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Abstract: As quantum computing continues to develop, traditional cryptographic schemes face increasing threats from 
quantum attacks, driving the need for post-quantum cryptographic (PQC) algorithms. This study evaluates 
the feasibility of PQC algorithms with higher NIST security level parameters on a resource-constrained IoT 
device, the LoRa ESP32 microcontroller. We benchmarked the performance of CRYSTALS-Dilithium, Falcon, 
SPHINCS+ across multiple NIST levels, measuring latency, memory usage and discussing parameter sizes. 
Additionally, we examined the communication overhead introduced by transmitting the larger-than-usual 
digital signatures over a wireless network. Our findings reveal significant performance disparities between 
the tested algorithms, with Dilithium demonstrating the fastest execution and Falcon balancing speed and 
memory efficiency – even at higher NIST security levels. In contrast, SPHINCS+ proved impractically slow 
for IoT applications. This research investigates practical considerations and challenges of deploying PQC 
digital signature algorithms on IoT devices. 

1 INTRODUCTION 

As quantum computing technology matures, it will 
pose a greater threat to today’s cryptographic 
schemes. Quantum computers have the potential to 
break widely used public-key encryption systems, 
such as RSA, which play a crucial role in secure 
communication on the internet (Bhatia and 
Ramkumar, 2020). These cryptographic algorithms 
rely on mathematical problems, such as integer 
factorization, that are computationally challenging 
for classical computers, but it has been shown that 
some of the algorithms can be solved efficiently by 
quantum computers by using algorithms like Shor’s 
algorithm (Shor, 1997). 

In addressing this threat, the National Institute of 
Standardization and Technology (NIST) has been 
leading to find candidates for quantum-resistant 
cryptographic schemes in 2017. In 2022, a selection 
of several promising algorithms was made (NIST, 
2022). Among these, NIST selected three digital 
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signature schemes: CRYSTALS-Dilithium, Falcon 
and SPHINCS+ (Shajahan, et al., 2024).   

While the security of these algorithms has been 
analysed, some of their performance metrics on 
resource-constrained devices such as Internet of 
Things (IoT) microcontrollers remains underexplored 
(Liu et al., 2024). IoT devices often have limited 
computational power, memory or might run on 
batteries with limited energy capacity, which can 
present a challenge for the implementation of post-
quantum cryptographic (PQC) algorithms (Tan et al., 
2022). The IoT is rapidly expanding, with billions of 
devices deployed for various applications, such as 
smart homes, healthcare, agriculture and even critical 
infrastructure (Mansoor et al., 2025). A key property 
of IoT devices is their ability to handle data and 
communicate over insecure networks. Many of these 
applications require handling and communication of 
sensitive data, and failing to implement quantum-
resistant cryptographic schemes leaves them 
vulnerable to attackers. IoT devices are often 
deployed in environments where they are expected to 
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operate for prolonged periods of time without 
frequent updates or replacement. This makes these 
devices particularly susceptible to future quantum 
threats (Cheng et al., 2017). Ensuring that the PQC 
algorithms can be implemented on IoT devices is 
crucial to their future-proofing, especially as society 
gets increasingly more dependent on such devices. 

While PQC algorithms are being standardized and 
tested extensively, the feasibility of implementing 
algorithms with parameters corresponding to higher 
NIST security levels on resource-constrained IoT 
devices remains less explored. The more secure PQC 
algorithms can pose a challenge by being more 
computationally intensive and requiring more 
memory to operate. The main contributions of this 
paper are summarized as follows: 

1. Evaluation of PQC Digital Signature at Higher 
NIST security level on IoT hardware: We evaluate 
the computational performance and memory 
requirements of CRYSTALS-Dilithium, Falcon, 
and SPHINCS+ algorithms at high NIST security 
levels on the ESP32 IoT microcontroller. 

2. Assessment of practical communication 
overhead: We empirically analyze the latency 
overhead introduced by wirelessly transmitting 
large PQC digital signatures, providing insights 
into the realistic feasibility and impact of 
deploying PQC digital signature algorithms in 
bandwidth-limited IoT scenarios. 

