
Post-Quantum Secure Channel Protocols for eSIMs:
Design, Validation and Performance Analysis

Luk Bettale1 a, Emmanuelle Dottax2 b and Laurent Grémy2 c

1IDEMIA Secure Transactions, Courbevoie, France
2IDEMIA Secure Transactions, Pessac, France

Keywords: Post-Quantum Cryptography, Secure Channel, Protocol Design, Formal Proof, Embedded Device.

Abstract: The transition to Post-Quantum (PQ) cryptography is increasingly mandated by national agencies and orga-
nizations, often involving a phase where classical and PQ primitives are combined into hybrid solutions. In
this context, existing protocols must be adapted to ensure quantum resistance while maintaining their security
goals. These adaptations can significantly impact performance, particularly on embedded devices. In this
article, we focus on standardized protocols which support application management on eSIMs across different
modes. This is a complex use-case, involving constrained devices with stringent security requirements. We
present PQ adaptations, including both hybrid and fully PQ versions, for all modes. Using ProVerif, we pro-
vide automated proofs that verify the security of these PQ variants. Additionally, we analyze the performance
impact of implementing PQ protocols on devices, measuring runtime and bandwidth consumption. Our find-
ings highlight the resource overhead associated with achieving post-quantum security for eSIM management.

1 INTRODUCTION

With quantum computing advances, the security of
widely used cryptographic systems is increasingly
threatened, making it essential to plan for migration to
quantum-resistant solutions. With NIST’s recent pub-
lication of Post-Quantum Cryptography (PQC) stan-
dards, transitions can now be planned. This is partic-
ularly urgent for sectors deploying long-lived equip-
ment, such as automotive systems, smart meters, and
critical infrastructure sensors. In these cases, devices
remain operational for many years and rely on con-
nectivity based on an embedded Subscriber Identity
Module (eSIM), a digital version of a SIM card em-
bedded directly within the device hardware. Securing
these devices against quantum attacks is crucial, given
the high cost of upgrading hardware in the field.

The migration of embedded elements and their as-
sociated remote management protocols is therefore
critical. This work focuses on protocols for remote
management of eSIMs (and, more generally, embed-
ded secure elements), as defined by Global System
for Mobile communications Association (GSMA) and

a https://orcid.org/0000-0002-8799-8568
b https://orcid.org/0000-0001-8717-3462
c https://orcid.org/0009-0008-2715-3169

GlobalPlatform (GP) standards. Specifically, we
study a protocol supporting a scripting mode, en-
abling pre-generated, sequenced commands in envi-
ronments without a continuous connectivity. This
protocol makes use of Elliptic Curve Diffie-Hellman
(ECDH) as a Non-Interactive Key Exchange (NIKE,
(Freire et al., 2012)), and thus presents complexi-
ties for post-quantum migration. Indeed, no suitable
PQ NIKE currently exists. Similar challenges are
noted in Signal’s key exchange (Brendel et al., 2020;
Hashimoto et al., 2021; Brendel et al., 2022; Kret and
Schmidte, 2024), WireGuard (Hülsing et al., 2021),
TLS (Celi et al., 2022) or Noise (Angel et al., 2022).

We propose a PQ adaptation using only standard-
ized PQ primitives. To our knowledge, this is the
first approach combining a digital signature and key
encapsulation for mutual authentication. Though de-
signed for a specific use case, it may have broader
applications. This migration also considers resource
constraints in secure embedded elements, making it a
valuable case study.

This paper presents the background and the tar-
get protocols in Sect. 2, followed by PQ and hybrid
adaptations in Sect. 3, retaining their original secu-
rity properties. Formal verification with ProVerif is
detailed in Sect. 4. Finally, Sect. 5 evaluates the per-
formance impact of migrating to PQ mechanisms.

108
Bettale, L., Dottax, E. and Grémy, L.
Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis.
DOI: 10.5220/0013507200003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 108-119
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

2 PROTOCOLS FOR ESIM

2.1 Context

The eSIM is a technological evolution of the tradi-
tional SIM card. Unlike physical SIM cards, eSIMs
are programmable secure chips soldered directly onto
the device’s motherboard1. A further evolution is
the Integrated SIM (iSIM), which is incorporated into
the device’s processor. Both technologies enable the
management of mobile subscriptions and various ser-
vices without requiring physical intervention.

The GSMA defines the interactions between the
various involved stakeholders, including Mobile Net-
work Operators (MNOs), Original Equipment Man-
ufacturers, and eSIM providers, across different use-
cases. For instance, in the process of downloading
a SIM profile (when a user acquires a new subscrip-
tion), the GSMA specifies how the new profile is
transferred from the MNO to the eSIM, via the mo-
bile device (GSMA, 2023a; GSMA, 2023b).

Since eSIMs function as secure elements, they
can host additional security-sensitive services. For
instance, a banking mobile application could benefit
from a counterpart on the eSIM for secure operations.
In these scenarios, the involved parties differ: indeed,
the service provider, as owner of the application, en-
ters in the process. A distinct set of documents gov-
erns these cases: the Secured Applications for Mobile
specifications (GSMA, 2023c) outlines how applica-
tions can be installed and managed on eSIMs. A se-
cure link between the eSIM and the entity responsible
for installation is established using the Secure Chan-
nel Protocol '11' (SCP11). This protocol is specified
by GP, the organization in charge of standards for
digital services that rely on secure elements (Glob-
alPlatform, 2023). This document specifies a secure
channel protocol based on Elliptic Curve Cryptogra-
phy (ECC). We explore it in more detail in the next
section.

2.2 Protocol of GP SCP11

SCP11 is a secure channel protocol widely used in
secure element-based products, including eSIMs. It
employs ECC for mutual authentication and secure
channel initiation, and AES for transport encryption.
It defines three variants (referred to as modes), each
tailored to a specific use case. The protocol involves

1Strictly speaking, eSIM refers to the service, while
eUICC (Embedded Universal Integrated Circuit Card) de-
notes the physical device operating the mobile functionality.
However, these terms are frequently used interchangeably.

two parties: the Card (e.g., an eSIM) and the Off-
Card Entity (OCE, such as a terminal or server).
Table 1 summarizes the security properties claimed
in (GlobalPlatform, 2023, §4.3-4.6), including au-
thentication, confidentiality, integrity, Perfect For-
ward Secrecy (PFS) and session replay (these prop-
erties are discussed in Sect. 4). The different modes
are detailed below.

Table 1: Properties of the different SCP11 modes.

Property Mode A Mode B Mode C

Authentication OCE to Card ✓ ✓

Authentication Card to OCE ✓ ✓ ✓

Message Integrity ✓ ✓ ✓

Data Confidentiality ✓ ✓ ✓

Perfect Forward Secrecy ✓ ✓

Session Replay (replayable) ✓

2.2.1 SCP11 Mode A

Mode A enables mutual authentication between the
Card and the OCE, as illustrated in Fig. 1. Both par-
ties hold an ECC key pair—(EC.skOCE,EC.pkOCE)
for the OCE and (EC.skC,EC.pkC) for the Card—
along with associated certificates CertOCE and CertC
signed by an authority CA. Authentication is achieved
via static key ECDH, while a second, ephemeral
ECDH ensures PFS. The process involves the OCE
sending commands to trigger computations on the
Card, which responds accordingly.

