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Abstract: Secret Sharing Schemes (SSS) in cryptography often utilize minimal linear codes for efficiency, with minimum
distance playing a crucial role. Determining minimal codewords in general linear codes presents a challenge
known as the linear code covering problem. To address this, we propose MInimal COde DEsign (MICODE),
a novel method for generating minimal codes from binary Reed-Muller (RM) codes using the Ashikhmin-Barg
lemma. Unlike existing approaches limited to small RM codes, MICODE extends to higher orders through
a systematic puncturing strategy. By recursively removing one-weight columns from the generator matrix,
we reduce the RM code’s maximum Hamming weight preserving its minimum distance. The RM generator
matrix’s structure, derived from the Kronecker product of lower-triangular binary matrices, facilitates this con-
struction. We conduct rigorous mathematical analysis of MICODE establishing parameters for a secure SSS.
While these minimal codes are unsuitable for error correction due to their reduced code rate, they are proven
highly effective for cryptographic applications, such as Massey SSS, where security depends on minimum
distance. Our analysis also explores trade-offs between code rate and error performance offering new insights
into their theoretical and practical implications.

1 INTRODUCTION

Confidentiality is a fundamental service of cryptog-
raphy, achieved through symmetric and asymmetric
methods. However, the security of these methods re-
lies heavily on the protection of secret keys. Accord-
ing to Kerckhoff’s principle, the security of a cryp-
tosystem depends entirely on the secrecy of its en-
cryption key. Storing the key in a single device poses
a risk of system failure, while storing multiple copies
across devices increases the risk of exposure. To ad-
dress these challenges, Secret Sharing Schemes pro-
vide a robust cryptographic solution, ensuring both
the security and availability of secret keys by dis-
tributing them across multiple parties without com-
promising confidentiality. Blakley (Blakley, 1979)
and Shamir (Shamir, 1979) schemes are the first pro-
posed secret sharing schemes. Shamir’s SSS is a
(k,n)-threshold SSS with P as the dealer and n par-
ticipants P = {p1, ..., pn}. Every participant pi keeps
one share and any group of k or more can figure out
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the secret s. The number of authorized participants
who can recover the secret s in this scheme is at least
k. The set containing these authorized participants is
called an access set, whereas the set containing the
smallest number of authorized participants is called a
minimal access set and has a size of k. Shamir’s SSS
is much more popular because all minimal access sets
are of the same size, which makes the implementation
easier.

In (McEliece and Sarwate, 1981), the researchers
suggested employing Error Correction Codes (ECCs)
to construct a SSS, wherein a (k,n)-threshold scheme
is generalized using the Reed-Solomon code. Massey
has proposed an ECC-based SSS with different-sized
minimal access sets (Massey, 1993), where the ac-
cess structure is defined by the minimal codewords
of the dual code. A nonzero codeword in a linear
code is considered minimal if its support is not a
proper superset of the support of any other nonzero
codeword. The general properties of minimal code-
words were discussed in (Agrell, 1996; Agrell, 1998).
The Massey’s secret sharing involves determining the
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minimal access sets by computing all the minimal
codewords in a linear code. However, we observe in
the literature that minimal codewords are difficult to
determine (Covering problem) (Ding and Yuan, 2003;
Li et al., 2010); thus, Massey’s secret sharing is dif-
ficult to implement. This invokes the search for a
class of codes in which determining minimal code-
words is easier, or in other words, in which solv-
ing the covering problem is simple. For specific
families of linear codes, minimal codewords have
been determined by leveraging their structural prop-
erties (Ding et al., 2000; Schillewaert et al., 2010;
Yuan and Ding, 2005). Reed-Muller codes are an
intriguing class of codes. Still, the covering prob-
lem has only been solved for second-order binary
Reed-Muller codes (Ashikhmin and Barg, 1998), or
only minimal low-weight codewords have been de-
termined in Reed-Muller codes(Schillewaert et al.,
2010). As a result, this leads to the search for a class
of codes in which all codewords are minimal to fa-
cilitate determining the access structure of the secret
sharing scheme. This class is called minimal linear
code.

Ashikhmin and Barg propose a sufficient condi-
tion for determining whether or not a linear code is
minimal (Ashikhmin and Barg, 1998). Yun Song and
Zhihui Li have proposed a minimal linear code con-
struction based on irreducible cyclic codes and have
investigated the conditions under which a given irre-
ducible cyclic code is minimal (Song and Li, 2012).
In (Xu and Qu, 2019), the authors construct three
classes of minimal linear codes over finite fields.
Even if the Ashikhmin-Barg inequality is not satis-
fied, another method allows for the construction of a
minimal code (Chang and Hyun, 2018; Ding et al.,
2018). On the other hand, Chang and Hyun have pre-
sented a method for constructing a class of minimal
binary linear codes that violate the Ashikhmin-Barg
inequality by using Boolean functions derived from
mathematical objects known as simplicial complexes.
Another necessary and sufficient condition presented
in (Ding et al., 2018) allows for the generation of
three infinite classes of minimal binary linear codes,
which are based on the Walsh-Hadamard transform of
a Boolean function. The work also demonstrates that
these three classes of minimal binary linear codes vi-
olate the Ashikhmin-Barg inequality.

