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Abstract: Fraud detection in motor insurance is investigated with the implementation and comparison of various tree-
based learning methods subject to different data balancing approaches. A dataset obtained from the insurance
industry will be used. The focus is on decision trees, random forests, gradient boosting machines, light gradient
boosting machines and XGBoost. Due to the highly imbalanced nature of our dataset, synthetic minority
oversampling and cost-sensitive learning approaches will be used to address this issue. A study aimed at
comparing the two data-balancing approaches is novel in literature, and this study concludes that cost-sensitive
learning is overall superior for this application. The light gradient boosting machine using cost-sensitive
learning is the most effective method, achieving a balanced accuracy of 81% and successfully identifying 83%
of fraudulent cases. For the most successful approach, the primary insights into the most important features
are provided. The findings derived from this study provide a useful evaluation into the suitability of tree-based
learners in the field of insurance fraud detection, and also contribute to the current development of useful tools
for correct classification and the important features to be addressed.

1 INTRODUCTION

Motor insurance is an essential component of the
automotive industry, as it offers financial protection
to vehicle owners against potential losses stemming
from accidents, theft, or other unexpected incidents.
As the auto insurance market continues to expand, it
inevitably attracts fraudulent activities, leading to a
surge in the number of motor insurance fraud cases
(Hashmi et al., 2018). Insurance fraud is a deceptive
practice that often carries the false perception of be-
ing a victimless crime. In reality, it adversely affects
not only the insurance industry, but all policyholders.
When insurance companies incur losses due to fraud-
ulent claims, they often have to increase premiums
to compensate for the financial impact. This results
in higher costs for all policyholders, including those
who have never engaged in fraudulent activities.

In recent years, motor insurance fraud has become
a significant concern, with statistics demonstrating
the growing scale of the problem. According to the
Federal Bureau of Investigation, in the United States,
insurance fraud, excluding health insurance, amounts
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to approximately $40 billion per year, increasing the
average family’s insurance premium by $400 to $700
annually, (Gomes et al., 2021). This highlights the
significant impact of motor insurance fraud on the in-
dustry and policyholders, necessitating effective fraud
detection and prevention strategies to protect honest
policyholders and create a sustainable market (Harg-
reaves and Singhania, 2015).

Traditional fraud detection methods, which relied
heavily on extensive auditing and manual investiga-
tion, have been demonstrated to be both costly and
inefficient (Nian et al., 2016). As a result, insurance
companies are increasingly adopting statistical and
data analysis techniques to enhance their fraud de-
tection capabilities (Kemp, 2010). Statistical learning
theory emerged in the 1960s, but practical algorithms
developed in the 1990s (Vapnik, 2000). These ad-
vanced methods offer innovative fraud detection solu-
tions, aiding insurers in mitigating losses and protect-
ing policyholders and offer promising solutions for
fraud detection, surpassing classical statistical meth-
ods like logistic regression. (Aslam et al., 2022),
(Al-Hashedi and Magalingam, 2021)), (Phua et al.,
2004) introduced a novel fraud detection method for
skewed data, employing NN, Naı̈ve Bayes (NB) and
DT algorithms on minority oversampled data. The
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approach combines stacking and bagging to enhance
cost savings, using a fixed cost matrix. Stacking-
bagging techniques achieved marginally higher cost
savings compared to other widely used techniques.
(Bhattacharyya et al., 2011) used logistic regression,
support vector machines and random forests to detect
credit card fraud .

With the advent of big data, a number of reviews
demonstrate that classification algorithms, particu-
larly supervised techniques, have been widely utilized
in motor insurance fraud detection. The review by
(Ngai et al., 2011) has shown that while logit and pro-
bit regression models remain popular, more complex
algorithmic methods like neural networks, tree-based
methods, and Bayesian belief networks are increas-
ingly being used. This trend is further corroborated by
the more recent review from (Al-Hashedi and Maga-
lingam, 2021), which highlights the growing promi-
nence of statistical learning techniques such as ran-
dom forest, naı̈ve Bayes, support vector machines,
K-Nearest Neighbour (KNN) and Gradient Boosting
Machine (GBM) learners. Furthermore, the imbal-
ance problem is well described by (He and Garcia,
2009), who identified cost-sensitive learning and syn-
thetic minority oversampling methods as viable solu-
tions.