The process begins with the OCE retrieving the
Card’s certificate through a GET_DATA command
and verifying it using the CA’s public key EC.pkCA.
The OCE then sends its own certificate via a Perform
Security Operation (PSO) command, which the Card
verifies. Next, the OCE generates an ephemeral key
pair (EC.epkOCE,EC.eskOCE) and sends the public
component to the Card through a MUTUAL_AUTH
command. The Card, in turn, creates its own
ephemeral key pair (EC.epkC,EC.eskC) and performs
two elliptic curve key agreements (EC.KeyAgr, stan-
dard ECDH as specified in (BSI, 2018, §4.3)): one us-
ing the certified keys and another with the ephemeral
keys, ensuring PFS.

The shared secrets, Sss and See, are processed
through a key derivation function KDeriv to gener-
ate a receipt key SKReceipt and session keys for secure
channel SKSession

2. The KDeriv function uses SHA-
256, as specified in (BSI, 2018). The message Receipt
is an AES-CMAC (Dworkin, 2005) computed over

2In the specification (GlobalPlatform, 2023, Table
6.18), SKReceipt is the receipt key, while SKSession com-
prises the S-ENC, S-MAC, S-RMAC and S-DEK keys.

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

109

OCE Card

CertC, EC.skC, EC.pkCACertOCE, EC.skOCE, EC.pkCA

GET_DATA()
CertC

EC.pkC← Cert.Verify(CertC,EC.pkCA)

PSO(CertOCE)

EC.pkOCE← Cert.Verify(CertOCE,EC.pkCA)

PSO Response

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

MUTUAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(SKReceipt,SKSession)← KDeriv(Sss∥See)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.epkC)

EC.epkC,Receipt

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(SKReceipt,SKSession)← KDeriv(Sss∥See)
Verify Receipt

SCP03 protected exchanges

Figure 1: SCP11 Mode A.

EC.epkOCE and EC.epkC, and sent to the OCE along
with the Card’s ephemeral key. This enables the OCE
to compute and verify the MAC value, allowing it
to authenticate the Card before initiating the secure
channel.

If verified, the OCE and the Card continue with
the Secure Channel Protocol '03' (SCP03) (Glob-
alPlatform, 2020), using SKSession, which includes
one encryption/decryption key and two MAC keys,
one for each direction. All messages are encrypted
and MAC-ed.

It can be noted that the Card cannot authenticate
the OCE until it receives an SCP03 command with a
valid MAC, as prior messages could come from an at-
tacker without access to EC.skOCE. Additionally, the
session cannot be replayed.

2.2.2 SCP11 Mode B

The Mode B provides authentication of the Card to
the OCE only; it is illustrated by Fig. 2. This mode
is useful when the OCE lacks certified keys, but can
achieve a limited level of authentication through alter-
native means. For instance, if the OCE is a card ter-
minal, a user-entered PIN verified by the Card offers a
weak, indirect form of OCE authentication. However,
these considerations are out of the scope of (Glob-
alPlatform, 2023), and are not discussed further here.

Mode B is similar to Mode A, with two distinc-
tions:

• The OCE does not send a certificate or use static

OCE Card

CertC, EC.skC, EC.pkCAEC.pkCA

GET_DATA()
CertC

EC.pkC← Cert.Verify(CertC,EC.pkCA)

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

INTERNAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(SKReceipt,SKSession)← KDeriv(Ses∥See)
Receipt←MAC(SKReceipt,EC.epkOCE)

EC.epkC,Receipt

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

SKSession← KDeriv(Ses∥See)
Verify Receipt

SCP03 protected exchanges

Figure 2: SCP11 Mode B.

keys (no PSO command is sent);

• The two key agreements involve the OCE’s
ephemeral key and both the static and ephemeral
keys of the Card (the command INTER-
NAL_AUTH replaces the MUTUAL_AUTH
one).

The rest of the protocol remains the same, ensuring
PFS due to the use of ephemeral keys, and anti-replay.

2.2.3 SCP11 Mode C

Mode C supports offline scripting, allowing the OCE
to pre-generate commands for later execution by a
third-party, as shown in Fig. 3. Typically, this mode
assumes the Card is an eSIM in a mobile device,
which plays the script. For instance, the script might
be distributed as part of a rich environment applica-
tion (e.g., an Android or iOS application) and exe-
cuted during the application installation. Importantly,
no secrets are handled by the mobile application, en-
abling the safe installation of services on the eSIM
to secure functions such as those of a banking appli-
cation. This mode also allows for remote administra-
tion of secure elements in general, without requiring a
continuous, direct connection, which may be imprac-
tical in certain scenarios.

Mode C resembles Mode A with the following
modifications:

• The OCE retrieves the eSIM’s public key from a
database.

• Only the eSIM’s static keys are used, as the of-
fline nature of this mode precludes the use of
ephemeral data on eSIM side.

Mutual authentication, key derivation and command

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

110

OCE

CertOCE, EC.skOCE, EC.pkC

Prepare
(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

(SKReceipt,SKSession)← KDeriv(Sss∥Ses)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.pkC)
Wrap following payloads into SCP03 using SKSession

Distribute Commands to mobile app

Mobile eSIM

CertC, EC.skC, EC.pkCA

PSO(CertOCE)

EC.pkOCE← Cert.Verify(CertOCE,EC.pkCA)

PSO Response

MUTUAL_AUTH(EC.epkOCE)

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

(SKReceipt,SKSession)← KDeriv(Sss∥Ses)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.pkC)

Receipt

Verify Receipt

Continue communication
SCP03 protected exchanges

Figure 3: SCP11 Mode C.

wrapping are performed by the OCE in advance. The
Receipt is based on EC.epkOCE and EC.pkC.

Mode C provides mutual authentication between
the OCE and the eSIM but lacks PFS for the eSIM’s
secrets. Furthermore, as the session relies only on
static data from the eSIM, it can be replayed, unlike
in Modes A and B. This is acknowledged by (Glob-
alPlatform, 2023), and as a consequence some sensi-
tive commands—like inserting new keys—are disal-
lowed in Mode C.

3 QUANTUM-RESISTANT
VERSIONS

As seen, current protocols rely on ECC, which is vul-
nerable to quantum attacks, necessitating a shift to
quantum-resistant alternatives. This is crucial to pro-
tect long-term sensitive data and secure eSIMs in de-
vices with extended lifespans, like vehicles or smart
meters. This section addresses the complexities of
this migration and the required adaptation efforts.

3.1 Quantum-Resistant Mode C

We analyze Mode C, the variant used for scripting,
where the off-card entity (OCE) prepares a script for
the eSIM. Mutual authentication ensures that only the

intended eSIM, with the correct ECDH key, can read
the script, while the eSIM can verify its origin. Our
goal is to maintain these properties against quantum-
capable adversaries.

Standardized post-quantum algorithms now exist
for signature (NIST, 2024a; NIST, 2024c) and Key
Encapsulation Mechanism (KEM) (NIST, 2024b).
Since the original protocol relies on ECDH, a natural
approach is replacing it with a KEM. However, this
alone fails: while the OCE can encrypt for the eSIM
using its long-term KEM public key, it cannot prove
authorship of the script, as KEMs require interaction
for authentication. This limitation is also observed in,
e.g., post-quantum adaptations of Signal (see Sect. 1):
while KEMs work for key establishment, they cannot
replace ECDH in protocols requiring asynchronous
authentication.

