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Abstract: Microarchitectural side-channel attacks exploit vulnerabilities such as cache behavior to leak sensitive data.
These attacks have been extensively studied on x86 architectures but they remain less explored on RISC-V
systems. A recent paper (Gerlach et al., 2023) demonstrated existing and novel microarchitectural attacks
on RISC-V hardware platforms (C906, U74, C910, C908). This hardware-based analysis, while realistic,
lacks the flexibility and detailed behavioral insights needed to fully understand these attacks. Simulation en-
vironments like gem5 (Lowe-Power, 2024) provide fine-grained control and diverse metrics to overcome this
limitation and observe the attack in detail. In this paper, gem5 is used to explore Flush+Fault (Gerlach et al.,
2023) side-channel attack on RISC-V architecture which was originally tested on RISC-V hardware. Through
gem5, we analyze detailed insights of attack such as cache patterns, and timing behaviors. Our results demon-
strate the gem5’s potential for advancing the understanding of RISC-V microarchitectural vulnerabilities and
eventually for developing effective countermeasures.

1 INTRODUCTION

RISC-V architecture is gaining attention for its flexi-
bility and is becoming popular in research and indus-
try. Microarchitectural side-channel attacks exploit
small timing differences in hardware to steal sensitive
data, such as cryptographic keys. While these attacks
have been extensively studied for x86 architectures,
there has been less focus on RISC-V systems.

A recent paper (Gerlach et al., 2023) identified
several microarchitectural attacks on RISC-V proces-
sors like the C906, U74, C910, and C908, including
a novel Flush+Fault attack. This attack, a variant of
Flush+Reload (Yarom and Falkner, 2014), exploits
cache-line faults in RISC-V’s split instruction and
data cache architecture, revealing instruction cache
leakage. This research relied on hardware to high-
light RISC-V vulnerabilities but lacked flexibility for
deeper insights or countermeasure development. An
open-source gem5 simulator can provide fine con-
trol over components like caches and branch predic-
tors (Lowe-Power, 2024). Unlike hardware analysis,
gem5 enables researchers to test and analyze attack
scenarios in controlled, repeatable conditions, offer-
ing a better understanding of attack behavior and aid-
ing in the development of countermeasures.

1.1 Contributions

The contributions of this paper are as follows:

• We investigate the return-based Flush+Fault at-
tack on RISC-V architecture using gem5.

• We provide in-depth analysis for Flush+Fault at-
tack behavior.

• We discuss possible countermeasures for the
Flush+Fault side-channel attack.

• We demonstrate the importance of gem5 simula-
tions in advancing microarchitectural security.

1.2 Organization

The rest of the paper is organized as follows: Section
2 provides the necessary background on RISC-V side-
channel attacks. Section 3 discusses the Flush+Fault
side-channel attack mechanism. Section 4 discusses
the gem5 simulator. Section 5 presents an overview
of related work in the field. In Section 6, we de-
tail our methodology for simulating the Flush+Fault
attack within gem5. Section 7 presents our experi-
mental results, followed by a discussion in Section 8.
Section 9 outlines potential future research directions.
Finally, Section 10 concludes the paper.
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2 BACKGROUND

This section provides an overview of RISC-V, its
cache architecture, and cache side-channel attack
principles.

2.1 Overview of RISC-V

RISC-V’s modular design enables customization for
specific applications. Its minimalistic base instruc-
tion set can be expanded with custom extensions. The
open-source nature removes licensing fees, making it
popular in research, startups, and specialized hard-
ware. Compared to x86 and ARM, RISC-V offers
greater flexibility.

2.2 Cache Architectures: x86 vs.
RISC-V

Key differences in cache architecture affect security:

• x86: L2 and L3 caches often have unified or syn-
chronized I-caches and D-caches (Gerlach et al.,
2023). This facilitates attacks like Flush+Reload
(Yarom and Falkner, 2014), which exploit shared
cache lines to monitor memory access.