2 RELATED WORK 

Recent studies have investigated the performance of 
PQC on embedded and resource-constrained devices, 
with a particular focus on digital signature 
algorithms. Halak et al. (2024) conducted an 
evaluation of PQC schemes on constrained hardware, 
employing a testbed to assess latency, memory 
consumption, and energy dissipation. Their findings 
highlighted Dilithium2 as a computationally efficient 
scheme while deeming SPHINCS+ impractical for 
IoT applications due to its high resource demands. 
However, their study primarily focused on TLS 
handshakes and did not include an analysis of Falcon 
or higher NIST security level schemes such as 
Dilithium3, Dilithium5, or SPHINCS+256-f, leaving 
gaps in the understanding of PQC feasibility at 
increased security levels. 

Similarly, Vidaković and Miličević (2023) 
examined the performance of Dilithium, Falcon, and 
SPHINCS+ on an ARM Cortex M4 microcontroller, 
considering their applicability in resource-

constrained environments. While this study provided 
valuable insights, it did not extend the analysis to 
higher NIST security levels for Dilithium or 
SPHINCS+, thus leaving the question of what scheme 
is best suitable for resource-constrained devices on 
higher NIST security levels. In addition to these 
investigations, other works, Fitzgibbon and Ottaviani 
(2024), have assessed PQC performance in 
constrained settings. While these studies contribute to 
understanding PQC implementation challenges, they 
predominantly focus on lower security levels and do 
not comprehensively address the feasibility of higher 
NIST security level digital signature schemes in 
resource-constrained environments. 

Fournaris et al. (2023) and Kannwischer et al. 
(2024) examined memory usage, runtime efficiency, 
and energy performance of NIST PQC candidates on 
resource-constrained microcontrollers. Both studies 
identified Dilithium as advantageous due to its 
balanced performance compared to Falcon and 
SPHINCS+, which exhibited higher complexity and 
resource demands. However, neither study 
comprehensively investigated higher NIST security 
levels nor explicitly evaluated widely-used IoT 
platforms such as ESP32 microcontrollers, 
highlighting important gaps for future research. 

As part of its standardization efforts, NIST has 
introduced two distinct standards for post-quantum 
digital signature algorithms. The Module-Lattice-
Based Digital Signature Standard (NIST, 2024a) 
defines a set of lattice-based digital signature 
schemes, including Falcon and Dilithium. Dilithium 
is based on the Module Learning with Errors 
(MLWE) problem, a structured variant of the 
Learning with Errors (LWE) problem, whereas 
Falcon relies on the Short Integer Solution (SIS) 
problem over NTRU lattices. Additionally, NIST has 
standardized a Stateless Hash-Based Digital 
Signature Standard (NIST, 2024b), which includes 
the SPHINCS+ algorithm. This scheme relies on the 
computational hardness of finding collisions in hash 
functions and is distinguished by its stateless nature, 
meaning that it does not require maintaining an 
internal state during the signing. While SPHINCS+ 
offers strong security assurances, its computational 
overhead remains a challenge for resource-
constrained environments (Opiłka, et al., 2024). 

Despite these ongoing standardization efforts and 
recent studies, there remains a research gap regarding 
the performance and applicability of higher security 
level PQC digital signature algorithms in constrained 
environments. Additionally, evaluations on ESP32 
microcontrollers remain limited. Thus, further 
research addressing these gaps is essential to clarify 
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the practicality of higher-security PQC algorithms in 
constrained environments. 

3 EXPERIMENTAL SETUP 

To benchmark the performance of the selected post-
quantum cryptographic signature algorithms, we 
implemented the algorithms on the ESP32 
microcontroller. The SPHINCS+ scheme has two 
variants: a fast variant with a large signature size, and 
a slower variant but with a smaller signature 
size.  Our attention was directed towards the fast 
variant, given its greater computational practicality 
for the ESP32 microcontroller. Table 1 summarizes 
PQC digital signature algorithms and their NIST 
security levels, ranging from Level I for basic security 
to Level V for the highest security. 

Table 1: Algorithms and their NIST Security levels 

Algorithms NIST Security Level
Falcon512 I 

SPHINCS+128-f I 
SPHINCS+192-f III 

Dilithium3 III 
Dilithium5 V 

Falcon1024 V 
SPHINCS+256-f V 

First, the algorithms were executed locally on the 
microcontroller. Subsequently, the algorithms that 
seemed practical were tested over Wi-Fi. Here our 
aim was to test whether the large signature sizes 
created by the algorithms would introduce additional 
latency during communication, that may make the 
algorithms infeasible. This approach simulates real-
life scenarios.  