To address this, the OCE needs a signature key
to enable the eSIM to verify the script’s origin. Re-
placing the eSIM’s long-term KEM key with a sig-
nature key is not feasible here, as it would again re-
quire interaction with the eSIM, allowing it to sign an
ephemeral KEM key.

Thus, we construct a protocol with a signature key
on the OCE side, and a KEM key on the eSIM side.
To the best of our knowledge, this is the first approach
of its kind to leverage such a combination. The pro-
tocol is illustrated by Fig. 4 (the colored text is for a
hybrid version presented in Sect. 3.3 and should be
omitted for now). The OCE is now equipped with a
signature key SIG.skOCE and the corresponding cer-
tificate CertOCE. As in the classic case, the OCE al-
ready knows the eSIM’s public key, which is now a
KEM key KEM.pkC. The OCE begins by perform-
ing an encapsulation on this key to produce a shared
secret Ss and its ciphertext c.Ss, which are used to de-
rive the secure channel and receipt keys. The cipher-
text is signed, to authenticate the origin of the script.
The script is sent to the mobile device and played on
the eSIM. The eSIM verifies the OCE’s certificate,
checks the signature, and decapsulates the ciphertext
to obtain the shared secret and derive the session keys.
The remainder of the process aligns with the classic
protocol.

Regarding PFS, the situation is the same as in the
classical case: it is not ensured on the eSIM’s side (re-
covering KEM.skC allows to decrypt past communi-
cations), but it is on the OCE’s one (the shared secret
Ss is ephemeral). Similarly, replay is possible.

3.2 Quantum-Resistant Modes A and B

For completeness and coherence, we explore how PQ
versions of Modes A and B can be constructed using

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

111

OCE

CertHOCE, EC.skOCE,EC.pkC, SIG.skOCE, KEM.pkC

Prepare
(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

Ses← EC.KeyAgr(EC.eskOCE,EC.pkC)

(Ss,c.Ss)← KEM.Encaps(KEM.pkC)

sigOCE← SIG.Sign(SIG.skOCE,c.Ss)

(SKReceipt,SKSession)← KDeriv(Sss∥Ses∥EC.pkC∥Ss∥c.Ss)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.pkC∥KEM.pkC∥c.Ss)
Wrap following payloads into SCP03 using SKSession

Distribute Commands to mobile app.

Mobile eSIM

KEM.skC, EC.skC, pk
H
CA

PSO(CertHOCE)

(EC.pkOCE,SIG.skOCE)← Cert.Verify(CertHOCE,pk
H
CA)

PSO Response

MUTUAL_AUTH(EC.epkOCE,c.Ss,sigOCE)

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

Ses← EC.KeyAgr(EC.skC,EC.epkOCE)

ok/nok← SIG.Verify(SIG.pkOCE,sigOCE)

Ss← KEM.Decaps(KEM.skC,c.Ss)

(SKReceipt,SKSession)← KDeriv(Sss∥Ses∥EC.pkC∥Ss∥c.Ss)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.pkC∥KEM.pkC∥c.Ss)

Receipt

Verify Receipt

Continue communication

SCP03 protected exchanges

Figure 4: Hybrid version for Mode C (the colored part can
be omitted for a purely post-quantum version).

the same credentials as Mode C: a signature key for
the OCE and a KEM key for the eSIM. While these
protocols could certainly rely exclusively on either
signature keys or KEM keys—and possibly achieve
better performances in these setting—using the same
functions as in Mode C would streamline the process.
This approach removes the need for additional cre-
dentials and avoids introducing extra functionalities
on the eSIM.

For Mode A, we want to maintain the original mu-
tual authentication and PFS properties. This can be
achieved following the process illustrated by Fig. 5
(ignoring the colored part for now). Compared to the
classic protocol, we need one more command, that we
call MUTUAL_AUTH2. This is again due to the us-
age of a KEM in place of an ECDH key agreement.

The beginning of the protocol is the same: the
Card and the OCE exchange their certificates, ver-
ify them using SIG.pkCA and extract the public keys
SIG.pkOCE and KEM.pkC. Of course, the certifi-
cates are signed with a PQ signature algorithm. The
first MUTUAL_AUTH command is used to make the
eSIM generate a KEM ephemeral key and send the
public part to the OCE. The OCE can then use this
ephemeral key and the static one to generate two
shared secrets Se and Ss, and their respective cipher-

OCE Card

CertHOCE, EC.skOCE, SIG.skOCE CertHC , EC.skC, KEM.skC
pkHCA pkHCA

GET DATA()
CertHC

(EC.pkC,KEM.pkC)← Cert.Verify(CertHC ,pk
H
CA)

PSO(CertHOCE)

(EC.pkOCE,SIG.pkOCE)← Cert.Verify(CertHOCE,pk
H
CA)

PSO Response

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

MUTUAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.pkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

EC.epkC,KEM.epkC

Sss← EC.KeyAgr(EC.skOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(Ss,c.Ss)← KEM.Encaps(KEM.pkC)

(Se,c.Se)← KEM.Encaps(KEM.epkC)

sigOCE← SIG.Sign(SIG.pkOCE,KEM.epkC∥c.Ss∥c.Se)

MUTUAL_AUTH2(c.Ss,c.Se,sigOCE)

ok/nok← SIG.Verify(SIG.pkOCE,sigOCE)

Ss← KEM.Decaps(KEM.skC,c.Ss)

Se← KEM.Decaps(KEM.eskC,c.Se)

(SKReceipt,SKSession)← KDeriv(Sss∥See∥EC.pkC∥EC.epkC∥Ss∥Se∥c.Ss∥c.Se)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.epkC∥KEM.epkC∥c.Ss)

Receipt

(SKReceipt,SKSession)← KDeriv(Sss∥See∥EC.pkC∥EC.epkC∥Ss∥Se∥c.Ss∥c.Se)
Verify Receipt

SCP03 protected exchanges

Figure 5: Hybrid version for Mode A (the colored part can
be omitted for a purely post-quantum version).

texts c.Se and c.Ss. The OCE signs these ciphertexts,
together with the eSIM’s ephemeral key. The result-
ing signature and the ciphertexts are sent to the eSIM
via the new command. The eSIM can then verify the
signature, decapsulate both ciphertexts and derive se-
cret material from the concatenation of shared secrets
and ciphertexts (as advised by (ETSI, 2020)). The rest
of the protocol is unchanged: the eSIM computes an
authentication value Receipt, and both parties use the
session keys SKSession for further exchanges through
SCP03.

Note that the ephemeral key could be generated
by the OCE, this is equivalent for the PFS (assuming
both parties correctly manage ephemeral values), and
both options need two commands for the mutual au-
thentication.

The PQ version of Mode B is similar to the one
of Mode A, with the difference that the OCE does not
send any certificate, nor perform any signature. It is
illustrated by Fig. 6 (again ignoring the colored part).