• RISC-V: Many implementations use a Harvard
split-cache architecture (Gerlach et al., 2023),
storing instructions and data separately in I-cache
and D-cache. This reduces contention and com-
plicates traditional cache attacks.

2.3 Cache Side-Channel Attack
Principles

Microarchitectural attacks exploit cache timing vari-
ations. In x86, Flush+Reload (Yarom and Falkner,
2014) works by flushing cache lines, monitoring
memory accesses, and detecting victim activity based
on reload times.

RISC-V’s split I-cache and D-cache make tra-
ditional Flush+Reload less effective. However,
Flush+Fault (Gerlach et al., 2023) exploits instruction
cache behavior by using faults to force cache reloads,
revealing execution patterns.

These attacks underscore the need for ongoing
research into RISC-V microarchitectural security as
adoption grows.

3 FLUSH+FAULT ATTACK
MECHANISM

Microarchitectural side-channel attacks exploit tim-
ing variations to extract sensitive information. The
Flush+Reload (Yarom and Falkner, 2014) attack is
effective on systems with unified caches but less so
on those with separate instruction and data caches
like many RISC-V processors (Gerlach et al., 2023).
This limitation is addressed by Flush+Fault (Gerlach
et al., 2023), a variant that targets instruction cache
(I-cache) behavior by leveraging fault-induced timing
variations. Instead of reloading, Flush+Fault triggers
a fault-triggered jump into the victim’s code. This can
be done in two ways: (1) a fault-based jump that in-
duces an exception in the victim’s execution or (2) a
return-based jump that directly executes a return in-
struction, avoiding faults.

The attack follows five key steps. First, the at-
tacker flushes the I-cache using the fence.i instruc-
tion, forcing the CPU to reload instructions from
memory. Second, an initial timestamp is recorded.
Third, the attacker jumps to an address within the
victim’s code that may induce a fault, either through
an invalid memory address or a faulting instruction.
Fourth, once the fault occurs, the attacker intercepts it
via a signal handler and records a second timestamp.
Finally, by comparing the timestamps, the attacker de-
termines if the victim’s code was cached. Faster exe-
cution indicates caching, while slower execution sug-
gests a cache miss.

To ensure accurate results, the attacker repeat-
edly jumps from the same instruction to a dummy
address outside the target cache line. This prevents
the branch predictor from prefetching the target cache
line, which could otherwise eliminate the necessary
timing differences and reduce information leakage
(Gerlach et al., 2023). Figure 1 summarizes the at-
tack steps.
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Figure 1: Flush+Fault attack mechanism.
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4 GEM5 SIMULATOR
OVERVIEW

The gem5 simulator is an open-source tool for mi-
croarchitectural and system-level exploration. It pro-
vides a flexible environment for modeling and ana-
lyzing computing architectures, with configurations
managed through Python scripts (Lowe-Power et al.,
2020).

4.1 Configuration

gem5 operates in Syscall Emulation (SE) mode and
full-system (FS) mode. SE mode is faster and
suited for functional validation, while FS mode
provides OS-level interactions, essential for secu-
rity studies (Lowe-Power et al., 2020). gem5 sup-
ports multiple CPU models (Lowe-Power, 2024).
AtomicSimpleCPU is a functional model without cy-
cle accuracy. TimingSimpleCPU is an in-order model
with instruction timing delays. O3CPU is an out-of-
order model with speculative execution, making it
ideal for security and performance studies (Li et al.,
2008). The simulator supports x86, ARM, and RISC-
V (Domas, 2017). Users configure ISAs by selecting
the target architecture while building gem5. Memory
system configuration includes defining cache hierar-
chies and DRAM models.

4.2 Advantages

gem5’s flexibility allows the simulation of multiple
ISAs, CPU models, and memory configurations. Its
open-source nature enables custom extensions, and
its microarchitectural visibility provides fine-grained
profiling for execution behavior, cache performance,
and branch prediction (Lowe-Power, 2024). This
makes it particularly useful for security research, al-
lowing controlled replication of speculative execution
and cache-based side-channel attacks.