The main aim of this study is to focus on a number
of tree-based learning classification methods to a data
set provided by an anonymous insurance company
which contains 159045 countrywide insurance claims
of which 3199 (2.01%) are fraudulent. The original
dataset has 95 variables (including the target variable)
which include, age and gender of claimant, date and
time of accident, and province of claim and policy
holder - however information such as the provenance
of this dataset and the associated misclassification
costs cannot be published due to identifiability rea-
sons and commercial sensitivity. This dataset was col-
lected between 2011 and 2015. Tree-based methods
were found to be among the most popular techniques
in fraud-detection literature due to their superior clas-
sification abilities. In this study, apart from compar-
ing the tree-based classification approaches, the aim
is to address data imbalance via both cost-sensitive
learning approaches and synthetic minority oversam-
pling, and finally provide a comparison to identify
which tree-based learner combined with which learn-
ing approach is most promising. Which of the men-
tioned approaches for data imbalance is more success-
ful will also be postulated.

The rest of this paper is structured as follows. In
Section 2, the core concepts and characteristics of de-
cision trees are discussed, together with the tree-based
learning techniques which will be used. In Section 3,

the results are presented, where a comparative study
of the techniques and learning approaches described
is presented, and a discussion of the more prominent
features of the most successful method included. Fi-
nally, in Section 4, a discussion of the results will
ensue with concluding remarks on the study and an
overview of limitations together with some recom-
mendations for future work.

2 METHODOLOGY

Statistical learning methods bring together a range of
techniques and algorithms, all designed to learn from
input data, with the goal of emulating human learning
and making predictions. In this paper we will primar-
ily focus on supervised learning techniques and thus
we define the input space X as a set of all possible in-
stances that need to be labelled from the output space
Y . In the context of motor insurance fraud detec-
tion, the instances are claims and have to be labelled
as ’fraud’ or ’not-fraud’. Let x( j) = (x( j)

1 , . . . ,x( j)
p )

be the vector of observed entries of the input space
of the jth observation with corresponding observation
y( j) from the output space. In our case, the output
space is a binary categorical variable taking values
from {0,1}, where 0 implies that the claim is legit-
imate, while 1 implies that the claim is fraudulent. In
supervised learning, we split the given data set in two:
the training set and the test set. In the following pages,
the training set will be dented by D = {x( j),y( j)}N

j=1,
where N represents the number of claims in the train-
ing set. The performance of the models with be tested
through the use of the confusion matrix and related
metrics on the test set. A 90-10 split ratio is taken ,
given the size of the dataset, 10%still yields a suffi-
ciently large test set for evaluative purposes. Correct
predictions of no fraud will be considered as true neg-
ative (TN) while correct predictions of fraud will be
considered as true positive (TP). Incorrect predictions
of no fraud and incorrect predictions of fraud will be
considered false positive (FP) and false negative (FN)
respectively.

The rest of this section will be structured as fol-
lows. In Section 2.1 will discuss the data imbalance
issue, and how we can address it through synthetic
minority oversampling and cost-sensitive learning. In
Section 2.2 will introduce decision trees - the base
learner for all techniques which will be covered in
this paper. Finally, in Section 2.3, tree-based learning
techniques such as random forests and boosted trees
will be discussed.
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2.1 Addressing Data Imbalance

Data imbalance will be an issue with our dataset
due to the fact that non-fraudulent claims compose
the overwhelming majority. SMOTE-NC by (Chawla
et al., 2002) is a synthetic minority oversampling
technique that aims to address the issue of imbalanced
datasets by generating synthetic samples from the mi-
nority class. SMOTE-NC is a variant of the SMOTE
technique with modifications to account for nominal
features. However, in the context of motor insurance
fraud, a crucial aspect of the model’s performance
evaluation is to consider the costs of different mis-
classification errors. Specifically, FNs can have sub-
stantially higher consequences than FPs. In this case,
a standard loss function, such as the 0-1 loss func-
tion, may not accurately reflect the true risk of the
model’s predictions. To address this, a cost-sensitive
loss function could be used to take into account the
different costs of these errors. The focus of statistical
learning, under a cost-sensitive loss function, shifts to
minimizing the total cost. Let the subsets of fraudu-
lent and legitimate training samples be denoted as D+

and D− respectively. Adjusting the 0-1 loss function
to cater for this cost factor, results in the following
empirical risk of some classifier f̂ :