The figure 1 illustrates a testbed setup where a 
LoRa ESP32 IoT device communicates with an 
unconstrained device via a router, enabling wireless 
interactions for performance benchmarking or data 
exchange. When the algorithms were tested locally on 
the microcontroller, the unconstrained device would 
log the output of the program, using the USB 
connection. When the wireless communication was 
tested, the unconstrained device measured the round-
trip time of signing requests made to the 
microcontroller using a socket connection. 

 
1  https://github.com/PQClean/PQClean. 

 
Figure 1: Test bed measuring latency and memory usage of 
PQC algorithms when communicating with a resource-
constrained device. 

3.1 Implementation 

The implementation of each algorithm was obtained 
from the PQClean1library (Kannwischer et al., 2022), 
a collection of reference implementations for NIST-
standardized PQC algorithms. The complete source 
code used in this study is available on GitHub2. All 
algorithms were implemented on an ESP32 
microcontroller, with the specifications detailed in 
Table 2. 

Table 2: Specifications of the ESP32 microcontroller. 

Parameter Description 

Model LoRa ESP32 
Processor Xtensa dual-core 32-bit LX7

Clock Speed 240MHz 
SRAM 512KB 

PSRAM 2MB 
Flash 4MB 

When benchmarking PQC digital signatures on 
the ESP32, SRAM handles real-time computations 
and temporary data, PSRAM stores large keys and 
signatures when SRAM is insufficient, and Flash 
Memory holds the algorithms but is too slow for 
execution. These three memories work together to run 
and evaluate PQC performance, though resource 
limits may influence execution. 

3.2 Measurements 

Multiple performance metrics were captured for each 
algorithm. The time-related metrics were measured 
using the high-resolution microsecond timer 
available on the ESP32 platform. For measuring the 
memory usage, the minimum free heap was measured 

2  https://github.com/madsvnielsen/ESP32-PQSignature-
Test 
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and subtracted from the allocated heap to measure 
how much dynamically allocated memory was 
required. The stack size was kept constant across all 
implementations to ensure constant measurement 
conditions. In total, the following data points were 
captured for all algorithms as shown in Table 3. 

Table 3: Metrics measured for each algorithm. 

Latency Memory Param. sizes 

Key Sign Verify Heap usage pk sk sig 

The parameters and heap usage are constant and 
do not vary between different executions. However, 
the execution times would vary so each operation was 
repeated multiple times, and the mean values were 
calculated. This approach ensured that any anomalies 
or outliers were minimized, providing a more reliable 
comparison of the algorithms’ performance. 
Afterwards, we aimed to measure the communication 
overhead for each algorithm. For this setup, an 
unconstrained device and the ESP32 microcontroller 
was connected to the same local internet over Wi-Fi. 
The microcontroller listens on a port, and once a 
packet is received it signs the packet body and replies 
with the signature. This experiment is meant to 
investigate the communication overhead introduced 
by the algorithms. 

Following this methodology, we aimed to 
evaluate the computational feasibility of running the 
PQC algorithms on resource-constrained IoT devices 
and provide insights into their efficiency and resource 
demands. 

4 RESULTS AND DISCUSSION 

In this section, a discussion of the measured metrics 
of the SPHINCS+, Dilithium and Falcon algorithms 
with different parameters will be compared and 
discussed. The comparisons include computation 
time, heap usage and the practical implications of the 
public key sizes, secret key sizes and signature sizes. 
Furthermore, the communication overhead of the 
digital signatures is investigated. 

4.1 Parameter Analysis 

To evaluate the feasibility of the post-quantum 
algorithms, we analysed the cryptographic 
parameters of each algorithm. These parameters are 
the public key (pk) size, secret key (sk) size and 
signature (sig) size.  

The public key is distributed to verify digital 
signatures. A smaller pk size minimizes 
communication overhead, making the algorithm more 
suitable for IoT devices with limited bandwidth. The 
secret key is stored solely on the signing device and 
never shared. Therefore, the sk size only impacts the 
memory requirements for the device. The signature 
size is the resulting output of the signing process. This 
is transmitted to the recipient for verification. A 
smaller signature size decreases communication cost 
and latency. On devices with limited bandwidth, this 
is also a crucial consideration. The algorithms and 
their respective parameter values are summarized in 
Table 4. 

Table 4: Parameter sizes for the different algorithms. 

