
SCAM: Secure Shared Cache Partitioning Scheme to Enhance
Throughput of CMPs

Varun Venkitaraman1 a, Rishab Ravi1 b, Tejeshwar Bhagatsing Thorawade1 c,
Nirmal Kumar Boran2 d and Virendra Singh1 e

1Indian Institute of Technology Bombay, Mumbai, India
2National Institute of Technology Calicut, Kozhikode, India

Keywords: Cache Security, Hardware Security, Cache Partitioning, Secure and High-Performance Cache Management
Strategy, Cache-Based Side-Channel Attacks.

Abstract: Utility-based dynamic cache partitioning scheme (UCP) improves performance in chip multiprocessors
(CMPs) by dynamically way-partitioning the shared Last-Level Cache (LLC) based on each core’s utility.
At the end of every phase, UCP allocates more ways to the core with higher utility. However, the process of
transferring ownership of a cache way from low utility core to high utility core on a cache miss (when there
is partition decision change) creates side channels, making shared LLCs vulnerable to data leaks. PASS-P ad-
dresses these vulnerabilities by invalidating cache lines before transferring ownership from one core to another
after partition change. While it provides security, our analysis shows that PASS-P does not always choose the
best cache line for transfer, leaving room for improving performance. To improve performance of the system
without compromising on security, we propose SCAM, a secure shared cache partitioning scheme. SCAM op-
timizes the process of selection of transfer candidates, improving performance over PASS-P while maintaining
security. SCAM achieves up to 4% performance improvement over PASS-P and reduces LLC misses per kilo
instructions (MPKI) by up to 5%. SCAM offers an efficient solution for secure dynamic way-partitioning in
shared caches of multi-core systems. It provides better performance without compromising security, making
it an effective strategy for protecting against side-channel attacks while ensuring optimal cache utilization.

1 INTRODUCTION

The increasing prevalence of computing systems
across diverse applications necessitates robust secu-
rity measures, particularly for systems handling sensi-
tive data. Extensive research has explored vulnerabil-
ities across the system stack, with a specific focus on
hardware security. Prior investigations have revealed
numerous hardware flaws, notably side-channel at-
tacks (Percival, 2005; Wang and Lee, 2007; Kong
et al., 2008; Ashokkumar et al., 2016; Tromer et al.,
2010; Boran et al., 2021; Boran et al., 2022), which
exploit unintended inter-program interactions. For
instance, timing variations in Advanced Encryption
Standard (AES) execution can be leveraged to ex-
tract private encryption keys (Bernstein, 2005). These

a https://orcid.org/0000-0002-9871-0638
b https://orcid.org/0009-0008-2364-1499
c https://orcid.org/0009-0004-3608-0281
d https://orcid.org/0000-0003-3942-7899
e https://orcid.org/0000-0002-7035-7844

attacks utilize various channels, including execution
time, memory access latencies, power consumption,
and electromagnetic radiation, to infer sensitive infor-
mation.

This work focuses on cache-based side-channel
attacks. Techniques like Flush+Reload (Yarom and
Falkner, 2014) and Prime+Probe (Liu et al., 2015)
exploit cache access timing analysis to extract sensi-
tive data. Flush+Reload involves flushing and subse-
quently reloading specific cache lines to detect timing
differences. Prime+Probe populates the cache with
attacker-controlled data and probes for timing varia-
tions resulting from cache hits or misses. These at-
tacks infer victim program memory locations based
on cache hit/miss latency differences.

Prior research has explored mitigating cache-
based side-channel attacks, primarily through cache
partitioning and randomization (Wang and Lee,
2007). This work focuses on cache partitioning.
Static partitioning (Page, 2005), a basic technique, di-
vides cache sets among processes, preventing inter-

144
Venkitaraman, V., Ravi, R., Thorawade, T. B., Boran, N. K. and Singh, V.
SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs.
DOI: 10.5220/0013518700003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 144-155
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)



process cache sharing and thus mitigating side-
channel attacks. However, this approach incurs sig-
nificant performance overhead due to underutilized
cache lines (Wang et al., 2016) and lacks adaptabil-
ity to dynamic program cache space requirements.
Dynamic cache partitioning (DCP) methods (Wang
et al., 2016; Qureshi and Patt, 2006; Domnitser
et al., 2012; Sanchez and Kozyrakis, 2012; Xie and
Loh, 2009), such as Utility-based Cache Partitioning
(UCP) (Qureshi and Patt, 2006), dynamically allocate
cache resources to optimize utilization. Specifically,
Utility-Based Cache Partitioning (UCP) is a dynamic
partitioning mechanism that allocates cache resources
based on application utility. It estimates the marginal
utility of additional cache ways for each workload and
adjusts allocations to maximize system throughput.

Although UCP optimizes cache utilization, the
flexibility of dynamically changing the partition intro-
duces a critical side-channel vulnerability, enabling
data leaks (Boran et al., 2022). During partition
changes, cache way ownership gets transferred from
a core with lower utility to one with higher utility.
This transfer creates an opportunity to obtain sensitive
data by mounting attacks such as FLUSH+RELOAD
and PRIME+PROBE, as detailed in Section 3. Pre-
venting these exploits without significantly degrading
performance is a major challenge. PASS-P identifies
and mitigates this security flaw in UCP (Boran et al.,
2022). To address this vulnerability, PASS-P invali-
dates cache lines before transferring ownership. This
ensures that sensitive data is not exposed during par-
tition changes. However, such forced invalidation of
a cache way can introduce performance degradation
for benign application mixes. To address this, PASS-
P selects clean cache blocks for transfer. This choice
minimizes off-chip writebacks, reducing unnecessary
memory traffic. As a result, PASS-P reduces the per-
formance loss without compromising on security.

