
Post-Quantum Digital Signature Algorithms on IoT: Evaluating
Performance on LoRa ESP32 Microcontroller

Mads Villum Nielsen a, Magnus Raagaard Kjeldsen b, Togu Turnip c and Birger Andersen d
Technical University of Denmark, Copenhagen, Denmark

Keywords: Post-Quantum Cryptography, Digital Signature, Resource-Constrained Devices, Internet of Things.

Abstract: As quantum computing continues to develop, traditional cryptographic schemes face increasing threats from
quantum attacks, driving the need for post-quantum cryptographic (PQC) algorithms. This study evaluates
the feasibility of PQC algorithms with higher NIST security level parameters on a resource-constrained IoT
device, the LoRa ESP32 microcontroller. We benchmarked the performance of CRYSTALS-Dilithium, Falcon,
SPHINCS+ across multiple NIST levels, measuring latency, memory usage and discussing parameter sizes.
Additionally, we examined the communication overhead introduced by transmitting the larger-than-usual
digital signatures over a wireless network. Our findings reveal significant performance disparities between
the tested algorithms, with Dilithium demonstrating the fastest execution and Falcon balancing speed and
memory efficiency – even at higher NIST security levels. In contrast, SPHINCS+ proved impractically slow
for IoT applications. This research investigates practical considerations and challenges of deploying PQC
digital signature algorithms on IoT devices.

1 INTRODUCTION

As quantum computing technology matures, it will
pose a greater threat to today’s cryptographic
schemes. Quantum computers have the potential to
break widely used public-key encryption systems,
such as RSA, which play a crucial role in secure
communication on the internet (Bhatia and
Ramkumar, 2020). These cryptographic algorithms
rely on mathematical problems, such as integer
factorization, that are computationally challenging
for classical computers, but it has been shown that
some of the algorithms can be solved efficiently by
quantum computers by using algorithms like Shor’s
algorithm (Shor, 1997).

In addressing this threat, the National Institute of
Standardization and Technology (NIST) has been
leading to find candidates for quantum-resistant
cryptographic schemes in 2017. In 2022, a selection
of several promising algorithms was made (NIST,
2022). Among these, NIST selected three digital

a https://orcid.org/0009-0001-2240-3578
b https://orcid.org/0009-0006-6971-6885
c https://orcid.org/0000-0002-8269-0572
d https://orcid.org/0000-0003-1402-0355

signature schemes: CRYSTALS-Dilithium, Falcon
and SPHINCS+ (Shajahan, et al., 2024).

While the security of these algorithms has been
analysed, some of their performance metrics on
resource-constrained devices such as Internet of
Things (IoT) microcontrollers remains underexplored
(Liu et al., 2024). IoT devices often have limited
computational power, memory or might run on
batteries with limited energy capacity, which can
present a challenge for the implementation of post-
quantum cryptographic (PQC) algorithms (Tan et al.,
2022). The IoT is rapidly expanding, with billions of
devices deployed for various applications, such as
smart homes, healthcare, agriculture and even critical
infrastructure (Mansoor et al., 2025). A key property
of IoT devices is their ability to handle data and
communicate over insecure networks. Many of these
applications require handling and communication of
sensitive data, and failing to implement quantum-
resistant cryptographic schemes leaves them
vulnerable to attackers. IoT devices are often
deployed in environments where they are expected to

592
Nielsen, M. V., Kjeldsen, M. R., Turnip, T. and Andersen, B.
Post-Quantum Digital Signature Algorithms on IoT: Evaluating Performance on LoRa ESP32 Microcontroller.
DOI: 10.5220/0013508400003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 592-600
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

operate for prolonged periods of time without
frequent updates or replacement. This makes these
devices particularly susceptible to future quantum
threats (Cheng et al., 2017). Ensuring that the PQC
algorithms can be implemented on IoT devices is
crucial to their future-proofing, especially as society
gets increasingly more dependent on such devices.

While PQC algorithms are being standardized and
tested extensively, the feasibility of implementing
algorithms with parameters corresponding to higher
NIST security levels on resource-constrained IoT
devices remains less explored. The more secure PQC
algorithms can pose a challenge by being more
computationally intensive and requiring more
memory to operate. The main contributions of this
paper are summarized as follows:

1. Evaluation of PQC Digital Signature at Higher
NIST security level on IoT hardware: We evaluate
the computational performance and memory
requirements of CRYSTALS-Dilithium, Falcon,
and SPHINCS+ algorithms at high NIST security
levels on the ESP32 IoT microcontroller.