1.1 Motivations and Contributions

Our proposed MICODE has the following contribu-
tions.

• Minimal Code Construction with a Large Min-
imum Distance: Our proposed minimal code

(MICODE) constructs a minimal linear code with
a large minimum distance, a property essential for
secret sharing schemes (SSS). Unlike Ding’s min-
imal code (Ding et al., 2018), MICODE achieves
a higher minimum distance, enhancing both the
security and robustness of SSS applications. Our
approach leverages the structured properties of
RM codes, where the minimum distance is well-
defined. Given the generator matrix of an RM
code, we recursively reduce the maximum Ham-
ming weight by applying a puncturing scheme to
one-weight columns and their corresponding rows
until the Ashikhmin-Barg inequality is satisfied.
This ensures that the resulting code remains min-
imal while maintaining the same minimum dis-
tance as the original RM code

• Ideal and Perfect SSS: Our contribution presents
a perfect and ideal code-based secret sharing
scheme based on the dual of the generated min-
imal code. The scheme ensures that only au-
thorized participants can reconstruct the secret,
while unauthorized sets learn nothing. It is effi-
cient and easy to implement, as all minimal ac-
cess sets have the same size, similar to Shamir’s
SSS (Shamir, 1979). However, our approach of-
fers significant advantages over Shamir’s SSS,
including fine-grained access control, enhanced
security, customizable access structures, and re-
silience to share compromise, making it partic-
ularly suitable for applications requiring specific
access rules and higher security.

1.2 Paper Organization

We organize the rest of the paper in the following
sections. Section 2 provides general definitions con-
cerning linear codes, how to construct a Reed-Muller
code, and minimal code characteristics. Section 3 in-
troduces MICODE and explains the steps of generat-
ing a minimal code from the Reed-Muller code. Sec-
tion 4 shows an application of MICODE in SSS. It
describes a perfect Massey’s secret sharing based on
the generated minimal code and the number of possi-
ble minimal access sets. The last section of the paper
concludes the paper.

2 AN OVERVIEW OF
REED-MULLER CODES AND
MINIMAL CODES

Let Fq be a finite field of q elements. An [n,k]q q−ary
code C is a k−dimensional subspace of the vector
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space Fn
q such that the sum of any two codewords

u,v ∈C produces another codeword c = u+ v ∈C.
Definition 1 (Hamming weight). Let v =
(v0, ...,vn−1) ∈ Fn

q be a vector, then the Ham-
ming weight wH(v) of v is the number of its non-zero
coordinates.

wH(v)
∆
= |{i | vi ̸= 0}|. (1)

Definition 2 (Hamming distance). The Hamming dis-
tance dH between two vectors u,v ∈ Fn

q is defined by:

dH(u,v)
∆
= |{i | ui ̸= vi}|. (2)

A [n,k,d] code C is a linear code in which the Ham-
ming distance between any two distinct codewords is
at least d.
Definition 3 (Support of a vector). The support of a
vector v ∈ Fn

q is the set of indices of its nonzero coor-
dinates.

Supp(v) ∆
= {i | vi ̸= 0, 0≤ i≤ n−1}. (3)

Let C be a linear code, we say that a codeword c ∈C
covers a codeword c′ ∈ C if and only if Supp(c′) ⊆
Supp(c).
Definition 4 (Evaluation function). Consider
the polynomial ring Fp = [x0, ...,xp−1]/(x2

0 −
x0, ...,x2

p−1− xp−1) with p variables, and F2 = {0,1}
is a binary field. The elements of Fp

2 are ordered in
decreasing index order. Let n = 2p, the evaluation
function of a monomial g ∈ Fp is the evaluation
function Eval(g) at all n vectors of Fp

2 .

Eval : g ∈ Fp→ (g(v))v∈Fp
2
. (4)

Example 1. Table 1 displays the evaluation of all the
monomials with 3 variables and degree less than or
equal to 2.

Table 1: The evaluation of all monomials with 3 variables
and degree less than or equal to 2 (Abbe et al., 2020).

Eval(1) 1 1 1 1 1 1 1 1
Eval(x1x2) 1 1 0 0 0 0 0 0
Eval(x0x2) 1 0 1 0 0 0 0 0
Eval(x0x1) 1 0 0 0 1 0 0 0
Eval(x2) 1 1 1 1 0 0 0 0
Eval(x1) 1 1 0 0 1 1 0 0
Eval(x0) 1 0 1 0 1 0 1 0

Definition 5 (Reed-Muller code). The r-th order bi-
nary Reed-Muller code RM(p,r) code is defined by
evaluating all p−variate monomials with degree less
than or equal to r.

RM(p,r) ∆
= {Eval(g) | g ∈ Fp, deg(g)≤ r}. (5)

The code parameters of an RM(p,r) code are as
follows:

• Code length: 2p.
• Code dimension: ∑

r
i=0

(p
i

)
.

• Minimum distance: 2p−r.
Example 2. The RM(3,1) is defined by the evalua-
tion of all 3−variate monomials of degree less than
or equal to 1 (Abbe et al., 2020).