While PASS-P selects clean cache blocks as trans-
fer candidates, it overlooks the presence of dead
blocks and blocks that do not trigger back invalida-
tions. Dead blocks are those that are not accessed af-
ter being inserted into the cache, remaining idle un-
til eviction. On the other hand, blocks that trigger
back invalidations generate coherence requests when
evicted, resulting in increased network traffic. By pri-
oritizing dead blocks, along with blocks that do not
cause back invalidations and clean blocks, system per-
formance can be enhanced without compromising se-
curity. However, PASS-P’s suboptimal candidate se-
lection process undermines cache efficiency. It of-
ten fails to prioritize transfer candidates that minimize
system’s performance overhead, such as dead blocks
and non-back-invalidation-inducing blocks, leading

to inefficient cache utilization and increased perfor-
mance penalties. This mismanagement significantly
harms overall system performance.

Additionally, a clean cache block is not necessar-
ily a dead block, nor does it always avoid trigger-
ing back invalidations. However, by selecting any
clean block as a transfer candidate without verifying
its dead status or back invalidation properties, we risk
evicting blocks that could still be useful. This could
also lead to the eviction of blocks in private caches,
which may cause unnecessary back invalidations and
increase network-on-chip (NoC) traffic. Such actions
result in inefficient cache utilization and higher cache
miss rates, thereby degrading system’s performance.
These inefficiencies are more evident when partition
changes occur frequently, as suboptimal eviction de-
cisions accumulate, further degrading performance.
Without an optimal transfer candidate selection mech-
anism that considers re-reference likelihood and co-
herence impact, PASS-P fails to strike an optimal bal-
ance between security and performance.

To mitigate these challenges, we introduce SCAM
(Secure Shared Cache Partitioning Scheme). SCAM
is a secure cache management framework designed
to enhance transfer candidate selection while main-
taining security. It employs a hierarchical heuris-
tic that prioritizes dead blocks and blocks that do
not induce back invalidations, alongside clean cache
blocks. This approach improves cache utilization and
enhances system performance without compromising
security. A comprehensive discussion of SCAM is
provided in Section 4.

Cache partitioning at the LLC level can result in
the underutilization of available L2 cache space, par-
ticularly in certain cache configurations. For exam-
ple, when only one cache way per set is allocated to
a low-utility core in the LLC, the total LLC space as-
signed to that core may be smaller than the available
L2 cache space for the same core, leading to ineffi-
cient use of L2 cache. This is because we need to
maintain inclusive nature of cache hierarchy. To avoid
this issue of L2 cache space under-utilization, SCAM
efficiently determines the lower bound for the num-
ber of cache ways per set assigned to each core in the
LLC. This ensures optimal utilization of private L2
caches and minimizes on-chip storage wastage. Our
detailed evaluations show that SCAM outperforms
PASS-P, achieving up to a 4% improvement in system
performance and a 5.5% reduction in LLC miss-per-
kilo-instructions (MPKI). By enhancing system per-
formance while maintaining security, SCAM offers
an effective solution for secure last-level cache (LLC)
management in multi-core systems, overcoming the
limitations of existing methods and advancing secure

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

145



Figure 1: Number of Instances Partition Changes.

Figure 2: Fraction of PASS-P transfer candidate that is not
dead.

cache management practices.
The subsequent sections of this paper are orga-

nized as follows: Section 2 delineates the limita-
tions of the PASS-P system and articulates poten-
tial avenues for performance enhancement. Sec-
tion 3 outlines the assumptions underlying an at-
tack on UCP and details the mechanisms by which
FLUSH+RELOAD and PRIME+PROBE attacks can
be executed against it. Section 4 introduces SCAM,
the proposed approach. Section 5 presents a compara-
tive performance analysis of SCAM and PASS-P. Sec-
tion 7 provides a review of pertinent prior research.
Finally, Section 8 presents the concluding remarks.

2 MOTIVATION

In this section, we examine the limitations of PASS-
P (Boran et al., 2022) and identify the research
gaps that the proposed SCAM framework addresses.
While PASS-P successfully provides security akin to
static partitioning, it exhibits several shortcomings in
its transfer candidate selection process, as detailed in
the previous section. These limitations negatively af-
fect the overall performance of the system. We be-
gin by analyzing these shortcomings of PASS-P, fol-
lowed by a discussion of the techniques incorporated
into SCAM to mitigate these weaknesses and enhance
system performance.

Before addressing the issue of suboptimal transfer
candidate selection, we first analyze the frequency of
LLC cache partition changes to emphasize the need
for an optimal transfer candidate selection scheme.

Figure 3: Fraction of PASS-P transfer candidate that does
not generate Back Invalidations.

Figure 4: Fraction of PASS-P transfer candidate that is dirty.

We conduct an experiment by modeling PASS-P in
the Sniper simulator (Carlson et al., 2014) and eval-
uate it using the application mixes listed in Table 2.
The system configuration used for the evaluation is
shown in Table 1. Our evaluation methodology fol-
lows the approach discussed in Section 5. Figure 1
presents the results of this experiment, with the x-axis
representing the different application mixes and the
y-axis showing the number of LLC cache partition
changes per kilo LLC accesses. From Figure 1, we
observe that the frequency of cache partition changes
in PASS-P is considerably high. This highlights the
critical need for an optimal transfer candidate selec-
tion scheme to reduce performance degradation.

Now to further examine the severity of issues with
PASS-P, we conducted an experiment to analyze the
types of cache blocks PASS-P transferred during all
these partition changes at LLC. We classify the trans-
ferred cache blocks into three classes:
1. Dead Blocks: Dead blocks are those that are not

accessed again after being inserted into the cache
until eviction.

2. Blocks Causing Back Invalidations: Blocks
causing back invalidations are those that, when
evicted, generate coherence requests to private
caches, increasing network traffic. These cache
blocks reside in both private and shared caches.

3. Clean Blocks: Clean blocks are unmodified and
do not require writebacks when evicted.
A comprehensive empirical analysis reveals sig-

nificant limitations in PASS-P’s algorithm for select-
ing transfer candidates. Figures 2, 3, and 4 illustrate

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

146



Figure 5: Percentage of Dead Cacheblocks Residing in
LLC.

