Padding";‘ and ‘
String cryptokey = "DES";‘)

Listing 3: GPT 4-o-mini Response for
BrokenCryptoABMCCase1.java

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

194