GRM(3,1) =

Eval(x2)
Eval(x1)
Eval(x0)
Eval(1)

=

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Definition 6 (Minimal codeword (Ding and Salomaa,
2006)). Let [n,k]q be a linear code over Fq. A non-
zero codeword c ∈ C is minimal if it does not cover
any other codeword c′ ∈C.
Definition 7 (Minimal code (Ding and Salomaa,
2006)). A code C is minimal if all of its non-zero
codewords are minimal.
Lemma 1 (Ashikhmin-Barg (Ashikhmin and Barg,
1998)). An [n,k,d]q code C is minimal if:

Wmin

Wmax
>

q−1
q

. (6)

Wmin and Wmax denote the non-zero minimum-weight
codeword and the miximum-weight codeword in C, re-
spectively.

3 OUR PROPOSAL: MICODE

In this section, we introduce our algorithm for con-
structing a minimal code from the Reed-Muller code.
We use the upper bound described in (Ball and
Blokhuis, 2013) to compute the maximum weight
Wmax for a linear code such that the Hamming dis-
tance is preserved in the resulting minimal code.
Theorem 1. Let C be an [n,k,d]q code such that q
is prime, then the maximum weight Wmax fulfils (Ball
and Blokhuis, 2013)

Wmax ≤ (n−d)q− e(q−1), (7)

where e ∈ {0,1, ...,k− 2} is the maximal integer sat-
isfying: (

n−d
e

)
̸≡ 0 (mod qk−1−e). (8)

Our algorithm is a recursive algorithm that pro-
duces a minimal code from a binary RM code of
length n, dimension k, and minimum distance d. It
takes a generator matrix G at each instance and ver-
ifies the Ashikhmin-Barg condition to ensure mini-
mality, such that the Hamming distance remains un-
changed. At each instance for a given G, our algo-
rithm searches for all columns with Hamming weights
of one, then:
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• If the computed columns are all different: it
deletes one column and one row in such a way that
the deleted row has the greatest Hamming weight
and the intersection of the deleted row and column
is one.

• If at least two columns match: it deletes all match-
ing columns as well as the corresponding row,
which is indexed by the position of their non-zero
coordinates.

• This process is repeated until the generator matrix
satisfies the Ashikhmin-Barg condition for mini-
mality, specifically d

Wmax
> 1

2 .

Algorithm 1 describes in detail how to generate mini-
mal code from a RM code.

Example 3. Suppose the RM(4,2) code generated by
the generator matrix GRM(4,2).

GRM(4,2)=



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


• Step 1: There is only one column of Hamming

weight 1, we remove the last column (column 15)
and the last row (row 10).

G1 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


• Step 2: Following (Ball and Blokhuis, 2013), we

compute Wmax of the code generated by G1. Given
n1 = 15,k1 = 10, and d = 4, we obtain Wmax ≤ 14
for e = 8.

• Step 3: We compute ( d
Min(n1,Wmax)

) = 4
14 =

0.2857 < 1
2 . We proceed to the next step.

• Step 4: The columns {7,11,13,14} have Ham-
ming weight 1, then I = {7,11,13,14} and T =
{Supp(g7),Supp(g11),Supp(g13),Supp(g14)} =

Input: Generator matrix G of [n,k,d]-RM code C
Output: A generator matrix Gm of a minimal

code
Function Puncture(G):

n← Number of columns of G ;
k← Number of rows of G ;
n′← n;
k′← k;
Wmax← n;
I← /0 ;
T ← /0 ;
for j← 0 to n−1 do

if wH(g j) = 1 then
I← I∪{ j} ;

end
end
for i← 0 to k−1 do

T ←{T ∪ i | Gi, j = 1,∀ j ∈ I} ;
end
R(T )← The rows of G indexed by T ;
ℏℓ ⊆ I ← {x1, . . . ,xm |Supp(gx1) = · · ·=
Supp(gxm) = ℓ,0≤ x1 < x2 < ...≤ m < n} ;
if |ℏℓ|> 1 then

Delete the row indexed by ℓ from G;
Delete the columns indexed by ℏℓ from
G;
n′ ← n−|ℏℓ| ;
k′ ← k−1 ;
Wmax ← Max weight([n′,k′,d]) (Ball and
Blokhuis, 2013) ;

else
rmax← r ∈ R(T ) | wH(r)≥ r′,∀r′ ∈ R(T )

;
for j← 0 to n−1 do

g′←{g j | rmax∩g j = 1, j ∈ I } ;
end
Delete the row rmax from G;
Delete the column g′ from G;
n′ ← n−1;
k′ ← k−1;
Wmax ← Max weight([n′,k′,d]) (Ball and
Blokhuis, 2013);

end
if (d/(Min(Wmax,n′))> 1

2 ) then
return Gm = G

else
Puncture(G)

end
End Function

Algorithm 1: Constructing Minimal code from RM(p,r).

{3,6,8,9}. Since all the rows indexed by T have
the same Hamming weight, we can remove either
(row 3 and column 7), (row 6 and column 11),
(row 8 and column 13), or (row 9 and column 14).
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Let us take the first case.