Figure 6: Percentage LLC Cacheblocks residing in Private
Caches.

the frequency at which PASS-P evicts suboptimal
cache blocks, including non-dead blocks, blocks that
trigger back invalidations, and dirty blocks. The sim-
ulation environment and evaluation methodology are
consistent with those used in the previous experiment.
To generate the plots shown in Figures 2, 3, and 4, we
incorporated counters into the simulator to track the
number of non-dead blocks, dirty blocks, and blocks
that trigger back invalidations that got transferred due
to PASS-P. Additionally, the necessary infrastructure
for detecting the properties of cache blocks was intro-
duced as described in Section 4.

Figure 2 shows that PASS-P evicts non-dead
blocks in approximately 3% of cases. This subop-
timal decision increases LLC miss rates, leading to
performance degradation as frequent cache block in-
sertions occur at the LLC level. Furthermore, as de-
picted in Figure 3, PASS-P selects blocks that trigger
back invalidations in nearly 30% of instances. This
behavior generates unnecessary coherence traffic in
the network-on-chip (NoC), further stressing system
resources. In addition, Figure 4 reveals that PASS-
P evicts dirty blocks in 8% of cases when no clean
blocks are available within the allocated cache ways.
This results in unnecessary writebacks to main mem-
ory, adding additional overhead and further diminish-
ing performance.

The previous analysis indicates that PASS-P tends
to select suboptimal transfer candidates. However, it
is also necessary to investigate whether optimal trans-
fer candidates exist in a set during a cache miss and
partition change. To address this, we performed an
experiment using the same setup described earlier to

Figure 7: Percentage of Clean Cacheblocks residing in
LLC.

analyze the distribution of different cache block prop-
erties within the LLC when PASS-P is in operation.
Figures 5, 6, and 7 display the distribution of various
cache block types—dead blocks, blocks that cause
back invalidations, and clean blocks—within the LLC
under the PASS-P scheme. Figure 5 reveals a sub-
stantial number of dead blocks in the LLC. These
dead blocks, which have already completed their use-
ful lifetime, are ideal candidates for eviction. Evicting
dead blocks would significantly reduce performance
degradation by minimizing unnecessary cache inser-
tions and replacements. Furthermore, Figure 6 illus-
trates that a considerable fraction of cache blocks trig-
ger back invalidations when evicted. These blocks
generate coherence traffic, which increases network
congestion and puts additional strain on the system’s
resources. Such traffic can contribute to system bot-
tlenecks and reduce overall performance.

In addition, Figure 7 shows that a large portion of
the LLC is occupied by clean blocks. These clean
blocks can be evicted without incurring additional
writebacks to main memory, which would otherwise
add unnecessary system overhead. Given these obser-
vations, it becomes clear that a more effective eviction
strategy is required—one that prioritizes dead blocks
for eviction while minimizing the impact of blocks
that cause back invalidations and unnecessary write-
backs. A refined selection approach can not only en-
hance cache utilization but also improve overall sys-
tem performance, all while maintaining the security
guarantees in dynamically partitioned cache systems.
Thus, optimizing the transfer candidate selection pro-
cess becomes essential to achieving an efficient bal-
ance between performance and security.

To address the limitations identified in PASS-P,
we introduce SCAM, an advanced cache management
strategy designed to optimize transfer candidate se-
lection. SCAM focuses on prioritizing dead blocks,
as well as blocks that neither trigger back invalida-
tions nor cause writebacks. This ensures high per-
formance, without compromising on security. By
employing a hierarchical transfer candidate selection
policy, SCAM effectively reduces LLC misses, alle-
viates NoC congestion, and minimizes unnecessary

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

147



memory overhead. As a result, SCAM significantly
boosts overall system performance, outperforming
PASS-P in both efficiency and effectiveness.

In summary, SCAM marks a substantial improve-
ment in secure cache management for shared LLCs
in multi-core systems. It overcomes the key limita-
tions of PASS-P by refining the transfer candidate se-
lection process and optimizing cache block eviction
strategies. SCAM not only enhances system perfor-
mance but does so without compromising security.
This makes it a more efficient and resilient solution
for cache management in dynamic partitioning sys-
tems. In the following section, we will delve into the
details of SCAM’s design and implementation.

3 THREAT MODEL

Dynamic cache partitioning schemes are suscepti-
ble to Flush+Reload (Yarom and Falkner, 2014) and
Prime+Probe (Liu et al., 2015) attacks, particularly
when an attacker application can manipulate cache
partitioning decisions. For instance, in UCP, an at-
tacker can artificially modify its utility to trigger the
reallocation of cache lines to or from itself. Notably,
mounting these attacks does not require the attacker
process to possess elevated privileges. The illustra-
tion of Flush+Reload attack is as follows. We then
follow it up with the illustration of Prime+Probe at-
tack.

3.1 Flush+Reload Attack

Flush: The attacker increases its utility to displace all
but one cache line from each set, subsequently flush-
ing the retained lines as depicted in step (a) of Fig.8.
Execute: The attacker then decreases its utility to re-
store the flushed lines, awaiting the victim process’s
execution, as illustrated in steps (b) and (c).
Reload: The attacker increases its utility again to oc-
cupy all but one line in each set and reloads specific
addresses of interest, as shown in step (d). The pres-
ence of cache hits or misses on these addresses indi-
cates the victim’s memory accesses.

3.2 Prime+Probe Attack

Prime: The attacker increases its utility to evict all
but one cache line from each set and populates these
lines with its own data, as shown in step (a) of Fig.9.
Execute: The attacker then decreases its utility to re-
store the evicted lines, allowing the victim to perform
its operations, as illustrated in steps (b) and (c) of
Fig.9.

V0

V0

V0 V1 V2 V3 V4 V5 V6

(a)

(b)

(c)

(d)V0 V1 V2 V3 V4 V5 V6

Figure 8: Flush+Reload attack.

V0 A1 A2 A3 A4 A5 A6 A7

V0 A1 A2 A3 A4 A5 A6 A7

V0 A1 V2 A3 V4 V5 A6 A7

(a)

(b)

(c)

(d)V0 A1 V2 A3 V4 V5 A6 A7

Figure 9: Prime+Probe attack.