2. Assessment of practical communication
overhead: We empirically analyze the latency
overhead introduced by wirelessly transmitting
large PQC digital signatures, providing insights
into the realistic feasibility and impact of
deploying PQC digital signature algorithms in
bandwidth-limited IoT scenarios.

2 RELATED WORK

Recent studies have investigated the performance of
PQC on embedded and resource-constrained devices,
with a particular focus on digital signature
algorithms. Halak et al. (2024) conducted an
evaluation of PQC schemes on constrained hardware,
employing a testbed to assess latency, memory
consumption, and energy dissipation. Their findings
highlighted Dilithium2 as a computationally efficient
scheme while deeming SPHINCS+ impractical for
IoT applications due to its high resource demands.
However, their study primarily focused on TLS
handshakes and did not include an analysis of Falcon
or higher NIST security level schemes such as
Dilithium3, Dilithium5, or SPHINCS+256-f, leaving
gaps in the understanding of PQC feasibility at
increased security levels.

Similarly, Vidaković and Miličević (2023)
examined the performance of Dilithium, Falcon, and
SPHINCS+ on an ARM Cortex M4 microcontroller,
considering their applicability in resource-

constrained environments. While this study provided
valuable insights, it did not extend the analysis to
higher NIST security levels for Dilithium or
SPHINCS+, thus leaving the question of what scheme
is best suitable for resource-constrained devices on
higher NIST security levels. In addition to these
investigations, other works, Fitzgibbon and Ottaviani
(2024), have assessed PQC performance in
constrained settings. While these studies contribute to
understanding PQC implementation challenges, they
predominantly focus on lower security levels and do
not comprehensively address the feasibility of higher
NIST security level digital signature schemes in
resource-constrained environments.

Fournaris et al. (2023) and Kannwischer et al.
(2024) examined memory usage, runtime efficiency,
and energy performance of NIST PQC candidates on
resource-constrained microcontrollers. Both studies
identified Dilithium as advantageous due to its
balanced performance compared to Falcon and
SPHINCS+, which exhibited higher complexity and
resource demands. However, neither study
comprehensively investigated higher NIST security
levels nor explicitly evaluated widely-used IoT
platforms such as ESP32 microcontrollers,
highlighting important gaps for future research.

As part of its standardization efforts, NIST has
introduced two distinct standards for post-quantum
digital signature algorithms. The Module-Lattice-
Based Digital Signature Standard (NIST, 2024a)
defines a set of lattice-based digital signature
schemes, including Falcon and Dilithium. Dilithium
is based on the Module Learning with Errors
(MLWE) problem, a structured variant of the
Learning with Errors (LWE) problem, whereas
Falcon relies on the Short Integer Solution (SIS)
problem over NTRU lattices. Additionally, NIST has
standardized a Stateless Hash-Based Digital
Signature Standard (NIST, 2024b), which includes
the SPHINCS+ algorithm. This scheme relies on the
computational hardness of finding collisions in hash
functions and is distinguished by its stateless nature,
meaning that it does not require maintaining an
internal state during the signing. While SPHINCS+
offers strong security assurances, its computational
overhead remains a challenge for resource-
constrained environments (Opiłka, et al., 2024).

Despite these ongoing standardization efforts and
recent studies, there remains a research gap regarding
the performance and applicability of higher security
level PQC digital signature algorithms in constrained
environments. Additionally, evaluations on ESP32
microcontrollers remain limited. Thus, further
research addressing these gaps is essential to clarify

Post-Quantum Digital Signature Algorithms on IoT: Evaluating Performance on LoRa ESP32 Microcontroller

593

the practicality of higher-security PQC algorithms in
constrained environments.

3 EXPERIMENTAL SETUP

To benchmark the performance of the selected post-
quantum cryptographic signature algorithms, we
implemented the algorithms on the ESP32
microcontroller. The SPHINCS+ scheme has two
variants: a fast variant with a large signature size, and
a slower variant but with a smaller signature
size. Our attention was directed towards the fast
variant, given its greater computational practicality
for the ESP32 microcontroller. Table 1 summarizes
PQC digital signature algorithms and their NIST
security levels, ranging from Level I for basic security
to Level V for the highest security.