G2 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


• Return to steps 2 and 3, Wmax ≤ 14 for

n2 = 14,k2 = 9, and d = 4. We compute
( d

Min(n2,Wmax)
) = 4

14 = 0.2857 < 1
2 . We proceed to

the next step.
• Step 5: I = {10,12,13} and T =
{Supp(g10),Supp(g12),Supp(g13)} = {5,7,8}.
Since all the rows indexed by T have the same
Hamming weight, we can remove either (row 5
and column 10), (row 7 and column 12), or (row
8 and column 13). Let us take the first case.

G3 =



1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0 0
1 1 1 1 0 0 0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1


• Return to steps 2 and 3, Wmax ≤ 13 for

n3 = 13,k3 = 8, and d = 4. We compute
( d

Min(n3,Wmax)
) = 4

13 = 0.3077 < 1
2 . We proceed to

the next step.
• Step 6: I = {3,11,12} and T =
{Supp(g3),Supp(g11),Supp(g12)} = {0,6,7}.
Since the row 0 has a weight 4 and rows {6,7}
have weights 8, we can remove either (row 6 and
column 11) or (row 7 and column 12). Let us
remove (row 6 and column 11).

G4 =



1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 1 0 1 1 0 1 1 0
1 0 1 0 1 0 1 1 0 1 1 0 1


• Return to steps 2 and 3, Wmax ≤ 12 for

n4 = 12,k4 = 7, and d = 4. We compute

( d
Min(n4,Wmax)

) = 4
12 = 0.3333 < 1

2 . We proceed to
the next step.

• Step 7: I = {3,5,8,11} and T = {0,1,3,6}. The
rows {0,1,3} have Hamming weight 4 and the
row 6 has Hamming weight 8. We must remove
(row 6 and column 11), we obtain:

G5 =



1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0
1 0 1 0 1 0 1 1 0 1 1 1


• Return to steps 2 and 3, Wmax ≤ 10 for

n5 = 11,k5 = 6, and d = 4. We compute
( d

Min(n5,Wmax)
) = 4

10 = 0.4 < 1
2 . We proceed to the

next step.
• Step 8: I = {3,5,6,8,9,10} and T =
{0,1,2,3,4,5}. All rows indexed to T have
Hamming weight 4. We can remove either (row
0 and column 3), (row 1 and column 5), (row 2
and column 6), (row 3 and column 8), (row 4
and column 9), or (row 5 and column 10). Let us
remove (row 0 and column 3), then we obtain:

G6 =


1 1 1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 1 0 0 1


• Return to steps 2 and 3, Wmax ≤ 10 for

n6 = 10,k6 = 5, and d = 4. We compute
( d

Min(n6,Wmax)
) = 4

10 = 0.4 < 1
2 . We proceed to the

next step.
• Step 9: I = {4,5,7,8,9} and T = {0,1,2,3,4}.

All rows indexed to T have Hamming weight 4.
We can remove either (row 0 and column 4), (row
1 and column 5), (row 2 and column 7), (row 3
and column 8), or (row 4 and column 9). Let us
remove (row 0 and column 4), then we obtain:

G7 =


1 1 0 1 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1


• Return to steps 2 and 3, Wmax ≤ 9 for n7 = 9,k7 =

4, and d = 4. We compute ( d
Min(n7,Wmax)

) = 4
9 =

0.444 < 1
2 . We proceed to the next step.
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• Step 10: I = {1,4,6,7,8} and T = {0,1,2,3}.
Two columns are identical (1 and 6) and have 1 in
position 1, so ℏ1 = {1,6}. We must remove (row
1, column 1 and column 6), then we obtain:

G8 =

1 0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0
1 0 1 0 0 1 0 1 0
1 0 0 1 0 1 0 0 1


• Return to steps 2 and 3, Wmax ≤ 5 for n8 = 7,k8 =

3, and d = 4. We compute ( d
Min(n8,Wmax)

) = 4
5 =

0.8 > 1
2 . Therefore, G8 is a valid generator matrix

of a minimal code of length n = 7, dimension k =
3, and minimum distance d = 4.

Proposition 1. For any RM(p,r) code of length n,
dimension k and minimum distance d there exists an
minimal code of length n′ ≤ n, dimension k′ ≤ k and
minimum distance d such that:

• If p = r, then n′ = k′ = 1.
• If r = 0 and p > 0, then k = k′ = 1 and n′ = n.
• If 0 < r < p, then k′ ≥ 2 and n′ < n.

Proof. If p = r, the RM(p,r) code’s generator ma-
trix G is formed by the evaluation vectors of all the
p−variate monomials, i.e. n = k, implying the exis-
tence of the row (1,0, ...,0) in the generator matrix G
and that its support is covered by all the other k− 1
rows. As a result, all of the remaining k− 1 rows
and n−1 columns (g1,g2, ...gn−1) must be deleted. If
r = 0 and p > 0, then the RM(p,r) has only one non-
zero codeword which is minimal, so k = k′ = 1 and
n′ = n.
If 0 < r < p, then the RM(p,r) code contains at least
two codewords of weight d = 2p−r. Let G(i) be the
matrix produced by our algorithm at instance i, if the
removed row from G(i) has a weight d, then no code-
word of a weight greater than d exists. If G(i) has two
rows, they must have the same weight and have ”1” in
the first position, this means d

W (i)
max

> 1
2 .