Probe: Subsequently, the attacker increases its util-
ity again to evict all but one line from each set and
reloads the addresses that were previously primed, as
depicted in step (d). The presence of a cache hit or
miss on these addresses reveals information about the
victim’s memory accesses.

In Flush+Reload attacks, both the attacker and
victim must share the same code library for the at-
tack to be effective. This sharing enables the attacker
to achieve a cache hit during the Reload phase for
addresses accessed by the victim during the Execute
phase. Despite dynamic cache partitioning protocols
generally preventing any single process from occupy-
ing all cache lines, thus avoiding starvation, attack-
ers can still extract sensitive information over multi-
ple iterations. Attackers often employ techniques to
significantly slow down the victim’s execution, such
as launching a denial-of-service attack on the Linux
Completely Fair Scheduler (CFS), as detailed by Gul-
lasch et al.(Gullasch et al., 2011). SecDCP (Wang
et al., 2016) distinguishes processes into confidential
and public categories, focusing on safeguarding confi-
dential applications from side-channel attacks. How-
ever, SecDCP is still susceptible to Flush+Reload
attacks. It only invalidates cache lines transferred
from a public to a confidential application if those
lines were accessed by the public application. Conse-
quently, lines retrieved by the public attacker during
the Reload phase are not invalidated, allowing the at-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

148



tacker to deduce information about the victim’s mem-
ory accesses. Furthermore, SecDCP does not adjust
its partitioning decisions based on the demand of con-
fidential applications, resulting in suboptimal cache
partitioning and associated performance degradation.

4 PROPOSAL

UCP is a dynamic cache management technique that
optimizes shared cache resources in multi-core sys-
tems by adjusting last-level cache (LLC) partitioning
based on workload demands. This flexible partition-
ing prevents cache contention, enhances data locality,
and reduces conflict misses. Unlike static schemes,
UCP reallocates cache space in real-time, balancing
performance and energy efficiency while improving
system throughput, especially in multi-application en-
vironments. However, UCP’s dynamic reallocation
introduces a vulnerability. Transferring cache own-
ership between cores can expose memory access pat-
terns, allowing attackers to exploit techniques like
FLUSH+RELOAD or PRIME+PROBE. This side-
channel risk arises from cache line transfers, which
inadvertently reveal access patterns.

PASS-P mitigates these vulnerabilities by imple-
menting a cache line invalidation strategy. It en-
sures that cache lines are invalidated before transfer-
ring ownership, preventing timing-based attacks dur-
ing cache access. While PASS-P effectively secures
cache partitioning, it still faces performance chal-
lenges related to transfer candidate selection, coher-
ence traffic, and cache utilization.

PASS-P predominantly selects clean cache blocks
for eviction, but not all clean blocks are optimal.
Some might be useful in the future or could trigger
unnecessary back invalidations, leading to increased
memory traffic. These inefficient evictions negatively
impact performance by increasing cache misses and
adding load to the system. SCAM improves upon
this by prioritizing dead blocks and blocks that do
not cause back invalidations or writebacks, enhanc-
ing cache efficiency and reducing system overhead.
SCAM achieves better performance without sacrific-
ing security. We will now examine the specifics of
SCAM, its role in LLC management, and how it facil-
itates efficient cache management while maintaining
security.

4.1 SCAM: Secure Shared Cache
Partitioning Scheme

Figure 10 illustrates the process of accessing the last-
level cache (LLC) and the role of SCAM in optimiz-

LLC receives
memory request

Hit
or 

Miss ?

Send Data
to Core

Send memory request 
to main memory

Current 
no. of blocks

<
Allocated 

blocks

Find Transfer 
Candidate

Invalidate the transfer candidate and 
transfer the ownership of the block to 

the requested Core

Find Replacement 
Candidate

Hit

Miss

Yes

No

Figure 10: LLC Access Flowchart.

ing LLC cache management scheme. When an LLC
receives a memory access request, it first determines
whether the requested data is present in the cache.
In the case of a cache hit, the data is sent to the re-
questing core, while also being forwarded to higher-
level caches to maintain inclusivity. Conversely, if an
LLC miss occurs, the request is forwarded to the main
memory, and the retrieved data must be inserted into
the LLC while also being accessed by the core.

Before inserting new data into the LLC, several
conditions must be evaluated to ensure efficient cache
utilization. First, it is necessary to verify whether
the number of cache ways currently owned by the re-
questing core is less than its allocated quota, as de-
termined by the dynamic cache partitioning (DCP)
scheme’s decision engine. If the core has already
reached its allocation limit, a cache block from the
corresponding set must be evicted based on the re-
placement strategy, creating space for the new block.
However, if the number of cache ways owned by the
requesting core is below the allocated threshold, own-
ership of a cache way must be transferred from an-
other core to the requesting core.

This transfer mechanism is precisely SCAM (Se-
cure Shared Cache Partitioning Scheme). SCAM em-
ploys a hierarchical selection process, as outlined in
Algorithm 1, to determine the optimal cache block

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

149



Function FindTransferCandidate():
// First Priority
for B@LRU to B@(LRU − f × curr alloc) do

if B.NotInPrC and B.Dead and B.Clean then
return B

end
end
// Second Priority
for B@LRU to B@(LRU − f × curr alloc) do

if B.NotInPrC and B.Dead then
return B

end
end
// Third Priority
for B@LRU to B@(LRU − f × curr alloc) do

if B.NotInPrC and B.Clean then
return B

end
end
// Fourth Priority
for B@LRU to B@(LRU − f × curr alloc) do

if B.NotInPrC or B.Dead or B.Clean then
return B

end
end
// Fallback Candidate
return B@LRU

Algorithm 1: Transfer Candidate Selection Algorithm.

for eviction. By following a structured decision-
making approach, SCAM enhances system’s perfor-
mance without compromising on cache security. Its
step-by-step selection strategy effectively optimizes
cache utilization, and enhances overall system effi-
ciency. SCAM follows a step-by-step selection strat-
egy as outlined below:

1. First Priority: SCAM gives the highest priority
to dead blocks that are clean and do not cause
back invalidations. A dead block is a cache block
that will not be reused in the future. A clean block
has not been modified since it was brought into
the cache. Evicting such blocks minimizes per-
formance impact and avoids unnecessary back in-
validation requests to higher cache levels.

