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Accurately classifying innovative sentences in scientific literature is essential for understanding research con-
tributions. This paper proposes a two-phase classification framework that integrates a Time Mixing Attention
(TMA) mechanism and a Mixture of Experts (MoE) system to enhance multi-class innovation classification. In
the first phase, TMA improves long-range dependency modeling through temporal shift padding and sequence
slice reorganization. The second phase employs an MoE-based approach to classify theoretical, methodologi-
cal, and applied innovations. To mitigate class imbalance, a generative semantic data augmentation method is
introduced, improving model performance across different innovation categories. Experimental results demon-
strate that the proposed two-phase SciIBERT+TMA model achieves the highest performance, with a macro-
averaged F1-score of 90.8%, including 95.1% for theoretical innovation, 90.8% for methodological innova-
tion, and 86.6% for applied innovation. Compared to the one-phase SciBERT+TMA model, the two-phase
approach significantly improves precision and recall, highlighting the benefits of progressive classification
refinement. In contrast, the best-performing LLM baseline, Ministral-8B-Instruct, achieves a macro-averaged
F1-score of 85.2%, demonstrating the limitations of prompt-based inference in structured classification tasks.
The results underscore the advantage of a domain-adapted approach in capturing fine-grained distinctions in
innovation classification. The proposed framework provides a scalable solution for multi-class sentence classi-
fication and can be extended to broader academic classification tasks. Model weights and details are available
at https://huggingface.co/wmsr22/Research_Value _Generation/tree/main.

1 INTRODUCTION

Text classification, a fundamental natural language
processing (NLP) task, involves categorizing textual
units—ranging from documents to sentences—into
predefined categories based on their meaning or func-
tion. (You et al., 2019). This task plays a critical
role in the processing of scientific literature, as it fa-
cilitates the capture and analysis of complex seman-
tic structures, the understanding of intricate linguistic
patterns, and the extraction of key information (Wang
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et al., 2025). Consequently, optimizing and improv-
ing text classification models, particularly in the con-
text of scientific literature, has become one of the cen-
tral research topics in the field of NLP (Shang et al.,
2024).

The self-attention mechanism, as a core compo-
nent of state-of-the-art neural architectures in text
classification, allows the model to learn the internal
structure of input data and focus on the most rele-
vant parts during information processing. This capa-
bility has proven to be highly effective in a variety of
text classification tasks (Guo et al., 2020). However,
with the rapid growth of scientific literature and the
acceleration of interdisciplinary research, the variety
of sentence types within the literature has increased,
often exhibiting significant class imbalance. On one
hand, certain sentence types are relatively rare and
dispersed throughout the text, which places higher de-
mands on the model’s ability to capture long-distance
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dependencies. On the other hand, even within the
same broad category, there is considerable variation
in the number of sentences across different subtypes,
further exacerbating the class imbalance and reduc-
ing the accuracy of multi-class classification models
(Oida-Onesa and Ballera, 2024). Therefore, integrat-
ing temporal information into the self-attention mech-
anism and optimizing the overall classification archi-
tecture are critical for improving performance in these
highly imbalanced and complex tasks.

To address these issues, this paper proposes a
two-phase classification framework based on an im-
proved self-attention mechanism that incorporates
time-mixing information to enhance the model’s ca-
pability in handling long-range dependencies. Ad-
ditionally, by designing a hierarchical classification
architecture and incorporating a generative semantic-
based data augmentation method, we aim to improve
the accuracy and generalization ability of the multi-
classification model.

The main contributions of this paper are summa-
rized as follows:

* To improve the accuracy of multi-classification
models, a two-phase classification architecture is
designed, which integrates the Time Mixing At-
tention (TMA) mechanism and a mixture of ex-
perts (MoE) system. This architecture enhances
the model’s ability to recognize different types of
sentences through hierarchical feature extraction
and classification decisions.