R̂( f̂ ) =
a
N ∑

x(i)∈D+

1{ f (x(i) )̸= f̂ (x(i))}

+
1
N ∑

x(i)∈D−
1{ f (x(i) )̸= f̂ (x(i))} (1)

where a indicates the cost-sensitive factor (He and
Garcia, 2009). If the cost-sensitive factor a > 1, it
os apparent that a false negative outcome will result
in a higher loss. On the other hand, if a < 1, a false
positive outcome will result in a greater loss. In the
insurance fraud context, a is taken to be a ratio of the
average fraudulent claim loss to the cost of investi-
gating a claim and will be greater than 1 in our con-
text. In Section 3, we will compare the results for var-
ious tree-based learners using both the cost-sensitive
loss function and the synthetic minority oversampling
technique SMOTE-NC.

2.2 Decision Trees

The concept behind decision trees is intuitive when
dealing with a classification problem. The algorithm
uses a tree-like framework to make predictions by di-
viding the input data into smaller subsets, each corre-
sponding to a specific class. The process of dividing
the input space can be formalised as a recursive al-
gorithm that starts with the entire input space X and
repeatedly splits it into smaller subsets. The splits in

Figure 1: Illustration of a decision tree model’s sequential
division of the input space.

the input space are based on the values of the pre-
dictors, resulting in the dataset becoming increasingly
homogeneous with each split. The final result of this
process is a tree-like structure where each node repre-
sents a subset of the input data. The end nodes of the
tree, known as leaf nodes, are assigned a class based
on the distributions of the classes of the training cases.
This tree structure can be used to make predictions
for new data points by traversing the tree and arriv-
ing at a final prediction based on the class assigned
to the leaf node that the data point belongs to. The
decision tree algorithm provides a visual and hence
intuitive representation of the relationships between
the predictors and the classes, making it a useful tool
for understanding and interpreting the data. Advances
in decision tree theory lead to various different algo-
rithms for constructing decision trees. In this paper
we will primarily use the CART algorithm (Breiman,
1984) to construct trees.

The algorithm is primarily divided into three parts:
selection of splits, pruning the tree and assigning the
leaf node labels. Figure 1 demonstrates the sequential
division of the input space X , using continuous pre-
dictor X1 and discrete predictor X2. Each tree in the
diagram represents one partition of the input space, il-
lustrating how the model splits the data based on these
predictors. This depiction of decision trees takes a
top-down approach, starting from the root node (in-
put space) X , which is split into two nodes R1 and
R2 based on ranges of X1. Discrete variable X2 then
splits the tree twice, first splitting R1 into R3 and R4
and then splitting R4 into R5 and R6. Each node rep-
resents a disjoint subset of X .
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2.3 Tree-Based Learners

In this section we explore tree-based learners, which
comprise techniques that utilise multiple decision
trees to tackle a learning task. These form part of
the ensemble learning umbrella of techniques, where
the aim of ensemble learning is to construct a pre-
diction model by combining the strengths of a set of
simpler base models. This process can be divided into
two steps: creating a set of base learners and combin-
ing them to form a composite predictor. Tree-based
learners are often able to achieve stronger generalisa-
tion abilities than individual decision trees due to the
combination of multiple models. Tree-based learners
can be largely classified into two categories, depend-
ing on the approach used to generate the individual
learners:

1. Bagging and Random Forests: These meth-
ods generate individual learners independently.
Bagging (Bootstrap Aggregating) is a technique
where the same model is trained on different boot-
strapped samples of the data, and then their out-
puts are averaged to obtain a final prediction. Ran-
dom forests is a variant of bagging that constructs
a collection of decision trees using random feature
subsets.

2. Boosting: Boosting methods generate learners
with strong correlations and create them in a se-
quence. The idea behind boosting is to sequen-
tially train models on weighted versions of the
data, where the weights are adjusted to emphasize
the instances that were misclassified by the pre-
vious models. In this study, we consider GBM,
XGBoost and LightGBM.

The main difference between these categories is
how the base learners are generated. Bagging and
random forests generate learners independently, while
boosting methods generate learners in sequence with
strong correlations. Despite this, both bagging and
boosting methods use similar techniques to combine
the multiple base learners. In Section 2.3.1 and Sec-
tion 2.3.2 we describe these two main approaches in
more detail.