Table 1: Algorithms and their NIST Security levels

Algorithms NIST Security Level
Falcon512 I

SPHINCS+128-f I
SPHINCS+192-f III

Dilithium3 III
Dilithium5 V

Falcon1024 V
SPHINCS+256-f V

First, the algorithms were executed locally on the
microcontroller. Subsequently, the algorithms that
seemed practical were tested over Wi-Fi. Here our
aim was to test whether the large signature sizes
created by the algorithms would introduce additional
latency during communication, that may make the
algorithms infeasible. This approach simulates real-
life scenarios.

The figure 1 illustrates a testbed setup where a
LoRa ESP32 IoT device communicates with an
unconstrained device via a router, enabling wireless
interactions for performance benchmarking or data
exchange. When the algorithms were tested locally on
the microcontroller, the unconstrained device would
log the output of the program, using the USB
connection. When the wireless communication was
tested, the unconstrained device measured the round-
trip time of signing requests made to the
microcontroller using a socket connection.

1 https://github.com/PQClean/PQClean.

Figure 1: Test bed measuring latency and memory usage of
PQC algorithms when communicating with a resource-
constrained device.

3.1 Implementation

The implementation of each algorithm was obtained
from the PQClean1library (Kannwischer et al., 2022),
a collection of reference implementations for NIST-
standardized PQC algorithms. The complete source
code used in this study is available on GitHub2. All
algorithms were implemented on an ESP32
microcontroller, with the specifications detailed in
Table 2.

Table 2: Specifications of the ESP32 microcontroller.

Parameter Description

Model LoRa ESP32
Processor Xtensa dual-core 32-bit LX7

Clock Speed 240MHz
SRAM 512KB

PSRAM 2MB
Flash 4MB

When benchmarking PQC digital signatures on
the ESP32, SRAM handles real-time computations
and temporary data, PSRAM stores large keys and
signatures when SRAM is insufficient, and Flash
Memory holds the algorithms but is too slow for
execution. These three memories work together to run
and evaluate PQC performance, though resource
limits may influence execution.

3.2 Measurements

Multiple performance metrics were captured for each
algorithm. The time-related metrics were measured
using the high-resolution microsecond timer
available on the ESP32 platform. For measuring the
memory usage, the minimum free heap was measured

2 https://github.com/madsvnielsen/ESP32-PQSignature-
Test

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

594

and subtracted from the allocated heap to measure
how much dynamically allocated memory was
required. The stack size was kept constant across all
implementations to ensure constant measurement
conditions. In total, the following data points were
captured for all algorithms as shown in Table 3.

Table 3: Metrics measured for each algorithm.

Latency Memory Param. sizes

Key Sign Verify Heap usage pk sk sig

The parameters and heap usage are constant and
do not vary between different executions. However,
the execution times would vary so each operation was
repeated multiple times, and the mean values were
calculated. This approach ensured that any anomalies
or outliers were minimized, providing a more reliable
comparison of the algorithms’ performance.
Afterwards, we aimed to measure the communication
overhead for each algorithm. For this setup, an
unconstrained device and the ESP32 microcontroller
was connected to the same local internet over Wi-Fi.
The microcontroller listens on a port, and once a
packet is received it signs the packet body and replies
with the signature. This experiment is meant to
investigate the communication overhead introduced
by the algorithms.

Following this methodology, we aimed to
evaluate the computational feasibility of running the
PQC algorithms on resource-constrained IoT devices
and provide insights into their efficiency and resource
demands.

4 RESULTS AND DISCUSSION

In this section, a discussion of the measured metrics
of the SPHINCS+, Dilithium and Falcon algorithms
with different parameters will be compared and
discussed. The comparisons include computation
time, heap usage and the practical implications of the
public key sizes, secret key sizes and signature sizes.
Furthermore, the communication overhead of the
digital signatures is investigated.

4.1 Parameter Analysis

To evaluate the feasibility of the post-quantum
algorithms, we analysed the cryptographic
parameters of each algorithm. These parameters are
the public key (pk) size, secret key (sk) size and
signature (sig) size.

The public key is distributed to verify digital
signatures. A smaller pk size minimizes
communication overhead, making the algorithm more
suitable for IoT devices with limited bandwidth. The
secret key is stored solely on the signing device and
never shared. Therefore, the sk size only impacts the
memory requirements for the device. The signature
size is the resulting output of the signing process. This
is transmitted to the recipient for verification. A
smaller signature size decreases communication cost
and latency. On devices with limited bandwidth, this
is also a crucial consideration. The algorithms and
their respective parameter values are summarized in
Table 4.