Proposition 2 (Maximum number of iterations). Let
C be an [n,k,d]2 RM(p,r) code, 0 < r < p and C′

the generated [n′,k′,d]2 minimal code. The maximum
number of iterations Imax required to move from code
C to code C′ is the smallest integer i that satisfies:

n− e′

2
−2d < i, 0≤ i≤ k−2 (9)

Such that e′ ∈ {0, ...,k− i−2} is the maximum integer
that satisfies:(

n− i−d
e′

)
̸≡ 0 (mod 2k−i−1−e′). (10)

Proof. Let W ′max be the maximum Hamming weight
in C′. According to equations 6 and 7 we have:

W ′max ≤ 2(n′−d)− e′ < 2d

Such that e ∈ {0, ...,k′ − 2} is the maximum inte-
ger that satisfies

(n′−d
e′

)
̸≡ 0 (mod 2k′−1−e′). In the

worst-case scenario, our algorithm allows us to delete
only one column and one row for each instance where
condition 6 is not met. Assume that the produced
code is minimal after i iterations, which means that
n′ = (n− i) and k′ = (k− i) resulting in the following:

2(n− i−d)− e′ < 2d

2n−2i−4d− e′ < 0

n−2d− e′

2
< i

Because 0< r < p, the dimension of the minimal code
produced must be at least two. As a result, the small-
est integer i that solves the preceding equation is the
maximum number of iterations.

Definition 8. A [n,k,d]-binary simplex code is a
linear code characterized by the following proper-
ties (Helleseth et al., 2004):

• The minimum distance d = 2k−1, where k is the
dimension the code.

• The code length n = 2k−1 = 2d−1.
• All of its nonzero codewords have Hamming

weights equal to d.

Proposition 3. By recursively puncturing a Reed-
Muller (RM) code’s generator matrix using the pro-
posed algorithm based on the Ashikhmin-Barg in-
equality, the resulting MICODE is equivalent to a bi-
nary simplex code.

Proposition 4. Any Reed-Muller code of minimum
distance d generates a MICODE of length n′ = 2d−1
and dimension k′ = log2(d)+1.

Proof. Given a Reed-Muller code of minimum dis-
tance d, the minimal code generated by our algo-
rithm is equivalent to a simplex code. Since the min-
imum distance is preserved in the generated minimal
code, and the length and dimension of a simplex code
are determined by its minimum distance d, it fol-
lows that any RM code with minimum distance d,
irrespective of its original length and dimension, pro-
duces a minimal code with parameters n′= 2d−1 and
k′ = log2(d)+1 under our construction.

Table 2 displays the minimal code parameters de-
rived from a set of Reed-Muller codes, as well as the
number of iterations I required to move from C to C′.
The importance of the minimum distance of a code
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Table 2: The generated minimal code from the original Reed-Muller code.

The original Reed-Muller code The generated minimal code I ImaxRM(m,r) n k d n′ k′ d
RM(3,1) 8 4 4 7 3 4 1 1
RM(3,2) 8 7 2 3 2 2 5 5
RM(4,1) 16 5 8 15 4 8 1 1
RM(4,2) 16 11 4 7 3 4 8 9
RM(5,1) 32 6 16 31 5 16 1 1
RM(5,2) 32 16 8 15 4 8 12 14
RM(5,3) 32 26 4 7 3 4 23 24
RM(5,4) 32 31 2 3 2 2 29 29
RM(6,1) 64 7 32 63 6 32 1 1
RM(6,2) 64 22 16 31 5 16 17 20
RM(6,3) 64 42 8 15 4 8 38 40
RM(7,1) 128 8 64 127 7 64 1 1
RM(7,2) 128 29 32 63 6 32 23 27
RM(7,3) 128 64 16 31 5 16 59 62
RM(7,4) 128 99 8 15 4 8 95 97
RM(8,2) 256 37 64 127 7 64 30 35
RM(8,3) 256 93 32 63 6 32 87 91
RM(8,6) 256 247 4 7 3 4 244 245

RM(10,2) 1024 56 256 511 9 256 47 54
RM(10,3) 1024 176 128 255 8 128 168 174
RM(11,2) 2048 67 512 1023 10 512 57 65

is widely recognized in the context of error correc-
tion and detection. A large minimum distance en-
hances the error-correcting capability of a code. How-
ever, the minimal codes derived in our work tend to
have a large minimum distance at the expense of a re-
duced code rate. This trade-off makes such minimal
codes less practical for real-time communication sys-
tems, where achieving a balance between error perfor-
mance and code rate is crucial. While our MICODE
may have limited practicality for real-time communi-
cation due to its poor code rate, offers a large mini-
mum distance, making it ideal for cryptographic ap-
plications, such as Massey’s secret sharing (Massey,
1993; Massey, 1995). We will show how MICODE
can enhance the security of such schemes.