* To capture long-range dependencies and con-
textual semantic information, the self-attention
mechanism is introduced into the model used in
the first phase, with dynamic temporal encoding
of context, thereby improving the model’s ability
to capture sequential dynamic behaviors.

» To address the issue of data imbalance, a gener-
ative semantic-based data augmentation method
is proposed. This method expands the training
samples of rare categories by generating data that
maintain semantic consistency, thereby improving
the model’s classification performance across all
categories.

* To validate the effectiveness of the proposed
method, comparative experiments are conducted
on innovative sentences in scientific literature, in-
cluding both pre-trained language models (PLMs)
and large language models (LLMs). The exper-
imental results demonstrate significant improve-
ments on macro-average metrics.

2 RELATED WORK

In this paper, we conduct a literature review on multi-
class text classification, the self-attention mechanism,
and data augmentation approaches, as these areas pro-
vide the essential theoretical and technical founda-
tion for the development of efficient text classification
models and the mitigation of data imbalance chal-
lenges.

2.1 Multi-Class Text Classification

Multi-class text classification is the task of categoriz-
ing a given text into one of several predefined cat-
egories, with each text belonging to only one class
from a set of possible labels (Wang et al., 2024).
Given the importance of this task, numerous ap-
proaches have been proposed to improve classifi-
cation accuracy and efficiency. Jain et al. (Jain
et al., 2024) developed a hierarchical text classifica-
tion framework that encodes dynamic text represen-
tations using language models and introduces a hori-
zontal guidance loss function to capture relationships
between text and label semantics, thus adapting lan-
guage models to domain knowledge. Afzal et al.
(Afzal et al., 2024) proposed a Transformer-based ac-
tive learning approach for multi-class text annotation
and classification, which utilizes deep learning tech-
niques to enhance annotation efficiency and improve
classification performance, particularly for unstruc-
tured medical data. Similarly, Le et al. (Le et al.,
2024) introduced CoLAL, an active learning algo-
rithm that combines noisy labels and predictions from
the primary model to select diverse and representative
samples, significantly enhancing performance in text-
based active learning.

2.2 Self-Attention Mechanism

To address long-range dependency issues, researchers
have primarily focused on enhancing the self-
attention mechanism, particularly by improving its
ability to capture relationships across positions in a
sequence. Vaswani et al. (Vaswani, 2017) intro-
duced positional embeddings and integrated the at-
tention mechanism into the Transformer architecture,
thus obviating the need for recurrence and convolu-
tion, while effectively capturing long-range depen-
dencies and contextual relationships. Yu et al. (Yu
et al., 2024) proposed a dual attention module de-
signed to capture dependencies between different se-
quences and variations within individual sequences,
using a learnable decomposition strategy for multi-
variate time series prediction, which improved the
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capture of dynamic trend information for more accu-
rate time series forecasting.

Data augmentation is a method to generate addi-
tional data by manipulating original samples to in-
crease diversity and quantity while preserving their
core characteristics (Bayer et al., 2022). In the con-
text of text, data augmentation involves creating new
training samples through semantic-preserving trans-
formations, rule-based replacements, or generative
models, thereby expanding the scale and diversity of
datasets to improve model generalization and robust-
ness.

3 OVERVIEW

This section introduces the task of identifying and
classifying innovative sentences in scientific litera-
ture. The primary objective of this task is to cat-
egorize sentences into two main groups: innovative
and non-innovative. Additionally, for sentences iden-
tified as innovative, the task further classifies them
into three distinct categories: theoretical innovation,
methodological innovation, and applied innovation.
The task is structured into two layers, each employ-
ing specialized techniques to address different aspects
of the classification problem, ensuring a more precise
and robust categorization process.

3.1 Task Objectives

The task involves two main objectives: the identifi-
cation of innovative sentences and their subsequent
classification into specific categories.

3.1.1 Innovative Sentence Identification

The first objective is to identify innovative sentences.
This step focuses on detecting sentences that intro-
duce new ideas, theories, or advancements, which are
classified as innovative sentences. In contrast, non-
innovative sentences either restate established knowl-
edge or provide general descriptions without offering
novel insights or perspectives.