Table 4: Parameter sizes for the different algorithms.

Algorithm pk size
(bytes)

sk size
(bytes)

sig size
(bytes)

Falcon512 897 1281 752
Falcon1024 1793 2305 1462

Dilithium2 1312 2560 2420
Dilithium3 1952 4032 3309

Dilithium5 2592 4896 4627
SPHINCS+-128-f 32 64 17088
SPHINCS+-192-f 48 96 35664
SPHINCS+-256-f 64 128 49856

There is a noticeable difference between the
parameter sizes for the different algorithms. The
SPHINCS+ scheme has an exceptionally small pk and
sk size, but a large signature size. The large signature
could pose a significant challenge for IoT devices
with limited bandwidth and memory. The Falcon
scheme offers relatively small pk and sig sizes,
making it more ideal for real-time communication
based on the parameter sizes. Noticeably, the
Falcon1024 has surprisingly small parameter sizes,
considering that it is a NIST security level 5
algorithm. The Dilithium parameters are all larger
than the Falcon512 scheme, but still with a small
signature size. A comparison of the parameter sizes
can be seen in Figure 2.

Analysis of parameter sizes demonstrates that the
Dilithium and Falcon schemes reveal advantages
over the SPHINCS+ scheme, especially at higher
NIST security levels, with Falcon1024 being a
significant highlight. Dilithium and Falcon, having to
their comparatively smaller key and signature sizes,
are promising candidates for PQC implementations
on resource-constrained IoT devices, provided their
computational feasibility and memory efficiency are
suitable.

Post-Quantum Digital Signature Algorithms on IoT: Evaluating Performance on LoRa ESP32 Microcontroller

595

Figure 2: Comparison of parameter sizes showing that
SPHINCS+ scheme has the smallest public and secret key
size but with a very large signature size.

4.2 Latency Analysis

This part summarizes the findings from the time
required for the three fundamental cryptographic
operations of digital signatures: key generation,
signing, and verification.

4.2.1 Key Generation

Key generation is the initial phase of the
cryptographic protocols, where the public and secret
keys are generated. Generating the random seeds
required for the key generation, we used the platform-
specific method esp_fill_random. The timing was
measured in microseconds using the high-resolution
timer offered by the ESP-platform. Specifically, the
method esp_timer_get_time was used. The
algorithms used for key generations vary significantly
between the algorithms.

To show the different latencies based on key
generation, signing and verification we had to use a
logarithmic scale, as there was a large difference in
latency between the PQC algorithms. The mean of all
time measurements was calculated to accurately
measure the latency. It is worth noting that the sample
sizes for the SPHINCS+ algorithms are smaller, as
doing many operations was time-consuming due to
the latency of the algorithm. The latencies are plotted
and compared in Figure 3.

During key generation, we see Dilithium being by
far the fastest scheme, whilst Falcon is significantly
slower and SPHINCS+ being in between. As
expected, all algorithms get slower, the higher the
security level it has. More accurately, the typical key
generation for Falcon1024 is 80 times slower than
Dilithium5 even though they have the same NIST
security level. To generate one key pair, it takes
Falcon1024 nearly 4 seconds. Whilst SPHINCS+ is
faster than Falcon it still takes nearly a second to

generate a key pair and this is only on the security
level 2.

Figure 3: Mean key generation times in ms using a
logarithmic scale showing Dilithium as the fastest scheme
with SPHINCS+ being an order of magnitude slower and
Falcon nearly two orders of magnitude slower.

4.2.2 Signing

In this section, the signing latency of each algorithm
will be evaluated. The signing latency is the measured
time it takes to produce a digital signature for a fixed-
length message of 14 bytes. A logarithmic scale is
used due to significant latency differences. A
comparison of the measurements can be seen in
Figure 4.

Figure 4: Mean signing times in ms using a logarithmic
scale showing Dilithium as the fastest scheme and
SPHINCS+ being more than 200 times slower.

For the signing times, we can see that SPHINCS+
is now the slowest algorithm. With it taking as much
as 49,5 seconds for SPHINCS+-256-f to sign a
message, the measurements indicates that SPHINCS+
is not usable on IoT devices, as most use cases would
require a much smaller signing time. Falcon and
Dilithium perform reasonably well. When comparing
NIST level 5 schemes, Falcon1024 and Dilithium5,
Dilithium5 clearly outperforms in signing latency.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

596

4.2.3 Verification

The verification process is responsible for verifying
the authenticity of a given signature. As well as in the
signing tests, the verification step was timed. The
verification times are important, as verifications are
done relatively often. Depending on the use case,
either signing or verification may have a greater
impact on the overall performance. The logarithmic
scale was used for comparison. The results are seen
in Figure 5.