2. Second Priority: If no primary candidate is avail-
able, SCAM selects any dead block that avoids
back invalidations. This ensures efficient eviction
without disrupting other levels of the cache hier-
archy.

3. Third Priority: If no secondary candidate exists,
SCAM searches for any clean block that avoids
back invalidations. Such blocks are evicted to
minimize writebacks and performance penalties.

4. Fourth Priority: If the above options are un-
available, SCAM searches in the following order
of priority: any dead block, any clean block, or

any block that avoids back invalidations. The first
matching block is selected for eviction.

5. Fallback Candidate: If none of the above candi-
dates are found, SCAM evicts the Least Recently
Used (LRU) cache block as a last resort.

To implement this hierarchical process, SCAM
scans half of the cache set, starting from the LRU po-
sition. This ensures that the most appropriate block
is identified for eviction while limiting unnecessary
cache disruptions. If no preferred candidate is found
during the scan, SCAM defaults to evicting the LRU
block. This fallback mechanism ensures robust and
consistent cache management under all scenarios. By
following this systematic approach, SCAM reduces
performance overhead and improves the efficiency of
cache operations while maintaining secure and opti-
mal cache partitioning. SCAM uses additional meta-
data to track the status of cache blocks:

1. Deadblock Bit: This bit indicates whether a
cache block has been accessed since it was loaded.
A value of 1 means the block is ”dead” (unrefer-
enced).

2. Back-Invalidation Bit: This bit shows whether
evicting the block will cause back invalidations in
upper-level caches. A value of 1 means back in-
validations will occur.

When a block is inserted into the cache, the dead-
block bit is set to 1, and the back-invalidation bit
is also set to 1. If the block is accessed, the dead-
block bit is reset to 0, indicating the block is active.
When the block is evicted from all private caches, the
back-invalidation bit is reset to 0. This metadata al-
lows SCAM to make informed decisions about which
blocks to evict or transfer.

4.2 Lower Partition Bound

Dynamic cache partitioning schemes, such as SCAM,
aim to allocate cache blocks efficiently among all
cores in a system. SCAM uses a heuristic that assigns
at least one cache block per set in the LLC to each ap-
plication. However, this allocation method can cause
underutilization of private L2 caches. The problem
occurs because the LLC’s capacity may not be suf-
ficient to fully support the private L2 cache of each
core. For example, if a core is allocated only one
block per set in the LLC, the total number of usable
blocks in the LLC will be smaller than the capacity of
the core’s private L2 cache. This mismatch results in
wasted L2 cache resources, leading to reduced overall
system performance.

To overcome this limitation, SCAM enforces a
minimum allocation of two cache blocks per set for

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

150



every application. By increasing the lower allocation
limit, SCAM ensures that the private L2 caches are
better utilized. This adjustment minimizes resource
wastage and enhances system performance. Through
this improved allocation strategy, SCAM achieves a
more balanced use of the cache hierarchy, reducing
inefficiencies and supporting higher application per-
formance across all cores.

4.3 Decision-Making Engine

SCAM employs a decision-making engine to opti-
mize the partitioning of the shared LLC. This engine
draws inspiration from the Utility-based Cache Parti-
tioning (UCP) method (Qureshi and Patt, 2006). The
detailed operation of this engine is described below:

4.3.1 Initialization

In a dual-core system with an m-way shared LLC, the
cache is evenly divided between the two cores at the
start. Each core is allocated m

2 ways. Additionally,
two Auxiliary Tag Directories (ATDs) are configured
to evaluate alternative partitioning schemes:

• ATD1: Simulates a configuration where the first
core is allocated (m

2 −1) ways and the second core
receives (m

2 +1) ways.

• ATD2: Simulates a configuration where the first
core is allocated (m

2 +1) ways and the second core
receives (m

2 −1) ways.

4.3.2 Epoch-Based Evaluation:

The cache controller tracks the number of cache
misses during each epoch for the actual LLC and the
two ATDs. At the end of each epoch, the controller
selects the partitioning configuration (from the actual
LLC, ATD1, and ATD2) that results in the fewest
misses for the next epoch. To ensure adaptability
while retaining historical workload behavior, the miss
counters for all configurations are reset to half their
current value at the beginning of each epoch.

4.3.3 Dynamic Adjustments:

During runtime, the controller validates whether the
current set partition aligns with the selected configu-
ration whenever a cache miss occurs. If the set par-
tition does not match, ownership of the cache line is
transferred to the other core. These adjustments are
only triggered by cache misses, while cache hits leave
the existing partitioning unchanged. This approach
minimizes unnecessary performance disruptions and
preserves the stability of the cache system.

Table 1: Experimental Framework.

Simulator Sniper Multi-core
Cycle Accurate Simulator

CPU core
Dual core, 2.67 GHz,

4-wide fetch, 128-entry ROB
L1 I/D
Cache

32 KB, 4-way, LRU,
private, 4 cycles access time

L2
Cache

512 KB, 8-way, LRU,
private, 8 cycles access time

Last Level
Cache (LLC)

2 MB per core, 16-way, LRU,
shared, 30 cycles access time

By leveraging this adaptive partitioning mecha-
nism, SCAM ensures that the shared LLC dynami-
cally responds to workload demands while maintain-
ing low performance overhead. In the next section,
we evaluate SCAM’s performance against PASS-P.
The results demonstrate SCAM’s ability to deliver en-
hanced system performance and robust security in dy-
namic cache partitioning scenarios.

5 EVALUATION FRAMEWORK

In this section, we provide a detailed explanation
of the simulation environment used for evaluating
SCAM. We also present a comparative analysis of
PASS-P and SCAM.