3.1.2 Innovation Classification

Once innovative sentences are identified, the next step
is to classify them into one of three types of innova-
tion:

* Theoretical Innovation: Sentences that propose
new theories or frameworks, offering fresh per-
spectives on existing problems and advancing the-
oretical understanding.
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¢ Methodological Innovation: Sentences that in-
troduce novel research methods, techniques, or
tools, enhancing the way research is conducted
through improved experimental designs or data
analysis approaches.

* Applied Innovation: Sentences that demonstrate
the practical application of existing theories or
methodologies in new contexts, addressing real-
world problems or societal needs.

3.2 Approach Design

3.2.1 First Phase: Innovative Sentence
Identification

The first phase is dedicated to identifying innovative
sentences within a given text. To achieve this, we be-
gin by utilizing a pre-trained model to encode each to-
ken in the sentence into high-dimensional embedding
vectors. These embeddings capture rich semantic in-
formation and contextual dependencies for each token
within the sentence. Following the encoding step, the
Time Mixing Attention (TMA) mechanism, as de-
tailed in Section 4.1, is applied to model inter-token
dependencies and capture the contextual relationships
between the token representations. Subsequently, the
resulting feature representations are passed through a
fully connected layer, which maps them into a two-
dimensional space. This projection enables the final
classification of sentences into two categories: inno-
vative and non-innovative, based on the aggregated
representation of the sentence.

3.2.2 Second Phase: Innovation Classification

The second phase involves classifying the identified
innovative sentences into one of three categories: the-
oretical, methodological, or applied innovation. This
classification process is facilitated through the inte-
gration of Mixture of Experts (MoE), as outlined
in Section 4.2, and Generative Semantic Data Aug-
mentation, discussed in Section 4.3. The MoE sys-
tem enables the dynamic selection of specialized ex-
perts based on the content of each sentence, ensuring
precise categorization. Simultaneously, the genera-
tive augmentation techniques leverage large language
models to address issues of class imbalance and data
scarcity by enriching the training dataset with diverse
sentence variations, thereby increasing the model’s
ability to handle a wide range of sentence structures
and enhancing its overall robustness.
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4 METHODOLOGY

4.1 Time Mixing Attention Mechanism

We propose the Time Mixing Attention (TMA) mech-
anism, which integrates time-shift padding, embed-
ding dimension slicing and recombination, and self-
attention to effectively capture both local subspace
features and global temporal dependencies.

4.1.1 Time-Shift Padding

To provide contextual support for boundary positions
in time series data, TMA employs time-shift padding
as a foundational step. In time series sequences, the
initial and final positions often lack sufficient contex-
tual information due to the absence of preceding or
succeeding elements. Time-shift padding addresses
this by symmetrically appending zero vectors to both
ends of the embedding sequence, providing additional
contextual “buffers”.

Let the input sequence be denoted as S =

{s1,---,8i,...,57}, and its corresponding embedding
matrix, generated by a pre-trained language model,
as X = [x1,...,X;,...,x7] , where X € RT*¢  and x;

represents the d-dimensional embedding vector of the
i-th element of S. Zero-padding along the temporal
dimension produces the extended embedding matrix
X/ = {X(),xl gee ey Xy oo s XT3 XT+1 }, where X0 and XT+1
are zero vectors acting as padding for the start and
end positions respectively, as illustrated in Figure 1.
This operation ensures sufficient contextual support
for boundary positions while maintaining the integrity
of the original sequence data by using zero-padding,
which introduces no additional semantic or structural
information and preserves the neutrality of the origi-
nal embeddings.
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Figure 1: Time-shift Padding.