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

112

OCE Card

CertHC , EC.skC, KEM.skC, pkHCApkHCA

GET DATA()
CertHC

(EC.pkC,KEM.pkC)← Cert.Verify(CertHC ,pk
H
CA)

(EC.eskOCE,EC.epkOCE)← EC.KeyGen()

INTERNAL_AUTH(EC.epkOCE)

(EC.eskC,EC.epkC)← EC.KeyGen()

Sss← EC.KeyAgr(EC.skC,EC.epkOCE)

See← EC.KeyAgr(EC.eskC,EC.epkOCE)

(KEM.eskC,KEM.epkC)← KEM.KeyGen()

EC.epkC,KEM.epkC

Sss← EC.KeyAgr(EC.eskOCE,EC.pkC)

See← EC.KeyAgr(EC.eskOCE,EC.epkC)

(Ss,c.Ss)← KEM.Encaps(KEM.pkC)

(Se,c.Se)← KEM.Encaps(KEM.epkC)

INTERNAL_AUTH2(c.Ss,c.Se)

Ss← KEM.Decaps(KEM.skC,c.Ss)

Se← KEM.Decaps(KEM.eskC,c.Se)

(SKReceipt,SKSession)← KDeriv(Sss∥See∥EC.pkC∥EC.epkC∥Ss∥Se∥c.Ss∥c.Se)
Receipt←MAC(SKReceipt,EC.epkOCE∥EC.epkC∥KEM.epkC∥c.Ss)

Receipt

(SKReceipt,SKSession)← KDeriv(Sss∥See∥EC.pkC∥EC.epkC∥Ss∥Se∥c.Ss∥c.Se)
Verify Receipt

SCP03 protected exchanges

Figure 6: Hybrid version for Mode B (the colored part can
be omitted for a purely post-quantum version).

3.3 Hybrid Versions

Hybrid versions combine classical and PQ algorithms
to mitigate the limited maturity of PQ solutions. This
ensures security as long as one algorithm set remains
secure. This approach is endorsed by European cy-
bersecurity agencies (ANSSI, 2023; BSI, 2024) and
supported by NIST (Alagic et al., 2025).

Several options are available for constructing hy-
brid protocols, the main ones are:

• Concatenate hybrid key agreement, where both
cryptographic methods are combined in single
messages by concatenating their respective data.

• Cascade hybrid key agreement, where the first
key agreement is executed before the second.

With the first option, each command conveys more
data, while the second one augments the number of
commands. We opted for the first option—the second
one can easily be derived.

Figure 5 illustrates the hybrid protocol for Mode
A, the classical part being colored. In this set-up, the
OCE and the eSIM use hybrid certificates, denoted
CertHOCE and CertHC . Multiple formats for hybrid cer-
tificates exist (see (Gray and Onsworth, 2024) for an
overview), but all include both classical and PQ keys
and are signed by the classical and PQ keys of the CA,
denoted pkHCA. The Cert.Verify function returns both

classical and PQ public keys: for the OCE, EC.pkOCE

and SIG.pkOCE; for the eSIM, EC.pkC and KEM.pkC.
Hybrid versions of Modes B and C (Fig. 6 and 4) are
based on these same principles.

Our hybrid protocols incorporate both classical
and PQ computations while maintaining the same
command count as the PQ-only versions. Shared se-
crets are derived from classical and PQ key agree-
ments, then combined using the KDeriv function.
This step requires careful design to ensure hybrid
security. This aspect has been studied in various
works (Herzberg, 2009; Giacon et al., 2018; Bindel
et al., 2019). Currently, only a few standardized op-
tions exist (ETSI, 2020; Alagic et al., 2025). Follow-
ing these standards, we input KDeriv with all shared
secrets, along with the public keys for ECDH and the
ciphertexts for KEM.

As seen, implementing these new protocols re-
quires modifying the commands sent to the eSIM. The
approach presented is one possibility, but the exact
implementation will be defined by GlobalPlatform.

4 FORMAL PROOFS

The security properties of the different modes of
SCP11 are listed in Sect. 2.2 and summarized in
Table 1. However, no formal security proof exists
in the literature confirming that these properties are
achieved. We therefore propose a formal verification
of the different modes of SCP11, and then consider
the PQ-only and hybrid variants.

4.1 Symbolic Formal Verification

Our proofs are conducted in the symbolic model, also
known as the Dolev–Yao attacker model (Dolev and
Yao, 1983). In this setting, the protocol participants
communicate over a public channel and employ per-
fect cryptographic primitives, where, for instance, de-
cryption is only possible with the corresponding key.
An active attacker in this model has full control over
the public channel, enabling her to read, drop, mod-
ify, replay messages, and inject new messages. Addi-
tionally, the attacker may selectively compromise par-
ticipants, e.g., through long term key leaks, or gain
access to oracles that break cryptographic assump-
tions, e.g., retrieving a private key from a public key.
In this setting, we can model a protocol and deter-
mine whether certain (mathematical) properties hold
despite such an adversary. We designate the OCE, the
Card and the attacker as O, C and A , respectively.

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

113

Authentication. Formalizing cryptographic proper-
ties into precise mathematical formulations can be
challenging, as illustrated by the various definitions of
authentication (Lowe, 1997). Interested readers can
find a near-mathematical formalization of these prop-
erties in (The Tamarin Team, 2024, pp.82–83). We
aim to prove the two strongest forms of agreement for
classical SCP11: the non-injective agreement (Lowe,
1997, §2.3) and (injective) agreement (Lowe, 1997,
§2.4). The authentication of C to O may represent an
injective agreement upon Receipt. The authentication
of O to C , which is unattainable in Mode B, may rep-
resent an injective agreement on the SCP commands
in Mode A, but a non-injective agreement in Mode C,
since O may replay a previous session.

Message Integrity. Message integrity is required
during SCP03 exchanges. For any command a sent
by O and any command b received by C , integrity is
achieved if a and b are identical. However, this condi-
tion may not hold for the Mode B, where any A may
impersonate an O. Message integrity is verified across
all modes if, for any command a whose authenticated
encryption e is sent by O and for any command b de-
crypted after the reception of e by C , the commands a
and b are the same.

Data Confidentiality and PFS. Like message in-
tegrity, data confidentiality applies only to SCP03 ex-
changes. A command is confidential if A cannot ac-
cess it at any point. Proving PFS adds a temporal con-
dition: we assume A obtains the long-term secret key
of C or O after the protocol’s completion. A protocol
is perfect forward secure (Günther, 1990; Diffie et al.,
1992) if A cannot compute the symmetric keys, such
as SKSession, exchanged before impersonating C or O.

Session Replay. The session replay is also ad-
dressed by the (non-)injection agreement discussed
above. To validate the negation of this property, ses-
sion uniqueness, we need to confirm that if two tuples
of keys (SKReceipt, SKSession) established by C and O
are identical at two different time periods, those peri-
ods must be the same.

To be automatically proved, all these (mathemati-
cal) properties need to be encoded in the formalism
of software programs designed for the formal veri-
fication of cryptographic protocols. The two lead-
ing tools for formally proving protocols in the sym-
bolic model are ProVerif (Blanchet et al., 2008) and
Tamarin (Schmidt et al., 2012). A comprehensive
comparison of these tools, along with others, can
be found in (Barbosa et al., 2021a, §II.A-C). Two

newer software options may also be considered: Ver-
ifpal (Kobeissi et al., 2020) and PQ-Squirrel (Cre-
mers et al., 2022). All these tools generally involve
two stages: the first models the protocol, and the
second assesses the security properties, expressed as
(mathematical) queries. In this work, we chose to use
ProVerif (version 2.05).