4 PROPOSED MASSEY SCHEME
BASED ON MICODE

This section describes Massey’s secret sharing
scheme (Massey, 1993; Massey, 1995). We define the
minimal access structure of the secret sharing based
on the dual of the generated MICODE and the num-
ber of authorized minimal access sets.

4.1 Massey’s Secret Sharing

Consider P = {p1, ..., pn−1} to be a set of n− 1 par-
ticipants, Γ ⊆ 2P to be the collection of all access
sets known as the access structure and Γm ⊂ Γ to
be the collection of all minimal access sets known
as the minimal access structure. The Massey’s se-
cret sharing works as follows: Let C be an [n,k]q lin-
ear code over Fq and G = [g0, ...,gn−1] its generator
matrix. Let s ∈ Fq be the secret and m ∈ Fk

q be the
message vector that satisfies s = mg0. In the secret
sharing based on C the dealer computes s = mG =
(s,s1, ...,sn−1), and then each participant pi receives
the share si, i = {1, ...,n−1}.

A group of participants {pi1 , pi2 , ..., pit} can re-
cover s if and only if g0 is a linear combination of
{gi1 ,gi2 , ...,git}, 0 < i1 < ... < it ≤ n− 1, i.e. there
exists a codeword c′ = (1,0, ..,c′i1 , ...,0, ...,c

′
it , ...,0)∈

C⊥ provided c′i j
̸= 0 for at least one j. If there exists

such a codeword, then the secret s can be computed
as follows (Ding and Yuan, 2003):

• Determine x = (x1, ...,xt) by solving

t

∑
j=1

x jgi j = g0. (11)
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• Then compute

s =
t

∑
j=1

x jsi j . (12)

Theorem 2. Let C be a binary RM(p,r) code and C′

the [n′,k′,d] MICODE generated from C. There are
2k′−1 minimal access sets in the SSS based on C′

⊥
.

Proof. Assume G′ is the generator matrix of the gen-
erated binary [n′,k′,d] minimal code, and each row of
G′ has one in the first coordinate; there are 2k′ min-
imal codewords. According to (Massey, 1993) each
minimal codeword whose first coordinate equal to one
is a minimal access set; thus, each information vector
m with an odd number of non-zero coordinates pro-
duces a minimal codeword with the first coordinate
equal to one. Thus, there are 2k′−1 minimal code-
words with the first coordinate equal to one from all
possible 2k′ information vectors, implying 2k′−1 min-
imal access sets.

Definition 9 (Dictatorial participant). Let P =
{p1, ..., pn−1} be a set of n− 1 participants. A par-
ticipant pi,0 < i < n is called dictatorial if it serves
in every minimal access set (Ding and Yuan, 2003).
Theorem 3. Let G= [g0, ...,gn−1] be a generator ma-
trix of a [n,k]q minimal code, and P = {p1, ..., pn−1}
is the set of participants. If gi,0 < i < n is a multiple
of g0, then the participant pi is dictatorial. Otherwise,
if gi is not a multiple of g0, the participant must be in
(q− 1)qk−2 out of the qk−1 possible minimal access
sets (Ding and Yuan, 2003).
Remark 1. In our proposal, the target code is a bi-
nary Reed-Muller C, and the generated minimal code
C′ is also binary, which means that all the columns
of C′ are distinct and no column is a multiple of the
other, implying that no dictatorial participant exists.
It is worth noting that each participant pi ∈ P,0 < i <
n appears in 2k−2 out of the 2k−1 possible minimal ac-
cess sets.
Example 4. Suppose the generator matrix G8 of
the [7,3,4]-minimal code C′. In the SSS based on
C′
⊥

, from the set of shares {s1, ...,s6}, the 4 pos-
sible minimal access sets are: {1,2,3}, {1,4,5},
{2,4,6},{3,5,6}
Example 5. Table 3 shows the minimal access sets
corresponding to some of the generated MICODEs.

5 ANALYSIS AND EVALUATION

The security of Massey secret sharing based on a code
C depends significantly on the minimum distance of

C⊥. A. Renvall and C. Ding have demonstrated the
following theorem in their publisher paper (Renvall
and Ding, 1996).
Theorem 4. If G is a generator matrix of a [n,k]q
linear code over Fq, then any coalition of d⊥− 2 or
fewer participants cannot determine the secret in the
secret sharing scheme based on C for Massey con-
struction, and there is at least a group of d⊥−1 par-
ticipants that can recover the secret, where d⊥ is the
minimum distance of the dual code of C.

Thus, the access structure and security of the
Massey secret sharing scheme are entirely dependent
on the structure of the dual code C⊥. As a result, the
access structure in our proposal is defined by the gen-
erated [n′,k′,d]-MICODE. For meaningful security, it
should consider the minimum distance d of the gen-
erated minimal code. An attacker should be unable to
reconstruct the secret if they possess fewer than d−1
shares. Nevertheless, there is a scenario where the
attacker can find a specific set of d−1 shares that re-
veals the secret. By finding a solution x = (x1, ...,xt)
that satisfies the equation 11 where wH(x) = d−1, the
attacker can successfully determine the secret through
2d−1 possible guesses. As a result, a code with a
high minimum distance is preferable for secret shar-
ing because it ensures that the secret is secure even
if some of the shares are compromised. This asser-
tion strengthens the superiority of our proposed mini-
mal code over certain existing works, like the one pre-
sented in (Ding et al., 2018). For example, in (Ding
et al., 2018), the authors introduced a minimal code
with length 63 and minimum distance 14. In contrast,
our proposed minimal code achieves a minimum dis-
tance of 32 with the same code length. Table 4 pro-
vides a comparative analysis between our proposed
minimal code and the one presented in (Ding et al.,
2018) for various code lengths.
Proposition 5. In the SSS based on the dual of our
MICODE, all the minimal access sets have the same
size.