Figure 5: Mean verification times in ms using a logarithmic
scale showing Falcon as the fastest scheme with Dilithium
taking twice as long and SPHINCS+ being more than 100
times slower.

For the verification times, Falcon is now the
fastest. SPHINCS+ is still the slowest but for
verification, it is much less pronounced. Unlike the
other parts of the process, all these latencies are
arguably fast enough for many use cases. The
verification latency is important, as signatures are
required to be checked frequently when receiving
packets.

4.4 Memory Analysis

We measured the heap usage by logging the allocated
heap and the minimum free heap available. Using
these numbers, we inferred the heap memory usage.

We measured Dilithium5 to be the most memory-
intensive of all the algorithms. There is a trade-off
with Dilithium being the fastest algorithm but also
requiring the most amount of memory. Despite the
large signature size for the SPHINCS+ scheme, it was
the most memory-efficient scheme.

The figure 6 reveals that SPHINCS+ is the most
memory-efficient PQC digital signature algorithm,
with SPHINCS-128-f requiring just 60 kB of heap
space, and even its highest-security variant,

SPHINCS-256-f, using only 96 kB, making it ideal for
resource-constrained environments. In contrast,
Dilithium exhibits a sharp rise in memory usage at
higher security levels, with Dilithium5 demanding
305 kB, which is significantly higher than other
algorithms. Falcon strikes a balance, with Falcon512
and Falcon1024 requiring 86 kB and 130 kB,
respectively, offering a more alternative compared to
high-security Dilithium variants.

Figure 6: Heap usage measured in KB showing Dilithium
as using the most memory whilst SPHINCS+ and Falcon
being roughly equal and using half the amount of KB.

4.5 Round-Trip Latency for Signing
via Wi-Fi

In the second stage of testing, we want to test the real-
time performance of the promising PQC algorithms.
This was done to test whether the large signature sizes
could introduce additional latency during
communication. We decided to test all versions of
Dilithium and Falcon over Wi-Fi. SPHINCS+ latency
was too high, so we decided that it was unnecessary
to do any further testing.

The microcontroller would listen on port 8000,
and upon receiving a message, it would sign the
message with a pre-computed key and reply with the
signature. As in the previous test, we evaluated the
latency using the different parameters corresponding
to the different NIST security levels. An
unconstrained device measures the round-trip time to
investigate the latency and the introduced
communication overhead. While sending a message
to a microcontroller to get it signed may not be a
common use case, it reflects other real-world
scenarios reasonably well. In such cases, the request
would be sent to the controller, the requested data
signed, and both the digital signature and data
returned to the user. This experiment evaluates the
difference in overhead of the signing process for the

Post-Quantum Digital Signature Algorithms on IoT: Evaluating Performance on LoRa ESP32 Microcontroller

597

different algorithms. A linear scale was used for
comparison. The results are seen in Figure 7.

Figure 7: Mean round trip signing times in ms using a linear
scale showing Dilithium as the fastest scheme and Falcon
being five times slower.

There is not a significant difference in latency
compared to the local test. For Dilithium the latency
is only increased by around 19 to 50 millisecond and
a 35% average increase. For Falcon we see about the
same increase in latency around 35 ms. This test
demonstrates that the additional latency caused by
transmitting large signature sizes over Wi-Fi is both
constant and minimal, allowing the speed of the
algorithms to remain consistent.

4.6 Comparison of the Implemented
Algorithms

Based on Table 5, the security level of Dilithium5 is
the highest possible whilst also being faster than any
version of SPHINCS+ and Falcon. This makes
Dilithium more desirable as it maintains speed whilst
not compromising security. However, if your device
has less memory than an ESP32 microcontroller,
Falcon may be the more suitable algorithm. Falcon is
slower, but in turn, it has both smaller parameter sizes
and heap usage.