4.2 ProVerif Security Protocol Analysis

In this section, we discuss our modeling choices in the
ProVerif language. For comprehensive details, refer
to the ProVerif manual (Blanchet et al., 2023).

4.2.1 Model

ProVerif requires explicit definitions of the crypto-
graphic primitives used in the protocol. These def-
initions resemble an API description, accompanied
by the mathematical equations each primitive veri-
fies (Blanchet et al., 2023, §4.2). For instance, a mes-
sage authentication code (MAC) is illustrated in List-
ing 1. To compute a MAC, the function Mac takes a
key k and a message m to produce the MAC c of m. To
verify if c is the MAC of m under the key k, the func-
tion MacVerify takes the key k, the message m and the
alleged MAC c and outputs true if c=Mac(k,m) (i.e.,
MacVerify(k,m,Mac(k,m)) = 1) and false otherwise
(i.e., MacVerify(k,m,c ̸= Mac(k,m)) = 0).

Listing 1: ProVerif model of the MAC computation and ver-
ification.
type mackey . type macs .
fun Mac (mackey , b i t s t r i n g) : macs .
fun MacVerify (mackey , b i t s t r i n g , macs) : boo l
reduc f o r a l l k : mackey , m: b i t s t r i n g ;

MacVerify (k , m, Mac (k , m)) = t r u e
o t h e r w i s e f o r a l l k : mackey , m: b i t s t r i n g , c : macs ;

MacVerify (k , m, c) = f a l s e .

The primitives are embedded within two process
macros pCard and pOCE representing the Card and
the OCE in Listing 3. Unlike Tamarin which relies
on state sharing, we define a single process macro
for each actor. The two actors communicate over an
open channel, vulnerable to a Dolev–Yao attacker (see
Sect. 4.1). Each process macro is initialized in the
main process with the public and private keys required
for the chosen mode, with public keys also broad-
casted over the public channel, making them accessi-
ble to the attacker. Additionally, the certificate author-
ity is modeled as a separate macro process that signs
trusted public keys stored in an immutable table.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

114

4.2.2 Queries

To prove PFS, ProVerif allows to work with the notion
of phase (Blanchet et al., 2023, §4.1.6). The complete
execution of the protocol is considered phase 0, fol-
lowed by phase 1, which necessarily occurs after the
completion of phase 0, during which the long term
keys are leaked. The proof of PFS is done for phase 1.

The confidentiality query is expressed in Listing 2,
where we define a command and query whether the
attacker obtains this command.

Listing 2: ProVerif model of a confidentiality query.
f r e e commands : b i t s t r i n g [p r i v a t e] .
query a t t a c k e r (commands) .

To formalize other queries in the ProVerif model,
we first create events. An event denotes a significant
sequence of actions. For instance, the authentication
of the Card to the OCE via injective agreement on
the receipt message is briefly formalized in Listing 3.
The issuance and sending of the receipt message by
the Card to the OCE is the goal of sendRec, which
takes as arguments the receipt message and the two
actors, first the sender and second the receiver. To
prove the authentication query, we must define an-
other event to confirm that the MAC verification is
correctly performed: this is the goal of acceptRec,
which takes as arguments the receipt message and the
two actors, first the receiver and second the issuer.
Once events are defined and placed correctly in the
model, we use the injective correspondence with the
inj-event keyword.

Listing 3: ProVerif model of the two process macros.
. . .
event sendRec (macs , hos t , h o s t) .
event a c c e p t R e c (macs , hos t , h o s t) .
. . .
query r e c : macs , OCE: hos t , Card : hos t ,

i : t ime , j : t ime ;
event (a c c e p t R e c (rec , OCE, Card)) @i ==>
i n j − event (sendRec (rec , Card , OCE)) @j &&
j < i .

. . .
l e t pOCE(pkS : signCApub , SKOCE: e c k a p r i v) =

. . .
in (c , (ePKSD : eckapub , r e c : macs)) ;
. . .
l e t (r ke y : mackey , s enc : symkey , smac : mackey) =

kdf ((ShSss , ShSee)) in
i f MacVerify (rkey , (ePKOCE , ePKSD) , r e c) then (

event a c c e p t R e c (rec , OCE, Card) ;
. . .

) .
l e t pCard (pkS : signCApub , SKSD : e c k a p r i v) =

. . .
l e t (r ke y : mackey , s enc : symkey , smac : mackey) =

kdf ((ShSss , ShSee)) in

l e t r e c = Mac (rkey , (ePKOCE , ePKSD)) in
event sendRec (rec , Card , OCE) ;
out (c , (ePKSD , r e c)) ;
. . .

Regarding the integrity query in Listing 4, events
relate to the (encrypted) commands sent over the
SCP03 channel. The query states that if an actor sends
a command a through an encrypted message e with
an authentication tag m, and another actor receives a
command b from the decryption of message e with
tag m, then a and b are the same.

Listing 4: ProVerif model of an integrity query.
event sendCom (b i t s t r i n g , b i t s t r i n g , macs) .
event readCom (b i t s t r i n g , b i t s t r i n g , macs) .
query a : b i t s t r i n g , b : b i t s t r i n g , e : b i t s t r i n g ,

m: macs ; event (sendCom (a , e , m)) &&
event (readCom (b , e , m)) ==> a = b .

Finally, Listing 5 formalizes the session unique-
ness query. After the Card derives the key, the event
SCP03SK is triggered. This property states that if the
three keys established by the Card with the (believed)
OCE are identical for different time periods i and j,
then i and j must match, i.e., i = j.

Listing 5: ProVerif model of a replay query.
event SCP03SK (mackey , symkey , mackey , hos t , h o s t) .
query r key : mackey , s enc : symkey , smac : mackey ,

i : t ime , j : t ime ;
event (SCP03SK (rkey , senc , smac , Card , OCE)) @i &&
event (SCP03SK (rkey , senc , smac , Card , OCE)) @j
==> i = j .

4.3 Verification of the Models

We model all three modes. In our ProVerif models,
we include a sanity check to verify that at least one
trace allows the Card to receive the commands sent
by the OCE. Without this check, a query may be con-
sidered as verified only because the event(s) of the
query are not reached; for instance, if the first event
is not reached, both true and false can be assumed for
the second event, see Listing 3. All properties are ver-
ified in less than 3 seconds on a personal computer.

4.4 Post-Quantum Protocols

With the ProVerif models established for the clas-
sical modes of SCP11, we now aim to prove that
the quantum-resistant versions introduced in Sect. 3
achieve the same properties as their classical counter-
parts in the symbolic model.

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

115

4.4.1 Previous Works

Unlike computational tools (Barbosa et al., 2021b;
Blanchet and Jacomme, 2023), symbolic tools typ-
ically do not require adaption to take into account
quantum adversaries. Consequently, we can utilize
ProVerif directly, given an appropriate model for the
new primitives introduced in the post-quantum vari-
ants. Several studies have already explored automated
proofs in the symbolic model for post-quantum ver-
sions of various protocols, as summarized in Table 2.