Algorithm pk size 
(bytes) 

sk size 
(bytes) 

sig size 
(bytes) 

Falcon512 897 1281 752
Falcon1024 1793 2305 1462

Dilithium2 1312 2560 2420
Dilithium3 1952 4032 3309

Dilithium5 2592 4896 4627
SPHINCS+-128-f 32 64 17088
SPHINCS+-192-f 48 96 35664
SPHINCS+-256-f 64 128 49856

There is a noticeable difference between the 
parameter sizes for the different algorithms. The 
SPHINCS+ scheme has an exceptionally small pk and 
sk size, but a large signature size. The large signature 
could pose a significant challenge for IoT devices 
with limited bandwidth and memory. The Falcon 
scheme offers relatively small pk and sig sizes, 
making it more ideal for real-time communication 
based on the parameter sizes. Noticeably, the 
Falcon1024 has surprisingly small parameter sizes, 
considering that it is a NIST security level 5 
algorithm. The Dilithium parameters are all larger 
than the Falcon512 scheme, but still with a small 
signature size. A comparison of the parameter sizes 
can be seen in Figure 2. 

Analysis of parameter sizes demonstrates that the 
Dilithium and Falcon schemes reveal advantages 
over the SPHINCS+ scheme, especially at higher 
NIST security levels, with Falcon1024 being a 
significant highlight. Dilithium and Falcon, having to 
their comparatively smaller key and signature sizes, 
are promising candidates for PQC implementations 
on resource-constrained IoT devices, provided their 
computational feasibility and memory efficiency are 
suitable. 
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Figure 2: Comparison of parameter sizes showing that 
SPHINCS+ scheme has the smallest public and secret key 
size but with a very large signature size. 

4.2 Latency Analysis 

This part summarizes the findings from the time 
required for the three fundamental cryptographic 
operations of digital signatures: key generation, 
signing, and verification. 

4.2.1 Key Generation 

Key generation is the initial phase of the 
cryptographic protocols, where the public and secret 
keys are generated. Generating the random seeds 
required for the key generation, we used the platform-
specific method esp_fill_random. The timing was 
measured in microseconds using the high-resolution 
timer offered by the ESP-platform. Specifically, the 
method esp_timer_get_time was used. The 
algorithms used for key generations vary significantly 
between the algorithms.  

To show the different latencies based on key 
generation, signing and verification we had to use a 
logarithmic scale, as there was a large difference in 
latency between the PQC algorithms. The mean of all 
time measurements was calculated to accurately 
measure the latency. It is worth noting that the sample 
sizes for the SPHINCS+ algorithms are smaller, as 
doing many operations was time-consuming due to 
the latency of the algorithm.  The latencies are plotted 
and compared in Figure 3. 

During key generation, we see Dilithium being by 
far the fastest scheme, whilst Falcon is significantly 
slower and SPHINCS+ being in between. As 
expected, all algorithms get slower, the higher the 
security level it has. More accurately, the typical key 
generation for Falcon1024 is 80 times slower than 
Dilithium5 even though they have the same NIST 
security level. To generate one key pair, it takes 
Falcon1024 nearly 4 seconds. Whilst SPHINCS+ is 
faster than Falcon it still takes nearly a second to 

generate a key pair and this is only on the security 
level 2. 

 
Figure 3: Mean key generation times in ms using a 
logarithmic scale showing Dilithium as the fastest scheme 
with SPHINCS+ being an order of magnitude slower and 
Falcon nearly two orders of magnitude slower. 

4.2.2 Signing 

In this section, the signing latency of each algorithm 
will be evaluated. The signing latency is the measured 
time it takes to produce a digital signature for a fixed-
length message of 14 bytes. A logarithmic scale is 
used due to significant latency differences. A 
comparison of the measurements can be seen in 
Figure 4. 

 
Figure 4: Mean signing times in ms using a logarithmic 
scale showing Dilithium as the fastest scheme and 
SPHINCS+ being more than 200 times slower.  

For the signing times, we can see that SPHINCS+ 
is now the slowest algorithm. With it taking as much 
as 49,5 seconds for SPHINCS+-256-f to sign a 
message, the measurements indicates that SPHINCS+ 
is not usable on IoT devices, as most use cases would 
require a much smaller signing time. Falcon and 
Dilithium perform reasonably well. When comparing 
NIST level 5 schemes, Falcon1024 and Dilithium5, 
Dilithium5 clearly outperforms in signing latency. 
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4.2.3 Verification 

The verification process is responsible for verifying 
the authenticity of a given signature. As well as in the 
signing tests, the verification step was timed. The 
verification times are important, as verifications are 
done relatively often. Depending on the use case, 
either signing or verification may have a greater 
impact on the overall performance. The logarithmic 
scale was used for comparison. The results are seen 
in Figure 5. 