To evaluate performance, we used the cycle-
accurate Sniper Simulator (Carlson et al., 2014).
This tool allowed us to analyze two benchmarks run-
ning concurrently on separate cores. The simulation
configurations are summarized in Table 1. Our study
focuses on benchmark pairs selected from the SPEC
CPU2006 suite (Henning, 2006). These benchmarks
frequently update the UCP partitioning strategy, mak-
ing them suitable for testing SCAM’s dynamic cache
management.

For each application, we used traces representing
one billion instructions. These traces were identi-
fied using Simpoints to reflect typical application be-
havior. Before starting the analysis, the system was
warmed up with 200 million instructions to ensure
steady-state performance.

The results of our evaluation are shown in Fig. 11
and Fig. 13. The x-axes in these figures are labeled
with the application names and their respective types.
For better clarity, Table 2 lists all evaluated applica-
tions. These applications were chosen based on their
cache behavior, particularly their Last-Level Cache
(LLC) miss rates. Applications with moderate (50%
to 75%) to very high (above 75%) LLC miss rates
were selected.

High LLC miss rates are significant because they
increase the likelihood of destructive interference in

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

151



Table 2: Application list.

Application Name Abbreviation LLC Miss Rate (in %) Application Name Abbreviation LLC Miss Rate (in %)
leslie 3d les 80.2 sphinx3 sph 91.56

GemsFDTD gem 66.99 wrf wrf 77.95
mcf mcf 63.49 bwaves bwa 96.42

soplex sop 56.51 milc mil 83.64
lbm lbm 98.96 omnetpp omn 58.54

Figure 11: System’s Performance Analysis.

Figure 12: Cache Performance Analysis.

Figure 13: Fraction of times SCAM transfers a cache block
different from that of PASS-P.

shared caches. Such interference is critical to evaluate
the effectiveness of SCAM in reducing performance
bottlenecks. Additionally, the selected applications
frequently triggered partition decision changes when
run concurrently, providing valuable insights into
SCAM’s dynamic partitioning capabilities.

The results presented in this section represent the
average performance metrics across all possible
application combinations from the SPEC CPU2006
benchmark suite. This approach ensures a compre-
hensive analysis of SCAM’s behavior across a wide
range of workloads.

In the next subsection, we compare SCAM with
PASS-P in detail. We highlight the key improve-
ments in performance achieved by SCAM, demon-
strating that these enhancements do not compromise
the strong security guarantees provided by dynamic
cache partitioning.

6 RESULTS & ANALYSIS

In this section, we conduct a detailed performance
evaluation of SCAM and compare its efficiency with
the PASS-P scheme across diverse application com-
binations. The results demonstrate SCAM’s ability to
outperform PASS-P in both performance and cache
management. As shown in Fig.11, SCAM achieves a
maximum performance improvement of 4% and an
average enhancement of 2% compared to PASS-P.
These results indicate that SCAM’s optimized trans-
fer candidate selection has a direct and measurable
impact on system performance. Further validation is
provided by Fig.13, which highlights the differences
in cache block transfers between SCAM and PASS-P.
On average, SCAM selects different cache blocks for
transfer 18% of the time, with a maximum difference
of 34% observed for a specific application mix (omn-
les). This significant variation underscores the impor-
tance of SCAM’s careful approach to transfer candi-
date selection during cache partition adjustments.

Fig.12 illustrates the impact of SCAM on L2 and
LLC misses per kilo instructions (MPKIs). On aver-
age, SCAM reduces L2 MPKI by 1%, with the most
significant reduction reaching 2% for certain applica-
tion mix (lbm-lib). Also, SCAM reduces LLC MPKI
by an average of 1.2% with the reduction being as
high as 5% for les-bwa application mix. These im-
provements reflect SCAM’s ability to enhance cache
efficiency by reducing cache misses and optimizing
resource utilization. However, it is important to note
that some application mixes exhibit an increase in
both L2 and LLC MPKIs. This seemingly counter-
intuitive outcome is attributed to shifts in cache ac-
cess patterns caused by SCAM’s optimization strate-
gies. These variations highlight the complex interplay
between SCAM’s dynamic partitioning approach and
the workloads’ cache access behaviors.

Table.3 provides a comparative analysis of the
properties of cache blocks transferred by PASS-P and
SCAM during partition changes. The table presents
the average values observed across all application
mixes used in our evaluation. To evaluate the effec-
tiveness of PASS-P and SCAM, we profiled the char-
acteristics of all cache blocks that underwent trans-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

152



Table 3: Transfer Candidate Property.

Property Quantity
for PASS-P (%)

Quantity
for SCAM (%) Property Quantity

for PASS-P (%)
Quantity

for SCAM (%)

only dead 2.18 0.81 only not in
private cache 0.53 2.65

only clean 0.11 0 dead and clean 11.13 2.06
dead and not in
private cache 6.28 20.98 dead, clean and not

in private cache 76.39 70.98

clean and not in
private cache 3.36 2.51 only LRU and not dead,

not clean, and in private cache 0.02 0

fer during the execution phase in which performance
statistics were recorded. This profiling enables a di-
rect comparison of the decision-making processes of
PASS-P and SCAM. From the data in Table.3, it is
evident that SCAM successfully avoids transferring
cache blocks that merely satisfy the clean property
without meeting additional criteria (refer to the only
clean property in Table.3). This ensures that SCAM
does not prioritize cache blocks solely based on clean
property, preventing unnecessary evictions that could
impact performance.

Additionally, SCAM refrains from transferring
LRU blocks that do not satisfy any of the three key
properties required for optimal eviction decisions (re-
fer to only LRU and not dead, not clean, and in pri-
vate cache property in Table.3). By doing so, SCAM
prevents inefficient cache block transfers that would
otherwise degrade system performance. Furthermore,
an analysis of the only not in private cache and dead
and not in private cache categories in Table.3 high-
lights SCAM’s ability to mitigate NoC traffic pres-
sure. By prioritizing blocks that are unlikely to be
re-referenced after insertion, SCAM ensures efficient
cache utilization while reducing unnecessary commu-
nication overhead. These optimizations collectively
enhance cache management efficiency, improve sys-
tem throughput, and reinforce security against side-
channel threats.