2.3.1 Bagging and Random Forests

One approach to generating different base learners is
to divide the original training data into a number of
distinct subsets and use each subset to train a differ-
ent base model. To improve the quality of each base
model, it is often necessary to allow some overlap be-
tween the subsets, such that each one contains an ad-
equate number of training samples. Several random-
ization approaches have been proposed to build inde-

pendent base learners. Bootstrap aggregating, com-
monly known as bagging, is one example of a re-
sampling method for classifier design as it utilizes the
bootstrap sampling method.

Given the training set D = {x( j),y( j)}N
j=1, a boot-

strap sample would be a subset Dm ⊆ D of the full
learning set each created by randomly drawing N′ ≤
N instances from D with replacement. In bagging, the
final prediction is obtained by combining the outputs
of all the base learners in the committee through an
aggregation method, such as taking their average in
case of regression or taking the mode in case of clas-
sification. Since each sample is drawn from the same
distribution, the base learners are considered to be
identically distributed. As a result, the expected value
of the average of multiple base learners is equivalent
to the expected value of a single learner. Therefore,
the bias of bagged base learners is identical to that of
individual learners. This means that bagging can only
improve performance by reducing the variance.

Bagging is known to be highly effective for low-
bias, high-variance methods like trees (Hastie et al.,
2009). Random forests, are a significant modification
of bagging proposed by (Breiman, 2001). They en-
hance the latter technique by building a large ensem-
ble of uncorrelated trees and find the mode to obtain
the final classification. While in traditional decision
trees, the feature that is used to split a node is cho-
sen from the entire set of features, in a random forest
tree, a subset of K features is randomly selected from
the feature set at each node. This introduces a degree
of randomness, controlled by the parameter K, with
K = p resulting in the selection of features being the
same as traditional trees, and K = 1 resulting in a com-
pletely random selection. In order to achieve optimal
outcomes, it is a frequently adopted practice to use
K = log2 p (Breiman, 1984) or K =

√
p (Hastie et al.,

2009). However, it should be noted that this approach
may not be universally applicable, and alternative val-
ues may be necessary in certain situations.

2.3.2 Boosting

Boosting is an ensemble technique that involves com-
bining the outputs of many weak classifiers in series
to create a strong committee. The key idea behind
boosting is to adjust the distribution of training sam-
ples based on the errors made by weak base learn-
ers. This adjustment of the distribution is what makes
boosting fundamentally different from other ensem-
ble methods. Boosting grows the base learners in an
adaptive way that removes bias by adjusting the distri-
bution of training samples. This approach means that
the base learners in boosting are not identically dis-
tributed (Hastie et al., 2009). By iteratively adapting
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the distribution of training samples, boosting aims to
reduce both the bias and variance of the base learners.
This particular feature of boosting makes the method
especially useful for real-life application scenarios,
such as in predicting, detecting, and ultimately pre-
venting motor insurance fraud.

Boosting algorithms start by training a base
learner and adjusting the distribution (through re-
weighting) of training samples based on the base
learner’s output. Instances that were incorrectly clas-
sified by the base learner are given more importance
by subsequent base learners. The following base
learner utilizes the modified training data, and this
cycle continues until a predetermined number, repre-
sented by M, of base learners are created. Finally,
this results in a sequence f̂m(x),m = 1,2, . . . ,M of
base learners which in turn are combined to form
the final classifier f̂ (x). In this research a variety
of boosting algorithms were used. These include
GBMs (Hastie et al., 2009), XG Boosting (XGBoost)
(Chen and Guestrin, 2016) and Light Gradient Boost-
ing Machines (LightGBM) (Ke et al., 2017). GBMs
are learners that utilise gradient descent to minimise
the loss function. Moreover, XGBoost and Light-
GBM are both powerful Gradient Boosting frame-
works that leverage the second-order Taylor expan-
sion for approximating the objective function, opti-
mizing the performance of decision tree ensembles.
Despite their similarities, these frameworks employ
different strategies for growing trees. XGBoost grows
trees level-wise, ensuring balanced tree structures,
while LightGBM grows trees leaf-wise, prioritizing
the most significant splits to achieve faster conver-
gence and higher accuracy. Furthermore, LightGBM
implements two algorithms to accelerate the train-
ing process: Gradient-Based One Sided Sampling
(GOSS) algorithm and Exclusive Feature Bundling
(EFB). The former selectively samples instances from
the dataset based on the absolute values of their gra-
dients, ensuring that instances with larger gradients,
which contribute more to the information gain, are in-
cluded, while the latter enables LightGBM to process
large datasets more efficiently. Regularization tech-
niques are crucial in preventing overfitting in Gradient
Boosting models. The Gradient Boosting techniques
employ the L1 and L2 regularization terms in their
loss functions. These are terms that can be added to
the loss function during training to prevent overfitting.