Proof. All nonzero codewords of a simplex code have
the same Hamming weight. Since our MICODE
is equivalent to a simplex code, it follows that in
the secret sharing scheme based on the dual of our
MICODE, all minimal access sets have the same
size.

5.1 Comparison of Our Secret Sharing
Scheme with Shamir’s Scheme

This section compares our secret sharing scheme with
Shamir’s Secret Sharing (Shamir, 1979), emphasiz-
ing key advantages. Although Shamir’s scheme is
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Table 3: The minimal access sets corresponding to some of the generated MICODEs.
MICODE
[n′,k′,d] Minimal Access Sets

[3,2,2] {2}, {1}
[7,3,4] {2,4,6}, {1,4,5}, {1,2,3}, {3,5,6}
[15,4,8] {2,4,6,8,10,12,14}, {1,4,5,8,9,12,13}, {1,2,3,8,9,10,11}, {3,5,6,8,11,13,14}, {1,2,3,4,5,6,7},

{3,4,7,9,10,13,14}, {2,5,7,9,11,12,14}, {1,6,7,10,11,12,13}
[31,5,16] {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30}, {1,4,5,8,9,12,13,16,17,20,21,24,25,28,29},

{1,2,3,8,9,10,11,16,17,18,19,24,25,26,27}, {3,5,6,8,11,13,14,16,19,21,22,24,27,29,30},
{1,2,3,4,5,6,7,16,17,18,19,20,21,22,23}, {3,4,7,9,10,13,14,16,19,20,23,25,26,29,30},
{2,5,7,9,11,12,14,16,18,21,23,25,27,28,30}, {1,6,7,10,11,12,13,16,17,22,23,26,27,28,29},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, {3,4,7,8,11,12,15,17,18,21,22,25,26,29,30},
{2,5,7,8,10,13,15,17,19,20,22,25,27,28,30}, {1,6,7,8,9,14,15,18,19,20,21,26,27,28,29},
{2,4,6,9,11,13,15,17,19,21,23,24,26,28,30}, {1,4,5,10,11,14,15,18,19,22,23,24,25,28,29},
{1,2,3,12,13,14,15,20,21,22,23,24,25,26,27}, {3,5,6,9,10,12,15,17,18,20,23,24,27,29,30}