4.1.2 Embedding Dimension Slicing and
Recombination

After applying time-shift padding, the extended em-
bedding matrix X’ € R*+2)%¢_ where each timestep
x; € RY (with i € {1,2,...,T 4+ 1}) is a d-dimensional
embedding vector, undergoes embedding dimension
slicing and recombination to capture local subspace

information. Each embedding vector x; is partitioned
into three equal subspaces along its embedding di-
mension (d is typically 768), as follows:

* The starting part x; sare = X;[: d /3], corresponding
to the first third of the embedding vector;

* The middle part x; miqaie = Xi[d/3 : 2d /3], corre-
sponding to the middle third of the embedding
vector;

* The ending part x; eng = Xi[2d/3 :], corresponding
to the last third of the embedding vector.

These slices are then recombined in a shifted manner
to form the final vector. Specifically, the slices from
consecutive timesteps are shifted as shown in Figure
2, and the formula is as follows:

/
x; = Concat(X;—1 start, Ximiddie, Xi+1,.end) (1)

where i € {1,2,...,T}. This operation ensures that
each timestep’s embedding vector x/ incorporates in-
formation from neighboring time spans. The starting
part x;_1 sart cOmes from the previous timestep, the
middle part x; migdle comes from the current timestep,
and the ending part x; | epng comes from the subse-
quent timestep.
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Figure 2: Embedding Dimension Slicing and Recombina-
tion.

By shifting the slices in this manner, the recom-
bination process captures the temporal dependencies
between consecutive timesteps, allowing the model
to integrate information from neighboring time inter-
vals. The result is a new embedding matrix X" €
RT*4 where each timestep’s embedding vector x|
now reflects a broader context by incorporating lo-
cal and adjacent temporal information. This approach
helps the model better capture both short- and long-
range dependencies within the time series data.

4.1.3 Self-Attention Mechanism

Building upon the embedding matrix obtained from
the previous step, the self-attention mechanism is em-
ployed to model the dynamic relationships between
timesteps. First, the embedding matrix X" is pro-
jected into three matrices: Query (Q), Key (K), and
Value (V), as follows:

0=x"wW2, k=x"wk, v=x"w" (2
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where W2 WK WV € R¥*%n are learned projection
matrices. Next, the attention weights y; ; between
timesteps are computed using the vectors derived
from the matrices Q and K. Specifically, the attention
score between timesteps i and j is given by:

qik}
Wij ="
m

where g; and k; are the i-th and j-th rows of the matri-
ces O and K, respectively. The attention weight ; ; is
then computed using the softmax function as follows:

3)

o exp(o))
X exp(wy))

These attention weights y; ; reflect the degree of rele-
vance between timestep x; and timestep x’;, with larger
values indicating stronger temporal dependencies.

Finally, the weighted sum of the Value vectors is
computed to generate the new representation, as fol-
lows:

“4)

T
i = Z,Ui,jvj @)
=

where v; is the j-th row of the Value matrix V, and
z; represents the final feature vector for timestep i.
This vector integrates information from all timesteps,
weighted by their respective attention scores y; ;. This
mechanism allows the model to dynamically focus on
relevant parts of the sequence, effectively capturing
both short- and long-range temporal dependencies.

4.2 Mixture of Experts

In this paper, we construct independent expert models
for each type of innovative sentence: theoretical inno-
vation, methodological innovation, and applied inno-
vation. These expert models are the same ones used in
the innovative sentence identification task, which in-
corporates the Time Mixing Attention (TMA) mech-
anism. To ensure that each expert model effectively
focuses on its designated innovation dimension, we
create three distinct annotated datasets, each corre-
sponding to one of the innovation types (theoretical,
methodological, or applied innovation). Specifically,

: e
the annotated datasets are denoted as (x\”),y))V,

with j € {1,2,3}, where xgj ) represents the input

texts, )’5/ ) represents the corresponding true labels,
and N; is the total number of samples for the j-th in-
novation type.

The training objective for each expert model is
to minimize the binary cross-entropy loss (BCE) be-

tween the model’s predicted output and the true label.
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The objective function for the j-th expert model is de-
fined as:

N.
1V Gy L)
£ = 5 LBCEUG7).") ©)

where f; (xl(" >) denotes the output of the j-th expert
model for the input x\*.