3 RESULTS

The description of the dataset under study has been
provided in Section 1. The insurance company

that provided the data did so under condition of
anonymity, hence no information regarding the coun-
try of origin of the claims as well as the name of
the company will be provided. The justification for
the 90-10 split ratio has been given in Section 2.
Any model validation that occurs during the pre-
processing and building up to the optimal model is
performed solely on the training set. The test set is
reserved for a single use at the end with the aim of
determining the optimal model, to avoid introducing
any bias in the evaluation process.

Primarily, feature extraction was implemented.
This included extracting information from date vari-
ables, creating indicator variables for specific condi-
tions, and addressing high cardinality issues in nom-
inal variables. Furthermore, the dataset contained
missing data. A median imputation approach was im-
plemented, with the mean imputation and k-Nearest
Neighbors (KNN) imputation also attempted but not
affecting the results obtained. Feature selection was
required to improve the computational efficiency in
the training of the tree-based learners. To conduct
feature selection, a LightGBM model was used on
the unbalanced dataset to obtain feature importance
scores due to its speed and efficiency compared to
other approaches. A plot of the mean ROC AUC vs
the feature importance threshold was then obtained to
determine the ideal threshold. The Receiver Operat-
ing Characteristic curve, abbreviated as ROC curve,
is a tool for plotting the true positive rate TPR =

TP
TP+FN against the false positive rate FPR = FP

FP+TN ,
and AUC stands for area under the curve which quan-
tifies model ability to discriminate between the two
categories.

To select the optimal subset of features, an iter-
ative process was then employed. The process be-
gan with a feature importance threshold of 0, progres-
sively increased by increments of 1, and at each step,
the model re-evaluated with the variables that met or
exceeded this threshold using 5-fold cross-validation.
Figure 2 was then used to determine a cut-off point
using the elbow method, with a threshold of 22.0 be-
ing identified. This resulted in a selection of 28 vari-
ables, as this is the threshold beyond which the mean
ROC AUC resulted in a sudden shift downwards. The
most important variables (together with their level of
importance) are shown in Figure 3 It can be seen that
the province in which the claim was made and the
province of the policy holder were the most impor-
tant features by a huge margin, but an interpretation
of feature importance values will be given later due
to the fact that SMOTE-NC or cost-sensitive learn-
ing have not yet been implemented and feature im-
portance scores can change once this is the case.
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Figure 2: Mean ROC vs Feature Importance Threshold.

Figure 3: LightGBM feature importance scores of the se-
lected 28 variables.

Following feature extraction, missing data impu-
tation and feature selection, the final dataset is cre-
ated and randomly divided into a training set and a
test set. Decision trees, random forests, GBM, Light-
GBM and CatBoost are implemented using both a
SMOTE-NC approach and cost-sensitive learning on
the training set. During the training phase, model pa-
rameter tuning also occurs via 5-fold cross-validation
on the training set. Finally, the fitted models are
implemented on the test set for comparative pur-
poses. A flowchart illustrating the entire model im-
plementation and evaluation process is presented in
Figure 4. The fine tuned parameters for decision
trees were the maximum depth of the tree, the min-
imum number of rows to create a leaf node, and
the minimum relative improvement in impurity re-
duction for a split to happen. These were optimised
on ranges {3,6,9}, {3,6,9} and {0,0.2,0.4} respec-
tively. The fine tuned parameters for random forests
were the proportion of rows to be randomly sam-
pled for each tree, the proportion of columns to ran-
domly select at each tree node split, and the number
of trees in the random forest model. These were op-
timised on ranges {0.5,0.7,0.9}, {0.5,0.7,0.9} and
{50,100,200,500,1000} respectively. The fine tuned
parameters for the boosting methods were maximum
depth of the tree, the minimum sum of instances
weights are needed in a child node, the fraction of
data used for training each iteration and the frac-
tion of features used to build each tree during train-
ing. These were optimised on ranges {3,5,7,9},
{1,3,5,7}, {0.6,0.7,0.8,0.9} and {0.6,0.7,0.8,0.9}
respectively. Finally the L1 and L2 regularization
terms were found to progressively decrease the per-
formances when increased and were set to the default
of 0.