Table 2: Post-quantum protocols with security proofs in the
symbolic model with an automated tool.

(Sub)Protocol Article ProVerif Tamarin Verifpal PQ-Squirrel

OPC UA (Paul and Scheible, 2020) ✓ ✓

PQ-Wireguard (Hülsing et al., 2021) ✓

PQ IKEv2 (Gazdag et al., 2021) ✓

KEMTLS (Celi et al., 2022) ✓

PQ IKEv1 (Cremers et al., 2022) ✓

PQ IKEv2 (Cremers et al., 2022) ✓

PQ X3DH (Cremers et al., 2022) ✓

PQ Signal (Beguinet et al., 2024) ✓

PQXDH (Bhargavan et al., 2024) ✓

iMessage PQ3 (Linker et al., 2024) ✓

PQ SCP11 This work ✓

4.4.2 Modeling PQ SCP11

The main distinction from classical protocols is the
introduction of a KEM algorithm. Following (Bhar-
gavan et al., 2024), a generic KEM encapsulation is
modeled as the generation of a secret value m, asym-
metrically encrypted with the recipient’s public key,
where m serves as the shared secret. However, the
ML-KEM standard (NIST, 2024b) differs by using a
shared secret which can be modeled as (the hash of)
m concatenated with the public key, as shown in List-
ing 6. Unless stated otherwise, all our proofs use a
generic KEM model.

Listing 6: ProVerif model of a simplified version of ML-
KEM.
type kempriv . type kempub .
fun kempk (kempriv) : kempub .
fun h (b i t s t r i n g , kempub) : b i t s t r i n g .
fun pkeenc (kempub , b i t s t r i n g) : b i t s t r i n g .
fun pkedec (kempriv , b i t s t r i n g) : b i t s t r i n g
reduc f o r a l l sk : kempriv , m: b i t s t r i n g ;

pkedec (sk , pkeenc (kempk (sk) , m)) = m.
l e t f u n kemenc (pk : kempub) = new m: b i t s t r i n g ;

l e t k = h (m, pk) in (pkeenc (pk , m) , k) .
l e t f u n kemdec (sk : kempriv , c t : b i t s t r i n g) =

l e t m = pkedec (sk , c t) in h (m, kempk (sk)) .

To prevent public key confusion attacks (Bharga-
van et al., 2024, §4.1.1), we incorporate an identifier
into public key certificates, ensuring domain separa-
tion. We model the PQ signature algorithm as the
standard signature model (Jackson et al., 2019, §2.2).

PQ-Only versions. The events and queries from the
classical models can be directly reused in the models
for the PQ SCP11 versions. Our models for the PQ
modes validate the expected proofs outlined for the
classical versions, as summarized in Table 1. Notably,
the PQ versions of Modes A and C allow to reach
the authentication of the OCE to the Card sooner
than in the classical version through the use of sig-
natures. More precisely, the sequence involving the
issuance of a signature by the OCE followed by its
verification by the Card guarantees aliveness (Lowe,
1997, §2.1) of the OCE in Mode C. This same se-
quence guarantees to the Card agreement with the
OCE on the signature in Mode A; however, the omis-
sion of the ephemeral key in the signed message re-
duces the authentication to aliveness, akin to Mode C.
This reduction may be acceptable if the PQ protocol
aims to align with the timeline the security properties
achieved in the classical protocol.

During the modeling stage of the PQ protocols,
we model firstly a simple rough key derivation step,
by only considering the concatenation of the shared
secret without taking into account the ciphertexts.
This is in contrast with what is described for exam-
ple in (ETSI, 2020, §8). While assessing the proper-
ties related to SCP11, we found that our initial (incor-
rect) model did not significantly diverge from expec-
tations, except for the replay property in Mode B. In
this case, since the OCE is not authenticated, an at-
tacker could send the same shared secret, for two runs
of the protocol. Interestingly, using ML-KEM (NIST,
2024b) defeats this attack since the public key used
for the encapsulation is embedded into the shared se-
cret construction, but this is not a perennial solution.
By aligning our model on the protocol described in
Fig. 6, the attack is defeated for a generic KEM.

Hybrid Versions. Hybrid protocols are of first im-
portance today to prepare the migration between pure-
classical and pure-post-quantum protocols. In addi-
tion to ensuring that an SCP11 mode provides the
requisite security when its primitives are secure, hy-
brid protocols must also remain secure if either of the
combined primitives—classical or else PQ—is com-
promised. To model this, we introduce oracles for the
attacker via ProVerif process macros, allowing her to
submit public keys and obtain the associated secret
keys, but only for either PQ or classical primitives, as
shown in Listing 7.

Listing 7: ProVerif model of the oracle which breaks the
public key of a KEM.
f r e e a t t : c h a n n e l . (* Channel f o r t h e a t t a c k e r *)
fun recoverKEMpriv (kempub) : kempriv
reduc f o r a l l sk : kempr iv ;

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

116

recoverKEMpriv (kempk (sk)) = sk [p r i v a t e] .
l e t k e m _ a t t a c k s () = in (a t t , pk : kempub) ;

out (a t t , recoverKEMpriv (pk)) .

We can verify that the hybrid protocols ensure
the same security properties as the classical proto-
cols when PQ primitives are broken, and conversely
the same security as PQ protocols when the classi-
cal primitives are compromised. Note that, since the
signatures issued by the certificate authority are also
hybrid, we model it as a single unbroken signature
algorithm rather than a combination of two signature
algorithms—one compromised and one secure.

5 IMPLEMENTATION

When implementing cryptographic protocols in em-
bedded devices, a lot of constraints come into play.
First, the amount of available resources (RAM, CPU
frequency) is usually very low. Implementing post-
quantum algorithms can be challenging. This is even
more the case as implementations on embedded de-
vices have to be resistant against physical attacks.
The cost of securing an implementation against side-
channel and fault attacks can drastically increase the
required amount of RAM, as well as the execution
time. On top of that, protocols are designed for two
parties to communicate with each other. The amount
of data exchanged by the parties would directly im-
pact the overall performance of the protocols.

In this section, we study these metrics for an im-
plementation on a typical embedded device (32-bit
Cortex-M3 CPU at 100 MHz) with a hardware ac-
celerator for ECC. The chip supports a baud-rate of
600 kbit/s. We discuss the impact of the choice of
the PQ algorithm on the execution time of a complete
protocol execution.

5.1 Algorithm Choice

For our experiments, we restrict ourselves to the al-
gorithms that were standardized by the NIST, namely
ML-KEM (NIST, 2024b) for key encapsulation, and
ML-DSA (NIST, 2024a) and FN-DSA for signature.
As the FN-DSA specifications are not yet available,
we implemented the latest version submitted to the
NIST competition, that is the Round 3 version of Fal-
con (Fouque et al., 2020). In the rest of the paper,
we will use the name FN-DSA. The ML-KEM prim-
itives were implemented with side-channel counter-
measures such as (Coron et al., 2022; Coron et al.,
2023).

We excluded SLH-DSA (NIST, 2024c) from our
study because even with the small variant, the per-

formances would be very low with processing time
reaching up to 5 seconds whenever a verification is
required. This algorithm is not suited for embedded
devices.