4.3 Drawbacks

gem5 simulations are significantly slower than real
hardware making large-scale studies challenging
(Lowe-Power et al., 2020). Multi-core simulations
and detailed timing models demand high computa-
tional resources. Additionally, while gem5 provides
extensive configurability, it may not fully capture
real-world timing behaviors, potentially impacting at-
tack feasibility assessments (Qureshi et al., 2021).

Despite these constraints, gem5 remains a valu-
able tool for studying computing architectures and se-
curity vulnerabilities.

5 RELATED WORK

Studying security flaws in microarchitectural com-
ponents (like caches or branch predictors) using
simulation tools such as gem5 is still an emerg-
ing field. Early researchers like Low-Power (Lowe-
Power et al., 2020; Lowe-Power, 2018) used gem5
to simulate the Spectre attack, showing how attack-
ers could trick branch predictors into leaking sensi-
tive data. Later, Pierre Ayoub (Ayoub and Maurice,
2021) improved these simulations for ARM proces-
sors, demonstrating how different architectures be-
have under similar attacks.

While much of this work focuses on Spectre,
there’s little research on simulating newer attacks like
Flush+Fault (Gerlach et al., 2023) and especially
for RISC-V systems. Gerlach et al. (Gerlach et al.,
2023) recently discovered the Flush+Fault attack
and some other novel attacks on real RISC-V hard-
ware, proving that even modern architectures are vul-
nerable to microarchitectural attacks.

We adapt gem5 to simulate Flush+Fault attack
on RISC-V, filling a gap in the existing research. By
doing this, we aim to get a better understanding of
attacks on RISC-V architecture and to be able to de-
velop countermeasures for the newer attacks.

6 SIMULATING FLUSH+FAULT
ATTACK ON GEM5

In our analysis using gem5, we will be focusing on
the return-based Flush+Fault (Gerlach et al., 2023)
attack, which leverages the return instruction to min-
imize overhead and generate cleaner timing signals
compared to the traditional fault-based approach.

6.1 Methodology

The methodology for utilizing gem5 to simulate the
Flush+Fault side-channel attack is summarized in
Figure 2. First, the RISC-V architecture is chosen,
and the attack binary for the chosen architecture is
prepared. Next, the gem5 simulator is configured. Af-
ter that, the simulation is run by the gem5 simulator,
which generates statistics and results. These results
are then analyzed to understand system vulnerabili-
ties and attack behavior (Ta et al., 2018).
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Figure 2: Methodology for Flush+Fault analysis in gem5.
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6.2 Preparing Attack Binary

To simulate the Flush+Fault (Gerlach et al., 2023)
attack, we first prepared the attack binary using the
RISC-V toolchain, cross-compiling the code to target
the RISC-V 64-bit ISA. This ensured compatibility
with gem5’s RISC-V architectural models. The bi-
nary was optimized to leverage RISC-V specific in-
structions and minimize unintended overhead, allow-
ing precise observation of cache and branch predic-
tor behavior during the attack. Next, we configured
gem5 to emulate a RISC-V system with parameters
tailored to the attack’s requirements. The ISA was
set to RISC-V with general-purpose and compressed
extensions.

6.3 Configuring gem5 Simulator

The CPU model was chosen as the O3CPU (out-of-
order execution model) to simulate realistic pipeline
dynamics. To analyze the attack’s impact on spec-
ulative execution, we integrated the LTAGE branch
predictor, a high-accuracy predictor that uses global
branch history, enabling us to track mispredictions
and predictor state changes during the attack se-
quence. By combining the O3CPU’s detailed pipeline
simulation, LTAGE predictor metrics, and a realis-
tic cache hierarchy, we could precisely measure how
the Flush+Fault attack manipulates cache states and
influences branch prediction outcomes. Since the
return-based Flush+Fault attack does not require op-
erating system interactions (e.g., kernel-level privi-
leges), we used gem5’s System Call Emulation (SE)
mode instead of the slower Full System (FS) mode.
SE mode provided sufficient isolation for our ex-
periments while significantly accelerating simulation
speed. The cache hierarchy we implemented had sep-
arate instruction (I) and data (D) caches, each 64 KB
in size with 1-way associativity and a 64-byte block
size.