After training the expert models, we perform in-
ference by selecting the most appropriate expert for
each input sentence. During inference, a hard routing
mechanism is employed, which is based on the prob-
ability distribution computed as follows:

pj=o(fjx)) o

where o(-) denotes the sigmoid function, and f;(x) is
the output of the j-th expert model for the input x. The
probability p; represents the likelihood that the j-th
expert is the most suitable for making the prediction
for the given input. The expert model with the highest
probability is selected for final inference, as indicated
by:

Jmax = argmjﬁflxpj (3)

This hard routing mechanism ensures that only the
most appropriate expert contributes to the final pre-
diction, thereby reducing computational complexity
and improving the model’s efficiency. The final pre-
diction ygna is made using the selected expert model:

Yfinal = fjmax (X) (9)

4.3 Generative Semantic Data
Augmentation

In the fine-grained Innovation Classification task,
class imbalance and data scarcity pose significant
challenges across the three categories of innovative
sentences. To mitigate these issues, this study pro-
poses a generative semantic data augmentation ap-
proach leveraging large language models, which aims
to enhance the diversity and quality of training data,
thereby improving the model’s classification perfor-
mance.

In the data augmentation process, we begin by
combining labeled innovative sentences with specific
prompts to create the instructions required for gen-
erating sentences using the large language model.
These instructions consist of three main components:
task description, seed sentences, and generation re-
quirements. The prompt we constructed is as follows:

Generate semantically related sentences for each
seed sentence, with varied expressions, to enrich the
dataset: Seed 1: [We designed a novel experimental
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Table 1: Experimental Results for Innovative Sentence Identification.

Model Acc% P% R% F1%
BERT 83.2 82.0 | 90.8 | 86.1
RoBERTa 83.9 849 | 87.6 | 86.2
SciBERT 84.3 83.4 | 90.8 | 86.9
BERT + TMA 83.3 85.5 | 855 85.5
RoBERTa + TMA 83.8 83.0 | 904 | 86.6
SciBERT + TMA 85.3 86.1 | 88.8 | 874

approach combining flow cytometry and mass spec-
trometry to analyze cellular responses under differ-
ent conditions.] Seed 2: [The developed system has
immediate applications in remote patient monitoring,
enabling real-time health status tracking in rural ar-
eas.|. Requirements: 1) Semantically related to seeds,
reflecting methodological innovation and application
innovation. 2) Follow application scenario descrip-
tion style and norms. 3) Vary in expression, similar
in length and complexity. 4) Demonstrate practical
implementation and impact. 5) Generate sentences in
English, enclosed in square brackets [].

S EXPERIMENTS

The experiments consist of two parts: the first part fo-
cuses on identifying innovative sentences, where the
model is trained to recognize and extract innovation-
related sentences from scientific literature. The sec-
ond part addresses innovation classification, where
the identified sentences are categorized into three dis-
tinct types: theoretical, methodological, and applied
innovations.

5.1 Experiment for Innovative Sentence
Identification

The objective of this experiment was to validate the
effectiveness of the Time Mixing Attention (TMA)
mechanism in identifying innovative sentences from
scientific literature. To construct the dataset, sen-
tences were extracted from relevant sections, resulting
in a total of 23,912 annotated sentences, with 10,036
labeled as non-innovative sentences and 13,876 as in-
novative sentences. The dataset was split into train-
ing, validation, and test sets in an 8:1:1 ratio while
ensuring balanced distributions across subsets. The
experiment utilized multiple models, including BERT
(Devlin, 2018), RoBERTa (Liu, 2019), and SciBERT
(Beltagy et al., 2019), both with and without the in-
tegration of TMA, to assess its impact on classify-
ing innovation and non-innovative sentences based

on their semantic content. The training configuration
employed a learning rate of 1 x 107>, a batch size of
5, and a single training epoch. Performance evalu-
ation was conducted using macro-average precision
(P), recall (R), Fl-score (F1) and accuracy (Acc) to
comprehensively assess the effectiveness of the mod-
els and the impact of TMA.