Figure 4: Flowchart illustrating the model implementation
and evaluation process.

In Table 1 and 2, the results obtained when fit-
ting decision trees, random forests, GBM, XGBoost
and LightGBM are shown for both the SMOTE-NC
approach and the cost-sensitive learning approach.
For the SMOTE-NC approach, in Table 1 we de-
note these models by SNC-DT, SNC-RF, SNC-GBM,
SNC-XGB and SNC-LGBM. For the cost-sensitive
learning approach, in Table 2 we denote these mod-
els by CS-DT, CS-RF, CS-GBM, CS-XGB and CS-
LGBM respectively. The metrics we consider for
model evaluation are the following:

1. Recall = TP
TP+FN

2. NPV = TN
TN+FN (negative predicted value)

3. TNR = TN
TN+FP (true negative rate)

4. ROC AUC (defined earlier)

5. Accuracy = TP+TN
TP+TN+FP+FN

6. Balanced Accuracy = TPR+TNR
2

In Table 1, when implementing synthetic minority
oversampling, it can be seen that random forests and
XGBoost have the best recall, with the other methods
performing poorly. Nonetheless, XGBoost also per-
forms worst in terms of accuracy and second worst
in terms of balanced accuracy. Only random forests
appear to provide consistently good metrics through-
out. In Table 2, on the other hand, when applying
cost-sensitive learning, the recall for decision trees
deteriorates while the recall for all the other meth-
ods improve throughout, as does the balanced accu-
racy (albeit only marginally for random forests). In-
deed one can see that recall is best for random forests
with LightGBM second best, while TNR, ROC AUC
and balanced accuracy are the best for LightGBM,
where random forests also yield the worst perfor-
mance for TNR. Random forests and LightGBM tie
when it comes to NPV while GBM is the best when it
comes to accuracy (with LightGBM also second best
here). Nonetheless, recall, TNR, accuracy and bal-
anced accuracy are all above 0.7 for random forests
and the boosting algorithms, while the the ROC AUC
is above 0.8 throughout. The NPV is also consistently
close to 1 or 1. Since LightGBM under cost-sensitive
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Table 1: Comparison of different tree-based learners using
SMOTE-NC.

SNC-DT SNC-RF SNC-GBM SNC-XGB SNC-LGBM
Recall 0.66 0.82 0.53 0.91 0.55
NPV 0.99 1.00 0.99 0.99 0.99
TNR 0.83 0.73 0.86 0.27 0.87

ROC AUC 0.77 0.84 0.81 0.69 0.83
Accuracy 0.83 0.73 0.85 0.28 0.86

Balanced Accuracy 0.75 0.78 0.70 0.71 0.81

Table 2: Comparison of different tree-based learners using
cost-sensitive learning.

CS-DT CS-RF CS-GBM CS-XGB CS-LGBM
Recall 0.23 0.86 0.79 0.81 0.83
NPV 0.98 1.00 0.99 0.99 1.00
TNR 0.96 0.72 0.80 0.74 0.79

ROC AUC 0.84 0.85 0.86 0.83 0.87
Accuracy 0.95 0.72 0.80 0.74 0.79

Balanced Accuracy 0.6 0.79 0.79 0.77 0.81

learning is the best or second best throughout all con-
sidered metrics, this is considered to be the best model
overall when it comes to successfully detecting fraud-
ulent cases without compromising heavily TNR. Fur-
thermore, cost-sensitive learning has shown to be a
considerable improvement over SMOTE-NC for all
approaches except decision trees in increasing recall
and balanced accuracy.