To align the security levels with the post-quantum
algorithms, we implemented the ECC component
with three distinct security levels: 128, 192, and 256
bits, corresponding to NIST categories 1, 3, and 5, re-
spectively. We used the P-256, P-384 and P-521 El-
liptic Curve domain parameters as specified in SP800-
186 (Chen et al., 2023). Since we simulated the OCE
using a desktop computer, the timing results for the
OCE are not relevant. However, the OCE typically
has significantly greater processing power than the
chip, making its timing negligible in this context.

5.2 Performance Analysis

In Tables 3 and 4, we present the communication and
processing time of the chip for the hybrid version us-
ing the standardized post-quantum signatures, respec-
tively ML-DSA and FN-DSA. Note that we measure
only the secure channel establishment part, before any
SCP03 exchanges. As the communication time may
depend on the negotiated baud-rate and transmission
protocol, it is clearly separated from the processing
time of the chip. This communication time includes
both the sending and receiving of data by the chip.
Finally, we compare these implementations to a clas-
sic SCP11 using ECC by giving the ratio to see the
overhead of hybridation.

For ML-DSA in Table 3, it is worth noticing
that while the impact on the processing time is non-
negligible, it is not more than a factor of 8 at worst.
However, the communication time is more than 40
times slower. Despite this, the total time remains less
than one second for the 128-bit security level.

The results for FN-DSA in Table 4 are much bet-
ter due to the relatively small signature size and the
efficient verification process. At the 128-bit security
level, all modes run in less than 500 ms. In a context
where the constrained device only performs verifica-
tions, it is advantageous to choose a signature algo-
rithm with a short signature and fast verification, such
as FN-DSA.

6 CONCLUSION

Through our exploration of SCP11’s modes, we iden-
tify challenges in transitioning from classical to post-
quantum cryptography. Beyond proving that SCP11
achieves its claimed security properties, we designed
new PQ-only and hybrid protocols that uphold the

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

117

Table 3: Chip-based measurements of hybrid SCP11 proto-
cols execution, with ratio relative to classic versions, using
ML-DSA signature.

Protocol Sec. level Communication Processing Total
(ms) (ratio) (ms) (ratio) (ms) (ratio)

128 267 (×35) 516 (×7.7) 783 (×11)
Mode A 192 380 (×33) 796 (×6.1) 1176 (×8.3)

256 515 (×32) 1184 (×5.3) 1698 (×7.1)

128 117 (×23) 290 (×6.0) 406 (×7.6)
Mode B 192 165 (×21) 427 (×4.6) 591 (×5.9)

256 228 (×22) 629 (×4.0) 857 (×5.1)

128 167 (×43) 348 (×7.1) 516 (×9.8)
Mode C 192 239 (×42) 559 (×5.8) 797 (×7.8)

256 321 (×40) 837 (×5.0) 1157 (×6.5)

Table 4: Chip-based measurements of hybrid SCP11 proto-
cols execution, with ratio relative to classic versions, using
FN-DSA (Round 3 Falcon) signature. Note that FN-DSA
does not specify a parameter set for security level 192.

Protocol Sec. level Communication Processing Total
(ms) (ratio) (ms) (ratio) (ms) (ratio)

Mode A 128 136 (×18) 341 (×5.1) 477 (×6.4)
256 265 (×17) 750 (×3.3) 1014 (×4.2)

Mode B 128 82 (×16) 290 (×6.0) 371 (×7.0)
256 162 (×15) 629 (×4.0) 791 (×4.7)

Mode C 128 72 (×19) 173 (×3.5) 244 (×4.6)
256 137 (×17) 403 (×2.4) 540 (×3.0)

same guarantees as classical modes, validated by for-
mal proofs.

We test different standardized PQ cryptographic
primitives and FN-DSA, due to its short signatures
and fast verification, proves to be the best fit. Even if
FN-DSA signature generation is challenging to secure
against side-channel attacks, there is no problem here
as the card only needs to perform verification. More-
over, it is usually not possible to perform physical
attacks on the OCE. Regarding performance on the
card, it could be further enhanced through specialized
accelerators, higher clock speeds, or expanded mem-
ory provided by chip manufacturers. Enhancing com-
munication speed remains another avenue, though it
requires coordinated efforts among stakeholders and
will likely take longer to implement.

Future research will extend to other protocols
in embedded ecosystems, offering formal proofs for
PQ adaptations. Collaboration with GlobalPlatform
working groups will support PQ standardization and
ensure smooth migration across embedded applica-
tions.

ACKNOWLEDGEMENTS

The author would like to thank anonymous referees
for useful and detailed comments on a previous ver-
sion of the paper.

REFERENCES

Alagic, G., Barker, E., Chen, L., Moody, D., Robinson, A.,
Silberg, H., and Waller, N. (2025). Recommendations
for Key Encapsulation Mechanisms. NIST. Special
Publication 800-227, Initial Public Draft.

Angel, Y., Dowling, B., Hülsing, A., Schwabe, P., and We-
ber, F. (2022). Post quantum Noise. In ACM CCS
2022, page 97–109. ACM Press.

ANSSI (2023). ANSSI views on the Post-Quantum Cryp-
tography transition.

Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cre-
mers, C., Liao, K., and Parno, B. (2021a). SoK:
Computer-aided cryptography. In 2021 IEEE Sympo-
sium on Security and Privacy, pages 777–795. IEEE
Computer Society Press.

Barbosa, M., Barthe, G., Fan, X., Grégoire, B., Hung, S.-H.,
Katz, J., Strub, P.-Y., Wu, X., and Zhou, L. (2021b).
EasyPQC: Verifying post-quantum cryptography. In
Vigna, G. and Shi, E., editors, ACM CCS 2021, pages
2564–2586. ACM Press.

Beguinet, H., Chevalier, C., Ricosset, T., and Senet, H.
(2024). Formal verification of a post-quantum Signal
protocol with Tamarin. In Ben Hedia, B., Maleh, Y.,
and Krichen, M., editors, VECoS ’23, volume 14368
of LNCS, pages 105–121. Springer.

Bhargavan, K., Jacomme, C., Kiefer, F., and Schmidt, R.
(2024). Formal verification of the PQXDH post-
quantum key agreement protocol for end-to-end se-
cure messaging. In Balzarotti, D. and Xu, W., editors,
USENIX Security 2024. USENIX Association.

Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., and
Stebila, D. (2019). Hybrid key encapsulation mecha-
nisms and authenticated key exchange. In Ding, J. and
Steinwandt, R., editors, PQCrypto 2019, pages 206–
226. Springer.

Blanchet, B., Abadi, M., and Fournet, C. (2008). Auto-
mated verification of selected equivalences for secu-
rity protocols. Journal of Logic and Algebraic Pro-
gramming, 75(1):3–51.

Blanchet, B. and Jacomme, C. (2023). CryptoVerif:
a computationally-sound security protocol verifier.
Technical Report RR-9526, Inria.

Blanchet, B., Smyth, B., Cheval, V., and Sylvestre, M.
(2023). ProVerif 2.05: Automatic cryptographic pro-
tocol verifier, user manual and tutorial.