As shown in Table 1, the integration of the TMA
mechanism led to significant improvements in model
performance. SciBERT with TMA achieved the best
results, with a test accuracy of 85.3% and an F1-score
of 87.4%, outperforming all other models. In addi-
tion, All models incorporating TMA achieved an av-
erage increase of 0.1% in F1-score compared to their
counterparts without the mechanism.

5.2 Experiment for Innovation
Classification

The goal of this experiment was to evaluate the effec-
tiveness of our proposed two-phase innovation classi-
fication approach in distinguishing between different
types of innovative sentences in scientific literature.
The dataset was initially constructed through man-
ual annotation, yielding a total of 13,876 labeled in-
novative sentences, categorized into three innovation
types: 11,353 theoretical innovative sentences, 1,171
methodological innovative sentences, and 1,352 ap-
plied innovative sentences. Given the significant class
imbalance, where methodological and applied inno-
vative sentences were substantially fewer in number,
we applied our proposed LLM-based generative se-
mantic data augmentation to expand these categories.
Specifically, we utilized Claude-3.5-Sonnet to gener-
ate additional innovative sentences while preserving
linguistic diversity and semantic consistency. For the-
oretical innovative sentences, we selected 6,000 high-
quality instances from the manually labeled data. For
methodological innovative sentences, we expanded
the dataset to 5,500 sentences, combining the orig-
inal annotations with generated samples. Similarly,
the applied innovation category was augmented to
5,000 sentences using a mix of original and generated
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Table 2: Experimental Results for Two-phase Innovation Classification.

Model Theoretical Methodological Applied Macro avg
Acc% P% R% Fl1%|Acc% P% R% Fl1%|Acc% P% R% Fl1%|Acc% P% R% Fl1%
Ministral-8B-Instruct 86.7 86.386.9 86.6| 85.2 84.8 85.5 85.1| 84.1 83.8 84.3 84.0| 85.3 85.0 85.6 85.2
LLAMA 3.1 8B-instruct | 84.3 83.8 83.1 83.4| 85.2 85.9 84.7 85.3| 83.6 82.9 84.1 83.5| 84.4 84.2 84.0 84.1
Phi 4-14B 85.8 86.285.5 85.8| 84.5 84.2 84.7 84.4| 83.2 83.583.0 83.2| 84.5 84.684.4 84.5
Qwen2.5 -14B 85.6 84.985.3 85.1| 84.2 83.8 84.5 84.1| 83.1 82.8 83.3 83.0| 84.3 83.8 84.4 84.1
SciBERT+TMA (one-phase)| 91.2 96.1 85.2 90.3| 91.2 90.4 90.3 90.4| 91.2 83.7 74.6 78.9| 91.2 90.1 83.4 86.5
SciBERT+TMA (two-phase)| 95.2 96.7 93.6 95.1| 91.5 98.3 84.3 90.8| 86.3 85.0 88.3 86.6| 91.0 93.3 88.7 90.8

data. To balance the dataset and reduce model bias, an
equal number of non-innovative sentences was incor-
porated for each category, maintaining a 1:1 positive-
to-negative sample ratio. The dataset was then strat-
ified into training, validation, and test sets using an
8:1:1 split, ensuring a consistent distribution of posi-
tive and negative samples across all subsets.