To further illustrate the performance of the cost-
sensitive LightGBM model, an ROC curve and a
Precision-Recall (PR) curve are presented in Figure
5. The ROC curve demonstrates the model’s perfor-
mance on both the training and test sets, showcas-
ing how closely they align. This indicates a good
balance between complexity and performance, and
also signifies the model’s generalizability to new data.
Furthermore, the PR curve indicates that to obtain a
good recall, a poor precision is unavoidable. Note
that Precision = T P

T P+FP which indicates that a large
percentage of false positive non-fraudulent claims
is required to have a good recall. Indeed, for the
LightGBM under cost-sensitive learning which has
achieved a recall of 0.83, the precision lies just at
0.08. This, however, is the drawback that comes with
detecting more fraudulent cases. Overall, metrics be-
tween training and tests sets were comparable, indi-
cating that overfitting was not an issue.

Figure 5: ROC and PR curves for the final cost-sensitive
LightGBM model.

In Figure 6, the feature scores by order of impor-
tance for LightGBM using cost-sensitive learning are
given. It can be seen that claim type has been by

Figure 6: Feature importance scores of the selected vari-
ables for LightGBM with cost-sensitive learning.

far the most important feature in this case, superced-
ing the province in which the claim was made and
the province of the policy holder, which were origi-
nally the most important in the absence of any syn-
thetic minority oversampling or cost-sensitive learn-
ing. Through further investigation, it was found that
certain claim types such as injury claims were more
prone to fraud than others. Province-related variables
now place second and third in terms of importance.
The number of days between accident occurrence and
last insurance policy modification was the fourth most
important feature, with shorter periods being more
likely to be associated with fraud. The variable re-
lated to claim processing (Expedient TypeInitial) was
the fifth most important variable, with the MREC cat-
egory (standing for Maximum Reasonable Estimate
of Claim - related to providing a reasonable estimate
of damages rather than detailed assessment) being the
most likely associated with fraud. The sixth most im-
portant variable was the number of injured individu-
als, where there is evidence that claims with a higher
number of injured individuals were more likely to be
fraudulent.

4 DISCUSSION

In this study, it has been shown that the more complex
tree-based learners outperformed decision trees when
implementing cost-sensitive learning. These included
random forests, GBM, XGBoost and LightGBM. The
comparison with decision trees turned out to be more
of a mixed bag when applying SMOTE-NC. Nonethe-
less, the results obtained for the more complex tree-
based learners were best when implementing cost-
sensitive learning, with a stark improvement in the
poorly performing metrics related to the synthetic mi-
nority oversampling is applied. Indeed, only ran-
dom forests had an overall good performance under
SMOTE-NC, which still showed a slight improve-
ment under cost-sensitive learning, and which still
did not exceed the capabilities of LightGBM under
cost-sensitive learning. When compared to random
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forests, LightGBM yielded more balanced results
and although random forests produced a marginally
higher recall, this came at the expense of a signifi-
cantly increased number of FPs - a trade-off which
is deemed unfavourable, as high false positives can
lead to increased operational costs and potential cus-
tomer dissatisfaction. Hence, the LightGBM model
with cost-sensitive learning emerges as the preferred
choice due to its enhanced fraud capturing capabil-
ities and balanced performance. Furthermore, cost-
sensitive learning emerged as the superior way to ad-
dress data imbalancing on this dataset. Also, when
comparing feature importance under an imbalanced
dataset with feature importance when data imbalanc-
ing is addressed, one can see that variables related to
the claim type, claim processing and the number of
injuries became more promintent in the latter. In-
deed, injury-related claims have been found to be
more prone to fraud.

It is important to recognise the limitations of the
dataset, particularly with regard to the accuracy and
completeness of the fraud labels. As the data is
sourced from a single motor insurance company, it
is subject to the specific methods and procedures
used by that company to identify and report fraud-
ulent claims. Consequently, the dataset may not be
fully representative of the true incidence of fraudu-
lent claims within the wider motor insurance indus-
try. This could potentially impact the reliability and
generalisability of any results obtained from the data,
particularly if the sample is biased in any way towards
certain types of claims or customers. Nonetheless,
further research can be done to determine which clas-
sification techniques are useful for correctly identify-
ing fraud in a cost-effective manner, and whether cost-
sensitive learning is truly a more superior approach
to addressing data imbalance when compared to syn-
thetic minority oversampling. Furthermore, this re-
search can be further enhanced by possibly incorpo-
rating principal component analysis to reduce the di-
mensionality of the data set. This would allow us to
use information from all the features and improve pre-
dictability, however this could come at the expense of
interpretability of the features.
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