Adding all the timings together from the tests
done locally over a USB connection, we can clearly
see that SPHINCS+ is significantly the lowest,
followed by Falcon, which remains considerably
slower than the fastest algorithm, Dilithium. Whilst
SPHINCS+ shows minimal memory consumption, it
demonstrates low overall performance. Because of
the latency of SPHINCS+, it does not seem suitable
for use on a resource-limited IoT device. Its security
level is lower, and the key generation and verification
latency is so significant, that the delay would be
unacceptable for any use case.

Table 5: Summary of all metrics.

These findings align with another study that found
a very significant difference in latency between the
algorithms. As with our experiments, Dilithium was
faster in key generation and signing, Falcon fastest at
verification and SPHINCS+ orders of significantly
slower (Vidaković & Miličević, 2023). However,
another study found that during a TLS handshake,
SPHINCS+ had a significantly larger heap usage
compared to the Dilithium scheme (Halak et al.,
2024). But this study measured that SPHINCS+ has
very low memory usage. Our methodology when
dealing with the issue of limited stack size and the
difference in scenarios may have contributed to the
observed discrepancies.

Figure 8: Total mean times in ms using a logarithmic scale
showing Dilithium being the overall fastest scheme Falcon
as the second and SPHINCS+ as the slowest with it taking
nearly 200 times longer than Dilithium.

From our experiment's results, using Dilithium or
Falcon is desirable, as they both are fast enough to be
run on an IoT device. Dilithium outperforms Falcon
due to its structured lattice approach, reducing
computational overhead. Falcon, while efficient,
requires floating-point operations, making it slower
on ESP32’s integer-based architecture. Furthermore,
our experiment indicates that running high NIST
security level PQC algorithms is feasible even on
resource-constrained IoT devices.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

598

4.7 Challenges and Limitations

During our experiments, we encountered some
constraints that influenced our results. Firstly, we
were unable to run the algorithms without
dynamically allocating some data on the heap. Our
attempts to increase the stack size were unsuccessful,
which meant that certain memory allocations could
not be properly standardized across all algorithms.
For all the tests, the stacks were constant at 8.192
words (32.768 bytes). We would consistently allocate
the keys and signatures on the heap, but there would
still be insufficient stack memory. To solve that, we
inspected the key generation, verification and signing
methods to identify variables with significant
memory consumption. These variables were modified
to utilize dynamic memory allocation. This
introduced a minor inconsistency in the memory
measurements, making the comparisons less
accurate, as the different schemes may have been
allocated slightly more heap memory than necessary.
To improve this metric, an accurate measure of the
used stack memory would have to be conducted.
These inconsistencies mainly affected the memory
usage metrics rather than the timing results and still
provide insight into the memory requirements of the
algorithms.
 For the timing metrics, most measurements were
reasonably accurate. The SPHINCS+ algorithm
timings are slightly less so due to fewer
measurements being made because of the longer
runtime. Despite this, the observed variance for the
SPHINCS+ timings was small enough to confidently
conclude that it is significantly slower than the other
alternatives. The limited flash memory of the device
made it difficult to easily set up a test environment for
signing larger files, constraining our ability to assess
performance of varying input sizes.

5 CONCLUSION

In this study, we evaluated the NIST-selected PQC
algorithms on a resource-constrained IoT device, the
LoRa ESP32. Our tests covered algorithms with
different NIST security levels to identify if high NIST
security levels for such devices were feasible. We
measured the latency and memory usage for each
algorithm. The algorithms that could be run locally
without excessive latency or memory usage was then
subsequently tested over Wi-Fi. Our finding indicates
that all version of the SPHINCS+ scheme was too
slow to be practical for any use case on resource
constrained devices. Consequently, it was decided to

exclude it from tests over Wi-Fi and using it on a
resource constrained IoT devices does not seem
practical. From the second test it was shown that the
latency introduced from communicating over Wi-Fi
is insignificant, regardless of the choice of algorithm.
Conclusively, running PQC schemes on resource-
constrained IoT devices seem feasible, even when
using larger parameter sizes for increased security.
Specifically, Dilithium5 and Falcon1024 are good
candidates for schemes with high security even on
resource-constrained devices.

There are several areas for future work, that would
be significant and interesting to explore. Firstly,
evaluating PQC signature transmission over
LoRaWAN on the ESP32 microcontroller would
focus on latency and power consumption.
Furthermore, testing a specific scenario and
measuring more metrics, such as the stack memory
and energy dissipation, would create a more complete
picture of real-world use cases.