Brendel, J., Fiedler, R., Günther, F., Janson, C., and Ste-
bila, D. (2022). Post-quantum asynchronous deniable
key exchange and the Signal handshake. In Hanaoka,
G., Shikata, J., and Watanabe, Y., editors, PKC 2022,
Part II, volume 13178 of LNCS, pages 3–34. Springer.

Brendel, J., Fischlin, M., Günther, F., Janson, C., and Ste-
bila, D. (2020). Towards post-quantum security for
Signal’s X3DH handshake. In Dunkelman, O., Jacob-
son, Jr., M. J., and O’Flynn, C., editors, SAC 2020,
volume 12804 of LNCS, pages 404–430. Springer.

BSI (2018). Elliptic Curve Cryptography. Technical Guide-
line TR-03111, version 2.10.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

118

BSI (2024). Cryptographic Mechanisms: Recommenda-
tions and Key Lengths. Technical Guideline TR-
02102-1, version 2024-01.

Celi, S., Hoyland, J., Stebila, D., and Wiggers, T. (2022). A
tale of two models: Formal verification of KEMTLS
via Tamarin. In Atluri, V., Di Pietro, R., Jensen, C. D.,
and Meng, W., editors, ESORICS 2022, Part III, vol-
ume 13556 of LNCS, pages 63–83. Springer.

Chen, L., Moody, D., Randall, K., Regenscheid, A., and
Robinson, A. (2023). Recommendations for Discrete
Logarithm-based Cryptography: Elliptic Curve Do-
main Parameters. NIST. Special Publication 800-186.

Coron, J.-S., Gérard, F., Montoya, S., and Zeitoun, R.
(2022). High-order table-based conversion algorithms
and masking lattice-based encryption. IACR TCHES,
2022(2):1–40.

Coron, J.-S., Gérard, F., Montoya, S., and Zeitoun, R.
(2023). High-order polynomial comparison and
masking lattice-based encryption. IACR TCHES,
2023(1):153–192.

Cremers, C., Fontaine, C., and Jacomme, C. (2022). A logic
and an interactive prover for the computational post-
quantum security of protocols. In 2022 IEEE Sympo-
sium on Security and Privacy, pages 125–141. IEEE
Computer Society Press.

Diffie, W., van Oorschot, P. C., and Wiener, M. J.
(1992). Authentication and authenticated key ex-
changes. DCC, 2(2):107–125.

Dolev, D. and Yao, A. C. (1983). On the security of pub-
lic key protocols. IEEE Transactions on Information
Theory, 29(2):198–207.

Dworkin, M. (2005). Recommendation for Block Cipher –
Modes of Operation: The CMAC Mode for Authenti-
cation.

ETSI (2020). Quantum-safe Hybrid Key Exchanges. ETSI
TS 103 744 V1.1.1.

Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,
Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte,
W., and Zhang, Z. (2020). Falcon: Fast-Fourier
Lattice-based Compact Signatures over NTRU. speci-
fication v1.2.

Freire, E. S. V., Hofheinz, D., Kiltz, E., and Paterson, K. G.
(2012). Non-interactive key exchange. Cryptology
ePrint Archive, Paper 2012/732.

Gazdag, S.-L., Grundner-Culemann, S., Guggemos, T.,
Heider, T., and Loebenberger, D. (2021). A formal
analysis of IKEv2’s post-quantum extension. In AC-
SAC ’21, page 91–105, New York, NY, USA. Associ-
ation for Computing Machinery.

Giacon, F., Heuer, F., and Poettering, B. (2018). KEM
combiners. In Abdalla, M. and Dahab, R., editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 190–
218. Springer.

GlobalPlatform (2020). Secure Channel Protocol '03' –
Card Specification v2.3 — Amendment D – Version
1.2.

GlobalPlatform (2023). Secure Channel Protocol '11' –
Card Specification v2.3 – Amendment F – Version 1.4.

Gray, J. and Onsworth, M. (2024). Certificate mechanisms
for transitioning to post-quantum cryptography. Inter-

national Cryptographic Module Conference (ICMC)
2024.

GSMA (2023a). RSP Architecture SGP.21 v3.1.
GSMA (2023b). RSP Technical Specification SGP.22 v3.1.
GSMA (2023c). Secured Applications for Mobile v1.1.
Günther, C. G. (1990). An identity-based key-exchange

protocol. In Quisquater, J.-J. and Vandewalle, J., ed-
itors, EUROCRYPT’89, volume 434 of LNCS, pages
29–37. Springer.

Hashimoto, K., Katsumata, S., Kwiatkowski, K., and Prest,
T. (2021). An efficient and generic construction
for Signal’s handshake (X3DH): Post-quantum, state
leakage secure, and deniable. In Garay, J., editor,
PKC 2021, Part II, volume 12711 of LNCS, pages
410–440. Springer.

Herzberg, A. (2009). Folklore, practice and theory of robust
combiners. J. Comput. Secur., 17(2):159–189.

Hülsing, A., Ning, K.-C., Schwabe, P., Weber, F. J., and
Zimmermann, P. R. (2021). Post-quantum WireGuard.
In 2021 IEEE Symposium on Security and Privacy,
pages 304–321. IEEE Computer Society Press.

Jackson, D., Cremers, C., Cohn-Gordon, K., and Sasse, R.
(2019). Seems legit: Automated analysis of subtle
attacks on protocols that use signatures. In Cavallaro,
L., Kinder, J., Wang, X., and Katz, J., editors, ACM
CCS 2019, pages 2165–2180. ACM Press.

Kobeissi, N., Nicolas, G., and Tiwari, M. (2020). Verifpal:
Cryptographic protocol analysis for the real world.
In Bhargavan, K., Oswald, E., and Prabhakaran, M.,
editors, INDOCRYPT 2020, volume 12578 of LNCS,
pages 151–202. Springer.

Kret, E. and Schmidte, R. (2024). The PQXDH key agree-
ment protocol. Technical report, Signal.

Linker, F., Sasse, R., and Basin, D. (2024). A formal anal-
ysis of Apple’s iMessage PQ3 protocol. Cryptology
ePrint Archive, Paper 2024/1395.

Lowe, G. (1997). A hierarchy of authentication specifica-
tion. In Computer Security Foundations Workshop,
pages 31–44. IEEE Computer Society.

NIST (2024a). Module-Lattice-Based Digital Signature
Standard. FIPS 204.

NIST (2024b). Module-Lattice-Based Key-Encapsulation
Mechanism Standard. FIPS 203.

NIST (2024c). Stateless Hash-Based Digital Signature
Standard. FIPS 205.

Paul, S. and Scheible, P. (2020). Towards post-quantum
security for cyber-physical systems: Integrating PQC
into industrial M2M communication. In Chen, L.,
Li, N., Liang, K., and Schneider, S. A., editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages
295–316. Springer.

Schmidt, B., Meier, S., Cremers, C., and Basin, D. A.
(2012). Automated analysis of Diffie-Hellman pro-
tocols and advanced security properties. In Chong, S.,
editor, CSF 2012, pages 78–94. IEEE Computer Soci-
ety.

The Tamarin Team (2024). Tamarin prover manual.

Post-Quantum Secure Channel Protocols for eSIMs: Design, Validation and Performance Analysis

119