 
Figure 5: Mean verification times in ms using a logarithmic 
scale showing Falcon as the fastest scheme with Dilithium 
taking twice as long and SPHINCS+ being more than 100 
times slower. 

For the verification times, Falcon is now the 
fastest. SPHINCS+ is still the slowest but for 
verification, it is much less pronounced. Unlike the 
other parts of the process, all these latencies are 
arguably fast enough for many use cases. The 
verification latency is important, as signatures are 
required to be checked frequently when receiving 
packets. 

4.4 Memory Analysis 

We measured the heap usage by logging the allocated 
heap and the minimum free heap available. Using 
these numbers, we inferred the heap memory usage.  

We measured Dilithium5 to be the most memory-
intensive of all the algorithms. There is a trade-off 
with Dilithium being the fastest algorithm but also 
requiring the most amount of memory. Despite the 
large signature size for the SPHINCS+ scheme, it was 
the most memory-efficient scheme. 

The figure 6 reveals that SPHINCS+ is the most 
memory-efficient PQC digital signature algorithm, 
with SPHINCS-128-f requiring just 60 kB of heap 
space, and even its highest-security variant, 

SPHINCS-256-f, using only 96 kB, making it ideal for 
resource-constrained environments. In contrast, 
Dilithium exhibits a sharp rise in memory usage at 
higher security levels, with Dilithium5 demanding 
305 kB, which is significantly higher than other 
algorithms. Falcon strikes a balance, with Falcon512 
and Falcon1024 requiring 86 kB and 130 kB, 
respectively, offering a more alternative compared to 
high-security Dilithium variants. 

 
Figure 6: Heap usage measured in KB showing Dilithium 
as using the most memory whilst SPHINCS+ and Falcon 
being roughly equal and using half the amount of KB. 

4.5 Round-Trip Latency for Signing 
via Wi-Fi 

In the second stage of testing, we want to test the real-
time performance of the promising PQC algorithms. 
This was done to test whether the large signature sizes 
could introduce additional latency during 
communication. We decided to test all versions of 
Dilithium and Falcon over Wi-Fi. SPHINCS+ latency 
was too high, so we decided that it was unnecessary 
to do any further testing. 

The microcontroller would listen on port 8000, 
and upon receiving a message, it would sign the 
message with a pre-computed key and reply with the 
signature. As in the previous test, we evaluated the 
latency using the different parameters corresponding 
to the different NIST security levels. An 
unconstrained device measures the round-trip time to 
investigate the latency and the introduced 
communication overhead. While sending a message 
to a microcontroller to get it signed may not be a 
common use case, it reflects other real-world 
scenarios reasonably well. In such cases, the request 
would be sent to the controller, the requested data 
signed, and both the digital signature and data 
returned to the user. This experiment evaluates the 
difference in overhead of the signing process for the 
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different algorithms. A linear scale was used for 
comparison. The results are seen in Figure 7. 

 
Figure 7: Mean round trip signing times in ms using a linear 
scale showing Dilithium as the fastest scheme and Falcon 
being five times slower. 

There is not a significant difference in latency 
compared to the local test. For Dilithium the latency 
is only increased by around 19 to 50 millisecond and 
a 35% average increase. For Falcon we see about the 
same increase in latency around 35 ms. This test 
demonstrates that the additional latency caused by 
transmitting large signature sizes over Wi-Fi is both 
constant and minimal, allowing the speed of the 
algorithms to remain consistent. 

4.6 Comparison of the Implemented 
Algorithms 

Based on Table 5, the security level of Dilithium5 is 
the highest possible whilst also being faster than any 
version of SPHINCS+ and Falcon. This makes 
Dilithium more desirable as it maintains speed whilst 
not compromising security. However, if your device 
has less memory than an ESP32 microcontroller, 
Falcon may be the more suitable algorithm. Falcon is 
slower, but in turn, it has both smaller parameter sizes 
and heap usage. 

Adding all the timings together from the tests 
done locally over a USB connection, we can clearly 
see that SPHINCS+ is significantly the lowest, 
followed by Falcon, which remains considerably 
slower than the fastest algorithm, Dilithium. Whilst 
SPHINCS+ shows minimal memory consumption, it 
demonstrates low overall performance. Because of 
the latency of SPHINCS+, it does not seem suitable 
for use on a resource-limited IoT device. Its security 
level is lower, and the key generation and verification 
latency is so significant, that the delay would be 
unacceptable for any use case. 