REFERENCES

Bhatia, V., Ramkumar, K. R. (2020). An efficient quantum
computing technique for cracking RSA using Shor’s
algorithm. 2020 IEEE 5th International Conference on
Computing Communication and Automation (ICCCA),
Greater Noida, India, 89–94. https://doi.org/10.1109/
ICCCA49541.2020.9250806

Cheng, C., Lu, R., Petzoldt, A., and Takagi, T. (2017).
Securing the Internet of Things in a quantum world.
IEEE Communications Magazine, 55(2), 116–120.
https://doi.org/10.1109/MCOM.2017.1600522CM

Fitzgibbon, G. Ottaviani, C. (2024). Constrained device
performance benchmarking with the implementation of
post-quantum cryptography. Cryptography, 8(2), 21.
https://doi.org/10.3390/cryptography8020021

Fournaris, A. P., Tasopoulos, G., Brohet, M., and
Regazzoni, F. (2023). Running Longer To Slim Down:
Post-Quantum Cryptography on Memory-Constrained
Devices. 2023 IEEE International Conference on
Omni-layer Intelligent Systems (COINS), Berlin,
Germany, pp. 1-6. https://doi.org/10.1109/COINS
57856.2023.10189268

Halak, B., Gibson, T., Henley, M., Botea, C., Heath, B., and
Khan, S. (2024). Evaluation of performance, energy,
and computation costs of quantum-attack resilient
encryption algorithms for embedded devices. Applied
Sciences.https://doi.org/10.1109/ACCESS.2024.33507
75

Kannwischer, M. J., Schwabe, P., Stebila, D., and Wiggers,
T. (2022). Improving software quality in cryptography
standardization projects. In Security Standardization
Research – EuroS&P Workshops 2022.

Kannwischer, M. J., Krausz, M., Petri R., and Yang S.Y.
(2024). pqm4: Benchmarking NIST Additional Post-

Post-Quantum Digital Signature Algorithms on IoT: Evaluating Performance on LoRa ESP32 Microcontroller

599

Quantum Signature Schemes on Microcontrollers.
Cryptology ePrint Archive, Paper 2024/112.
https://eprint.iacr.org/2024/112

Liu, T., Ramachandran, G., and Jurdak, R. (2024). Post-
quantum cryptography for Internet of Things: A survey
on performance and optimization. arXiv.
https://arxiv.org/abs/2401.17538

Mansoor, K., Afzal, M., Iqbal, W. et al. (2025). Securing
the future: exploring post-quantum cryptography for
authentication and user privacy in IoT devices. Cluster
Comput 28, 93. https://doi.org/10.1007/s10586-024-
04799-4

National Institute of Standards and Technology (NIST).
(2022). Selected algorithms. Retrieved January 19,
2025, from https://csrc.nist.gov/projects/post-quantum-
cryptography/selected-algorithms-2022

National Institute of Standards and Technology (NIST).
(2024). Module-Lattice-Based Digital Signature
Standard (FIPS PUB 204). Retrieved January 23, 2025,
from https://doi.org/10.6028/NIST.FIPS.204

National Institute of Standards and Technology (NIST).
(2024). Stateless Hash-Based Digital Signature
Standard (FIPS PUB 205). Retrieved January 23, 2025,
from https://doi.org/10.6028/NIST.FIPS.205

Opiłka, F., Niemiec, M., Gagliardi, M., and Kourtis, M. A.
(2024). Performance analysis of post-quantum
cryptography algorithms for digital signature. Applied
Sciences, 14(12), 4994. https://doi.org/10.3390/
app14124994

Shajahan, R., Jain, K., and Krishnan, P. (2024). A Survey
on NIST 3rd Round Post Quantum Digital Signature
Algorithms," 2024 5th International Conference on
Mobile Computing and Sustainable Informatics
(ICMCSI), Lalitpur, Nepal, pp. 132-140.
https://doi.org/10.1109/ICMCSI61536.2024.00027

Shor, P. W. (1997). Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer. SIAM Journal on Computing, 26(5):1484–
1509.

Tan, T.G., Szalachowski, P. and Zhou, J. (2022).
Challenges of post-quantum digital signing in real-
world applications: a survey. Int. J. Inf. Secur. 21, 937–
952. https://doi.org/10.1007/s10207-022-00587-6

Vidaković, M., Miličević, K. (2023). Performance and
applicability of post-quantum digital signature
algorithms in resource-constrained environments.
Algorithms, 16(11), 518. https://doi.org/10.3390/
a16110518

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

600