6.4 Simulating the Attack

Once the gem5 simulator is properly configured, we
simulate the Flush+Fault attack, specifically using the
return-based variant. During the simulation, we col-
lect various metrics related to cache performance,
branch prediction, and an overview of the simulation
execution instructions (Ta et al., 2018). These metrics
are recorded in output files and analyzed to detect pat-
terns indicative of side-channel vulnerabilities. Addi-
tionally, enabling debugging flags during simulations
generates trace files that log detailed events, including
memory accesses and instruction executions (Lowe-

Power et al., 2020). We capture PipeView O3 traces,
which offer detailed information about the pipeline
and execution stages. These results are discussed in
detail in the following section.

7 RESULTS

This section presents the results of the Flush+Fault
(Gerlach et al., 2023) attack on gem5, focusing on
key microarchitectural performance metrics. The
gem5 simulator was successfully utilized to imple-
ment and analyze side-channel attacks, specifically,
Flush+Fault (Gerlach et al., 2023) on the RISC-V ar-
chitecture.

The results obtained align closely with hard-
ware measurements, showcasing gem5’s capability
to model detailed micro-architectural behavior while
providing valuable insights into attack mechanisms.
The Flush+Fault (Gerlach et al., 2023) attack in gem5
simulations achieved an F-score of 0.87, demonstrat-
ing its accuracy in modeling this attack.

We begin by defining the non-attack scenario,
which serves as a baseline distinguisher for compar-
ing attack and non-attack behavior. This provides a
reference for identifying deviations introduced by the
attack. In the subsequent subsections, we analyze the
attack’s impact on key architectural components, in-
cluding cache performance, branch prediction, and in-
struction execution, with supporting figures to illus-
trate the observed effects. Finally, we discuss the vi-
sualization of the O3CPU pipeline, which enables a
detailed examination of execution traces. These traces
offer critical insights into the attack’s behavior, re-
vealing microarchitectural effects that are difficult to
observe through hardware simulations alone.

7.1 No Attack Scenario

To differentiate between attack and non-attack behav-
ior and establish a distinguisher, we implemented a
non-attack scenario. In this scenario, only the vic-
tim’s code executes without any interference from
an attacker. The execution follows a normal control
flow without intentional cache manipulations, such as
explicit instruction cache flushing using fence.i in
RISC-V. Since no attacker is present, side-channel
mechanisms remain inactive, and the system func-
tions as expected, relying solely on standard instruc-
tion execution and memory accesses. This baseline
serves as a reference point for identifying microarchi-
tectural behavior deviations in attack scenarios.
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7.2 Cache Performance

Figure 3 shows the impact of the Flush+Fault attack
on the Instruction Cache (ICache). During the attack,
ICache misses rose from 280 to 643, a significant in-
crease, likely due to fence.i instructions flushing the
instruction cache and disrupting instruction fetch. On
the other hand, DCache misses only increase slightly
from 4,960 to 5,012 as shown in Figure 4. This in-
dicates that the attack affects the ICache more than
the DCache. These findings demonstrate that such at-
tacks can significantly disrupt instruction fetch opera-
tions, highlighting the need for stronger countermea-
sures, like restricting the use of fence.i instructions
to privileged access only.

7.3 Branch Predictions

Figure 5 compares the number of branch mispredic-
tions between attack and non-attack scenarios. Un-
der attack conditions, 1,181,977 mispredictions were
recorded, compared to 332 in the non-attack scenario.
This significant difference highlights attack-induced
branch mispredictions, mainly due to the dummy
jumps attackers use to avoid speculative prefetching.