The experiment evaluated multiple mainstream
LLMs, including Ministral-8B-Instruct (Para-
manayakam et al., 2024), LLAMA 3.1 8B-Instruct
(Dubey et al., 2024), Phi 4-14B (Abdin et al.,
2024), and Qwen2.5-14B (Yang et al., 2024), us-
ing a prompt-based classification approach, where
sentences were categorized based on the following
prompt:

Your task is to classify each sentence in a given
text into one of four categories:

1.Theoretical Sentences: Sentences that discuss
theoretical frameworks, conceptual definitions, theo-
retical models, or hypotheses

2.Methodological Sentences: Sentences that de-
scribe research methods, data collection processes,
experimental designs, or analytical techniques

3.Applied Sentences: Sentences that discuss prac-
tical applications, implications, solutions, or recom-
mendations

4.0Other Sentences: Sentences that don’t fit into the
above categories

The following is an example:

Input: “Recent advances in cognitive psychology
have suggested that working memory capacity is not
fixed but can be enhanced through training. To test
this hypothesis, we recruited 150 undergraduate stu-
dents and randomly assigned them to experimental
and control groups. The experimental group under-
went an 8-week computerized working memory train-
ing program, while the control group played casual
computer games. Results showed that students who
completed the training demonstrated significant im-
provements in both working memory tasks and aca-
demic performance, suggesting that such interven-
tions could be valuable for educational programs.”

Output: { “sentences”: [ { “text”: ”Recent ad-
vances in cognitive psychology have suggested that
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working memory capacity is not fixed but can be
enhanced through training.”, “classification”: “the-
oretical” '}, { “text”: “To test this hypothesis,
we recruited 150 undergraduate students and ran-
domly assigned them to experimental and control
groups.”, “classification”: “methodological” }, {
“text”: “The experimental group underwent an 8-
week computerized working memory training pro-
gram, while the control group played casual computer
games.”, “classification”: “methodological” }, {
“text”: “Results showed that students who completed
the training demonstrated significant improvements
in both working memory tasks and academic per-
formance, suggesting that such interventions could
be valuable for educational programs.”, “classifica-
tion”: “applied” } ]

Now, please extract the information from the fol-
lowing text:

Input:

In addition, we conducted experiments using
SciBERT+TMA, the best-performing model from our
first phase of innovative sentence identification. The
classification was performed under two settings: (1)
a one-phase classification approach, where sentences
were directly categorized into non-innovation, the-
oretical innovation, methodological innovation, and
applied innovation; and (2) our proposed two-phase
model, which first identified innovative sentences and
then further classified them into subcategories using
our MoE-based approach.

As shown in Table 2, the proposed two-phase
SciBERT+TMA model achieved the highest perfor-
mance, with a macro-averaged Fl-score of 90.8%.
Specifically, it attained F1-scores of 95.1% for theo-
retical innovation, 90.8% for methodological innova-
tion, and 86.6% for applied innovation. Compared to
the one-phase SciBERT+TMA model, the two-phase
approach demonstrated notable improvements, partic-
ularly in precision and recall, highlighting the benefits
of progressive classification refinement.
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6 CONCLUSIONS

This paper presents a two-phase classification frame-
work for identifying innovative sentences in scien-
tific literature, integrating a Time Mixing Attention
(TMA) mechanism and a Mixture of Experts (MoE)
model. The first phase enhances long-range depen-
dency modeling using TMA, while the second phase
employs MoE to classify sentences into theoretical,
methodological, and applied innovation categories.
Additionally, a generative semantic data augmenta-
tion method is introduced to address class imbalance
and improve model performance.

Experimental results demonstrate that the pro-
posed two-phase SciBERT+TMA model achieves su-
perior performance, with a macro-averaged F1-score
of 90.8%, outperforming the one-phase approach and
all LLM baselines. Specifically, the Fl-scores for
theoretical, methodological, and applied innovation
categories reach 95.1%, 90.8%, and 86.6%, respec-
tively, highlighting the effectiveness of progressive
classification refinement. Compared to direct clas-
sification, the MoE-based approach significantly im-
proves precision and recall. Among LLMs, Ministral-
8B achieves the best performance in prompt-based
classification, with a macro-averaged Fl-score of
85.2%, reinforcing the advantages of a domain-
adapted framework over general-purpose LLM infer-
ence.
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