[63,6,32] {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62},
{1,4,5,8,9,12,13,16,17,20,21,24,25,28,29,32,33,36,37,40,41,44,45,48,49,52,53,56,57,60,61},
{1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35,40,41,42,43,48,49,50,51,56,57,58,59},
{3,5,6,8,11,13,14,16,19,21,22,24,27,29,30,32,35,37,38,40,43,45,46,48,51,53,54,56,59,61,62},
{1,2,3,4,5,6,7,16,17,18,19,20,21,22,23,32,33,34,35,36,37,38,39,48,49,50,51,52,53,54,55},
{3,4,7,9,10,13,14,16,19,20,23,25,26,29,30,32,35,36,39,41,42,45,46,48,51,52,55,57,58,61,62},
{2,5,7,9,11,12,14,16,18,21,23,25,27,28,30,32,34,37,39,41,43,44,46,48,50,53,55,57,59,60,62},
{1,6,7,10,11,12,13,16,17,22,23,26,27,28,29,32,33,38,39,42,43,44,45,48,49,54,55,58,59,60,61},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47},
{3,4,7,8,11,12,15,17,18,21,22,25,26,29,30,32,35,36,39,40,43,44,47,49,50,53,54,57,58,61,62},
{2,5,7,8,10,13,15,17,19,20,22,25,27,28,30,32,34,37,39,40,42,45,47,49,51,52,54,57,59,60,62},
{1,6,7,8,9,14,15,18,19,20,21,26,27,28,29,32,33,38,39,40,41,46,47,50,51,52,53,58,59,60,61},
{2,4,6,9,11,13,15,17,19,21,23,24,26,28,30,32,34,36,38,41,43,45,47,49,51,53,55,56,58,60,62},
{1,4,5,10,11,14,15,18,19,22,23,24,25,28,29,32,33,36,37,42,43,46,47,50,51,54,55,56,57,60,61},
{1,2,3,12,13,14,15,20,21,22,23,24,25,26,27,32,33,34,35,44,45,46,47,52,53,54,55,56,57,58,59},
{3,5,6,9,10,12,15,17,18,20,23,24,27,29,30,32,35,37,38,41,42,44,47,49,50,52,55,56,59,61,62},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31},
{3,4,7,8,11,12,15,16,19,20,23,24,27,28,31,33,34,37,38,41,42,45,46,49,50,53,54,57,58,61,62},
{2,5,7,8,10,13,15,16,18,21,23,24,26,29,31,33,35,36,38,41,43,44,46,49,51,52,54,57,59,60,62},
{1,6,7,8,9,14,15,16,17,22,23,24,25,30,31,34,35,36,37,42,43,44,45,50,51,52,53,58,59,60,61},
{2,4,6,9,11,13,15,16,18,20,22,25,27,29,31,33,35,37,39,40,42,44,46,49,51,53,55,56,58,60,62},
{1,4,5,10,11,14,15,16,17,20,21,26,27,30,31,34,35,38,39,40,41,44,45,50,51,54,55,56,57,60,61},
{1,2,3,12,13,14,15,16,17,18,19,28,29,30,31,36,37,38,39,40,41,42,43,52,53,54,55,56,57,58,59},
{3,5,6,9,10,12,15,16,19,21,22,25,26,28,31,33,34,36,39,40,43,45,46,49,50,52,55,56,59,61,62},
{2,4,6,8,10,12,14,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,48,50,52,54,56,58,60,62},
{1,4,5,8,9,12,13,18,19,22,23,26,27,30,31,34,35,38,39,42,43,46,47,48,49,52,53,56,57,60,61},
{1,2,3,8,9,10,11,20,21,22,23,28,29,30,31,36,37,38,39,44,45,46,47,48,49,50,51,56,57,58,59},
{3,5,6,8,11,13,14,17,18,20,23,25,26,28,31,33,34,36,39,41,42,44,47,48,51,53,54,56,59,61,62},
{1,2,3,4,5,6,7,24,25,26,27,28,29,30,31,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55},
{3,4,7,9,10,13,14,17,18,21,22,24,27,28,31,33,34,37,38,40,43,44,47,48,51,52,55,57,58,61,62},
{2,5,7,9,11,12,14,17,19,20,22,24,26,29,31,33,35,36,38,40,42,45,47,48,50,53,55,57,59,60,62},
{1,6,7,10,11,12,13,18,19,20,21,24,25,30,31,34,35,36,37,40,41,46,47,48,49,54,55,58,59,60,61}

Table 4: Our MICODE vs. the minimal code presented
in (Ding et al., 2018).

The minimal code
(Ding et al., 2018) Our MICODE

n k d n k d
63 7 14 63 6 32

127 8 52 127 7 64
255 9 60 255 8 128
511 10 224 511 9 256
1023 11 248 1023 10 512

commonly used for threshold-based secret sharing, it
lacks flexibility in access structure design and does
not inherently provide enhanced security for appli-
cations requiring strict security and customizable ac-
cess policies. Furthermore, Shamir’s scheme requires
that the field Fq be larger than the number of shares
n. Consequently, each share must be represented us-
ing at least log2(n) bits, resulting in inefficiencies in
both communication and storage. Table 5 provides a
detailed comparison, highlighting key differences be-
tween the two schemes.

MICODE: A Minimal Code Design for Secret Sharing Scheme

389



Table 5: Our Secret Sharing vs. Shamir’s Secret Sharing (Shamir, 1979).

Scheme Our scheme Shamir’s scheme
Mathematical Basis Linear algebra and coding theory Polynomial interpolation over finite field

Fq
Access Structure Flexible (based on [n,k,d] MICODE) Fixed threshold k (any k or more shares)
Share Size (Bits) 1 O(logn)
Secret Reconstruc-
tion

Requires exactly d− 1 out of n− 1 shares
(only those in the minimal access set)

Requires at least k out of n shares

Resilience to Share
Compromise

More resilient (secret remains secure un-
less specific shares are compromised)

Less resilient (secret can be reconstructed
if any k shares are compromised)

6 CONCLUSIONS

The main goals of this paper are to generate a min-
imal code from a Reed-Muller code with good and
flexible parameters and then to derive a secret sharing
scheme from the generated minimal code. There are
some existing works to determine the minimal code-
words, i.e. (solving the covering problem), in a spe-
cific class of codes, such as the Reed-Muller code.
However, in the case of Reed-Muller code, this has
only been solved for the second-order binary Reed-
Muller code, and the problem for general code, in-
cluding Reed-Muller code, remains difficult. In con-
trast, we have used the Ashikhmin-Barg inequality
to efficiently construct a minimal code (called MI-
CODE) from the Reed-Muller code while preserving
the minimum distance. While our MICODE exhibits
a reduced code rate, it offers substantial advantages
for cryptographic applications, particularly in secret
sharing schemes like Massey’s secret sharing, where
the emphasis is on enhancing security through a large
minimum distance, rather than optimizing for high-
rate communication.

This work opens up new possibilities for enhanc-
ing the security of SSS protocols by using codes with
large minimum distances. Future work could focus on
further improving the construction techniques to opti-
mize the code rate while maintaining a high minimum
distance. Additionally, exploring the application of
these minimal codes in other cryptographic contexts,
such as secure multiparty computation, would offer
valuable insights into their broader applicability.
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