7.4 Simulation Execution Metrics

Figure 6 shows the total instruction count executed
during attack and non-attack scenarios. The instruc-
tion count is significantly higher in the attack sce-
nario (141,078,213 instructions) compared to the non-
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attack scenario (112,638 instructions). This drastic
increase suggests that the attack introduces significant
overhead, forcing additional execution cycles and dis-
rupting normal program flow.

7.5 Traces

In gem5, enabling the O3pipeview flag captures a
complete pipeline execution trace. This generates a
detailed sequence of operations as instructions flow
through pipeline stages. Tools like Konata visualize
this trace, as shown in Figure 7.

Figure 7: Visualization of the processor pipeline using
O3pipeview and Konata.

The pipeline trace proceeds left to right, show-
ing key execution stages: F (fetch) retrieves instruc-
tions from memory, Dc (decode) interprets opera-
tions, Rn (rename) assigns registers, Ds (dispatch)
sends instructions to execution units, IS (issue) sched-
ules execution, and Cm (completion) finalizes execu-
tion. This trace helps analyze instruction flow, iden-
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tify bottlenecks, and optimize performance.
The analysis highlights how Flush+Fault attacks

affect cache timing and branch mispredictions. Using
gem5 provides deep insights into attack behavior, aid-
ing in mitigation strategies like strengthening branch
predictors and improving cache defenses.

8 DISCUSSION

Our results show that the Flush+Fault attack exposes
vulnerabilities in the RISC-V architecture, signifi-
cantly increasing Instruction Cache (ICache) misses
from 280 to 643 (Figure 3). This is likely due to the
fence.i instruction flushing the cache and disrupt-
ing instruction fetch. Data Cache (DCache) misses
rise slightly from 4,960 to 5,012 (Figure 4), confirm-
ing the attack primarily targets the ICache. Branch
prediction is heavily impacted, with the branch mis-
predictions rising from 332 to 1,181,977 (Figure 5).
Our simulation-based approach enables fine-grained
analysis, complementing hardware-based research by
Gerlach et al. (2023). While gem5 allows controlled
studies, simulations may not fully capture real-world
timing variations. Future work should validate these
effects across different RISC-V implementations.

To mitigate Flush+Fault attacks, restricting access
to fence.i to privileged users can prevent unautho-
rized cache flushing. Introducing random execution
delays can reduce side-channel exploitability, though
at a performance cost. Improving branch predic-
tion algorithms can limit execution flow manipula-
tion. Implementing these countermeasures will en-
hance RISC-V security against side-channel threats.

9 FUTURE WORK

A key goal is to develop a gem5-based security re-
search platform with flexible cache and pipeline tem-
plates. Automated tools could track speculative exe-
cution and cache activity, simplifying analysis.

Future work includes adding hardware perfor-
mance counters in gem5 to monitor events like cache
accesses or branch mispredictions. Evaluating se-
curity mechanisms such as cache partitioning, ro-
bust branch prediction, and instruction randomiza-
tion could enhance defenses. Studying runtime de-
fenses will help assess performance-security trade-
offs. While gem5 provides cycle-accurate studies
close to hardware and detailed microarchitectural in-
sights, future work will test RISC-V side-channel at-
tacks across various simulators and RISC-V hardware
to compare results with those from gem5.

10 CONCLUSION

This paper demonstrates that gem5 is a valuable tool
for RISC-V security research, enabling controlled
analysis of microarchitectural components like caches
and branch predictors. By implementing and vali-
dating the Flush+Fault attack in gem5, we identified
vulnerabilities that could be exploited through side-
channel attacks. Our findings show that the attack
disrupts instruction caching and branch prediction,
increasing cache misses and mispredictions, making
timing-based information leakage easier. To mitigate
these risks, we suggest restricting access to cache-
flushing instructions, improving branch predictor se-
curity, and enhancing memory isolation. Future re-
search should focus on real-time attack detection, in-
tegrating hardware performance counters in gem5,
and exploring secure cache and branch prediction de-
signs. As RISC-V adoption grows, these insights
will help shape stronger security measures for mod-
ern processors.
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