Table 5: Summary of all metrics. 

 

These findings align with another study that found 
a very significant difference in latency between the 
algorithms. As with our experiments, Dilithium was 
faster in key generation and signing, Falcon fastest at 
verification and SPHINCS+ orders of significantly 
slower (Vidaković & Miličević, 2023). However, 
another study found that during a TLS handshake, 
SPHINCS+ had a significantly larger heap usage 
compared to the Dilithium scheme (Halak et al., 
2024). But this study measured that SPHINCS+ has 
very low memory usage. Our methodology when 
dealing with the issue of limited stack size and the 
difference in scenarios may have contributed to the 
observed discrepancies.  

 
Figure 8: Total mean times in ms using a logarithmic scale 
showing Dilithium being the overall fastest scheme Falcon 
as the second and SPHINCS+ as the slowest with it taking 
nearly 200 times longer than Dilithium. 

From our experiment's results, using Dilithium or 
Falcon is desirable, as they both are fast enough to be 
run on an IoT device. Dilithium outperforms Falcon 
due to its structured lattice approach, reducing 
computational overhead. Falcon, while efficient, 
requires floating-point operations, making it slower 
on ESP32’s integer-based architecture. Furthermore, 
our experiment indicates that running high NIST 
security level PQC algorithms is feasible even on 
resource-constrained IoT devices. 
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4.7 Challenges and Limitations 

During our experiments, we encountered some 
constraints that influenced our results. Firstly, we 
were unable to run the algorithms without 
dynamically allocating some data on the heap. Our 
attempts to increase the stack size were unsuccessful, 
which meant that certain memory allocations could 
not be properly standardized across all algorithms. 
For all the tests, the stacks were constant at 8.192 
words (32.768 bytes). We would consistently allocate 
the keys and signatures on the heap, but there would 
still be insufficient stack memory. To solve that, we 
inspected the key generation, verification and signing 
methods to identify variables with significant 
memory consumption. These variables were modified 
to utilize dynamic memory allocation. This 
introduced a minor inconsistency in the memory 
measurements, making the comparisons less 
accurate, as the different schemes may have been 
allocated slightly more heap memory than necessary. 
To improve this metric, an accurate measure of the 
used stack memory would have to be conducted. 
These inconsistencies mainly affected the memory 
usage metrics rather than the timing results and still 
provide insight into the memory requirements of the 
algorithms. 
      For the timing metrics, most measurements were 
reasonably accurate. The SPHINCS+ algorithm 
timings are slightly less so due to fewer 
measurements being made because of the longer 
runtime. Despite this, the observed variance for the 
SPHINCS+ timings was small enough to confidently 
conclude that it is significantly slower than the other 
alternatives. The limited flash memory of the device 
made it difficult to easily set up a test environment for 
signing larger files, constraining our ability to assess 
performance of varying input sizes. 

5 CONCLUSION 

In this study, we evaluated the NIST-selected PQC 
algorithms on a resource-constrained IoT device, the 
LoRa ESP32. Our tests covered algorithms with 
different NIST security levels to identify if high NIST 
security levels for such devices were feasible. We 
measured the latency and memory usage for each 
algorithm. The algorithms that could be run locally 
without excessive latency or memory usage was then 
subsequently tested over Wi-Fi. Our finding indicates 
that all version of the SPHINCS+ scheme was too 
slow to be practical for any use case on resource 
constrained devices. Consequently, it was decided to 

exclude it from tests over Wi-Fi and using it on a 
resource constrained IoT devices does not seem 
practical. From the second test it was shown that the 
latency introduced from communicating over Wi-Fi 
is insignificant, regardless of the choice of algorithm.  
Conclusively, running PQC schemes on resource-
constrained IoT devices seem feasible, even when 
using larger parameter sizes for increased security. 
Specifically, Dilithium5 and Falcon1024 are good 
candidates for schemes with high security even on 
resource-constrained devices.  

There are several areas for future work, that would 
be significant and interesting to explore. Firstly, 
evaluating PQC signature transmission over 
LoRaWAN on the ESP32 microcontroller would 
focus on latency and power consumption.  
Furthermore, testing a specific scenario and 
measuring more metrics, such as the stack memory 
and energy dissipation, would create a more complete 
picture of real-world use cases. 
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