Overall, the evaluation results emphasize the im-
portance of SCAM’s strategic selection of transfer
candidates. By prioritizing dead blocks and con-
sidering back invalidations, SCAM improves per-
formance without compromising the security of the
shared Last-Level Cache (LLC). This dual focus on
performance and security establishes SCAM as a ro-
bust and effective dynamic cache partitioning strat-
egy.

6.1 Hardware Overhead Compared to
PASS-P

SCAM enhances transfer candidate selection with
minimal hardware overhead, ensuring efficient cache
management without added complexity. Each cache

block is augmented with an additional bit per core to
track its presence in private caches, enabling more in-
formed eviction decisions and reducing unnecessary
data movement.

To further optimize cache utilization, SCAM in-
troduces a re-reference bit per block to detect dead
blocks. This bit indicates whether a block has been
accessed since insertion, allowing SCAM to priori-
tize evicting blocks unlikely to be reused. By dis-
tinguishing between frequently accessed and obsolete
data, SCAM minimizes performance overhead while
improving cache efficiency.

Moreover, SCAM leverages the existing dirty bit
in cache metadata to identify clean blocks, elim-
inating the need for additional storage. This en-
sures that clean blocks can be selected as transfer
candidates without incurring unnecessary writebacks,
maintaining both performance and security. With
these lightweight yet effective modifications, SCAM
refines cache management while preserving low hard-
ware complexity. The next section explores related
research on shared cache management, highlighting
existing solutions and their limitations.

7 RELATED WORK

Mitigation strategies for addressing cache-based side-
channel attacks can be broadly divided into two main
categories: cache randomization and cache parti-
tioning (Wang and Lee, 2007).

Cache randomization techniques aim to obscure
the mapping between main memory addresses and
cache lines, making it difficult for attackers to infer
sensitive information. These techniques disrupt pre-
dictable access patterns, a key factor exploited in side-
channel attacks. For example, the RPCache mecha-
nism (Wang and Lee, 2007) uses a permutation table
to randomize the address mapping within the cache
subsystem. This randomization ensures that cache
accesses become unpredictable, significantly reduc-
ing the likelihood of successful side-channel attacks.
Another approach, CEASER (Qureshi, 2018), em-
ploys a low-latency block cipher to encrypt cache

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

153



addresses. By encrypting the address-to-cache-line
mapping, CEASER makes the process opaque and
difficult for attackers to reverse-engineer.

In contrast, cache partitioning strategies focus on
isolating cache resources between different processes.
This separation ensures that one process cannot ac-
cess or infer data from another, thereby minimizing
the risk of side-channel leakage. For example, static
partitioning techniques (Page, 2005) enforce strict
boundaries between processes, providing robust secu-
rity guarantees. However, this strict separation often
leads to performance degradation, as cache lines allo-
cated to one process may remain underutilized, wast-
ing valuable cache resources.

To address the inefficiencies of static partitioning,
dynamic cache partitioning (DCP) methods were
introduced. These techniques, such as Utility-based
Cache Partitioning (UCP) (Qureshi and Patt, 2006),
adaptively allocate cache lines based on their utility.
UCP dynamically adjusts partitions to improve cache
utilization, boosting performance by optimizing re-
source allocation. Despite these benefits, dynamic
partitioning introduces new vulnerabilities. Shared
cache lines can still be exploited by attackers to per-
form side-channel attacks.

For example, SecDCP (Wang et al., 2016) cate-
gorizes processes into confidential and public groups,
offering targeted protection for sensitive processes.
However, this approach remains vulnerable to specific
attacks, such as the Flush+Reload technique, as dis-
cussed in Section.3. This compromises the security
guarantees of SecDCP, leaving critical gaps in its de-
fense mechanisms.

Other methods, such as COTSknight (Yao et al.,
2019) and DAWG (Kiriansky et al., 2018), also en-
hance cache security but introduce additional com-
plexities. COTSknight uses advanced cache monitor-
ing and allocation mechanisms to detect suspicious
behaviors. While effective in some scenarios, it fails
to mitigate Flush+Reload attacks entirely and incurs
a performance penalty of up to 5% compared to an
insecure baseline. DAWG, on the other hand, iso-
lates cache accesses through secure way partitioning.
However, this approach leads to performance slow-
downs ranging from 0% to 15%, depending on the
workload, when compared to an approximate LRU
baseline.

Compared to these methods, PASS-P (Boran
et al., 2022) strikes a better balance between per-
formance and security. PASS-P achieves an average
slowdown of just 0.35% and a maximum of 2.2%
relative to the insecure UCP baseline. Additionally,
UCP itself provides a performance improvement of
10.96% over LRU (Qureshi and Patt, 2006), high-

lighting PASS-P’s competitive performance. How-
ever, as we analyze in Section 2, PASS-P has its own
limitations in terms of optimal transfer candidate se-
lection during partition changes.

For L1 caches, methods like NoMo (Domnitser
et al., 2012) offer a tunable tradeoff between per-
formance and security without requiring software or
operating system modifications. NoMo makes mi-
nor changes to cache replacement policies to mitigate
side-channel risks. However, its fully secure configu-
ration aligns with static partitioning, leading to per-
formance degradation of up to 5% and an average
slowdown of 1.2% compared to LRU.

SCAM, the solution we propose, builds upon the
foundational principles of PASS-P to address these
challenges. SCAM effectively combines the strong
security guarantees of static partitioning with the per-
formance benefits of dynamic partitioning techniques.
By refining transfer candidate selection and optimiz-
ing partition changes, SCAM provides robust protec-
tion against side-channel attacks while minimizing
performance overhead. This makes SCAM a highly
efficient and secure solution for dynamic cache par-
titioning, striking a careful balance between security
and system performance.

8 CONCLUSION

This research demonstrates that secure cache parti-
tioning can be optimized for performance without
compromising security. To achieve this, we introduce
SCAM, a novel secure cache management framework
that addresses the performance limitations inherent
in the transfer candidate selection strategy employed
by PASS-P, a state-of-the-art secure dynamic cache
partitioning (DCP) protocol. Experimental results
indicate that SCAM yields a performance improve-
ment of up to 4% compared to PASS-P. By minimiz-
ing back invalidations and prioritizing the removal of
dead blocks, SCAM not only enhances cache effi-
ciency but also strengthens security by mitigating po-
tential attack vectors.

Designed with versatility in mind, SCAM seam-
lessly integrates with shared cache levels in systems
utilizing various DCP protocols. This adaptability en-
sures robust and scalable cache management across
a diverse range of application scenarios. Further-
more, SCAM provides a foundation for addressing
emerging security threats, such as Meltdown (Lipp
et al., 2020) and Spectre (Kocher et al., 2020). Fu-
ture extensions to mitigate these advanced vulnerabil-
ities will further solidify SCAM’s position as a high-
performance and secure cache management solution.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

154



In summary, SCAM represents a significant advance-
ment in the field of secure cache management. By
effectively balancing performance optimization with
robust security measures, it effectively addresses the
evolving requirements of contemporary computing
environments.

ACKNOWLEDGEMENTS

This work was supported in part by Indo Japanese
Joint Lab Grant and AI powered adaptive cyber de-
fence framework sponsored by NSCS(Government of
India), Security of futuristic technology sponsored by
MEITY(Government of India) and ISRO Respond.

REFERENCES

Ashokkumar, C., Giri, R. P., and Menezes, B. (2016).
Highly efficient algorithms for aes key retrieval in
cache access attacks. In 2016 IEEE European sympo-
sium on security and privacy (EuroS&P), pages 261–
275. IEEE.

Bernstein, D. J. (2005). Cache-timing attacks on aes.
Boran, N. K., Joshi, P., and Singh, V. (2022). Pass-p: Per-

formance and security sensitive dynamic cache parti-
tioning. In SECRYPT, pages 443–450.

Boran, N. K., Pinto, K., and Menezes, B. (2021). On dis-
abling prefetcher to amplify cache side channels. In
2021 25th International Symposium on VLSI Design
and Test (VDAT), pages 1–6. IEEE.

Carlson, T. E., Heirman, W., Eyerman, S., Hur, I., and Eeck-
hout, L. (2014). An evaluation of high-level mecha-
nistic core models. ACM Transactions on Architecture
and Code Optimization (TACO).

Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., and
Ponomarev, D. (2012). Non-monopolizable caches:
Low-complexity mitigation of cache side channel at-
tacks. ACM Transactions on Architecture and Code
Optimization (TACO), 8(4):1–21.

Gullasch, D., Bangerter, E., and Krenn, S. (2011). Cache
games–bringing access-based cache attacks on aes to
practice. In 2011 IEEE Symposium on Security and
Privacy, pages 490–505. IEEE.

Henning, J. L. (2006). Spec cpu2006 benchmark descrip-
tions. ACM SIGARCH Computer Architecture News,
34(4):1–17.

Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S.,
and Emer, J. (2018). Dawg: A defense against cache
timing attacks in speculative execution processors. In
2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 974–987.
IEEE.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
et al. (2020). Spectre attacks: Exploiting speculative

execution. Communications of the ACM, 63(7):93–
101.

Kong, J., Aciicmez, O., Seifert, J.-P., and Zhou, H. (2008).
Deconstructing new cache designs for thwarting soft-
ware cache-based side channel attacks. In Proceed-
ings of the 2nd ACM workshop on Computer security
architectures, pages 25–34.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom,
Y., et al. (2020). Meltdown: Reading kernel mem-
ory from user space. Communications of the ACM,
63(6):46–56.

Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015).
Last-level cache side-channel attacks are practical. In
2015 IEEE symposium on security and privacy, pages
605–622. IEEE.

Page, D. (2005). Partitioned cache architecture as a
side-channel defence mechanism. Cryptology ePrint
Archive.

Percival, C. (2005). Cache missing for fun and profit.
Qureshi, M. K. (2018). Ceaser: Mitigating conflict-based

cache attacks via encrypted-address and remapping.
In 2018 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 775–787.
IEEE.

Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache
partitioning: A low-overhead, high-performance, run-
time mechanism to partition shared caches. In 2006
39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), pages 423–432.
IEEE.

Sanchez, D. and Kozyrakis, C. (2012). Scalable and ef-
ficient fine-grained cache partitioning with vantage.
IEEE Micro, 32(3):26–37.

Tromer, E., Osvik, D. A., and Shamir, A. (2010). Efficient
cache attacks on aes, and countermeasures. Journal of
Cryptology, 23:37–71.

Wang, Y., Ferraiuolo, A., Zhang, D., Myers, A. C., and Suh,
G. E. (2016). Secdcp: secure dynamic cache partition-
ing for efficient timing channel protection. In Pro-
ceedings of the 53rd Annual Design Automation Con-
ference, pages 1–6.

Wang, Z. and Lee, R. B. (2007). New cache designs for
thwarting software cache-based side channel attacks.
In Proceedings of the 34th annual international sym-
posium on Computer architecture, pages 494–505.

Xie, Y. and Loh, G. H. (2009). Pipp: Promotion/insertion
pseudo-partitioning of multi-core shared caches. ACM
SIGARCH Computer Architecture News, 37(3):174–
183.

Yao, F., Fang, H., Doroslovački, M., and Venkataramani, G.
(2019). Cotsknight: Practical defense against cache
timing channel attacks using cache monitoring and
partitioning technologies. In 2019 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST), pages 121–130. IEEE.

Yarom, Y. and Falkner, K. (2014). {FLUSH+ RELOAD}:
A high resolution, low noise, l3 cache {Side-Channel}
attack. In 23rd USENIX security symposium (USENIX
security 14), pages 719–732.

SCAM: Secure Shared Cache Partitioning Scheme to Enhance Throughput of CMPs

155


